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Abstract

Semantic world modeling has been studied extensively, with
the goal of enabling robots to understand and interact with
their environment. However, existing approaches to semantic
world modeling rely on well-defined perceptual data, such as
distinct visual features. In situations where different objects
are difficult to distinguish based on perceptual data alone, the
resulting world model will be ambiguous and inconsistent.
To address this challenge, we present the Dynamic Anchor-
ing Agent (DAA), a probabilistic object anchoring frame-
work for semantic world modeling that uses domain knowl-
edge and reasoning to handle the ambiguity of sensor data
through probabilistic anchoring. It includes a Multiple Hy-
pothesis Tracker (MHT) as a filter for noisy observations,
and a knowledge base that encodes domain knowledge and
scene context to reduce uncertainty in the anchoring process.
The framework is evaluated on both synthetic and real-world
datasets, demonstrating its effectiveness in resolving asso-
ciation ambiguities in the presence of identical-looking in-
stances. It has also been integrated into a real robot platform.
We show that with the help of domain knowledge and scene
context, the proposed framework outperforms traditional pure
data-based algorithms in terms of identification accuracy, and
can effectively resolve ambiguities between sensor-identical
object instances.

Introduction
In the context of robot manipulation, task planners gener-
ate plans concerning symbolic entities, while the robot exe-
cutes the plans on the sensorimotor level. Consider an agent
in a household environment. Often, the robot executes ac-
tions in different locations. While the robot is operating in
the kitchen, the object states in the living room may have
changed. A prerequisite for successful task execution is the
correct correspondence between the entities referred to by
the task planner and the sensory perception of the agent.
Maintaining this correspondence over time is called the an-
choring problem (Loutfi, Coradeschi, and Saffiotti 2005).
In our example, when the household robot comes back to
the living room, it has to figure out which existing symbols
correspond to which perceived objects in the changed scene
through the use of anchoring.
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The main challenges in the anchoring problem are
twofold. First, the agent’s sensory observations are noisy
and partial, especially with object occlusion and dynam-
ics. Second, association ambiguities arise from dynamic ob-
ject instances with identical perceptual features, e.g., object
appearance and position. Since most existing methods ap-
proach the anchoring problem by relying on the distinct fea-
tures of the individual objects, the association ambiguities
cannot be effectively resolved when facing these identical-
looking objects. In this paper, we propose to resolve ambigu-
ities with the help of domain knowledge and logical reason-
ing. Specifically, we use the Multiple Hypothesis Tracking
algorithm as a filter for the noisy observations, and on top
of that, we maintain a scene graph and exploit the encoded
scene context to reduce the uncertainty in the anchoring pro-
cess. In summary, we make the following contributions:

1. We present the open-source probabilistic object anchoring
framework DAA1 for semantic world modeling, which
explicitly solves the data association problem using do-
main knowledge and logical reasoning.

2. We compare the identification performance of the pro-
posed framework against the MHT algorithm in terms of
ID F1 score, precision, and recall.

3. We demonstrate the effectiveness of the framework in re-
solving association ambiguities in the presence of identi-
cally looking instances.

Related Work
In (Loutfi, Coradeschi, and Saffiotti 2005), the anchoring
problem was presented and the elements and structure of
anchoring frameworks were defined, including a symbolic
system, a perceptual system, and an anchoring module con-
necting the two. They also integrated multimodal percep-
tual information. Find, reacquire and track functionalities
are introduced so that traditional bottom-up anchoring ap-
proaches work in conjunction with top-down approaches to
information acquisition. In their subsequent work (Loutfi et
al. 2008), more sophisticated knowledge representation and
reasoning are incorporated to enrich the anchoring process.
Daoutis et al. extend it to multi-agent settings in (Daoutis,
Coradeschi, and Loutfi 2012). More recently, Persson et

1https://github.com/copda/copda



al. employ machine learning and dynamic distributional
clauses in their anchoring framework (Persson et al. 2020;
Zuidberg Dos Martires et al. 2020). In (Zuidberg Dos Mar-
tires et al. 2020), rules are learned instead of being hand-
coded. The object-percept association is handled by a match
function, which is a support vector machine trained on
human-labeled data. The match function computes the sim-
ilarities of object attributes, mostly the similarity of posi-
tions. In all of the above approaches, object-to-percept as-
sociations are made based on the perceptual similarities of
individual objects. The uncertainty about associations itself
is not explicitly handled.

Another line of work includes (Elfring et al. 2013; Wong
2017; Wong, Kaelbling, and Lozano-Pérez 2015), where
data association is explicitly handled in a probabilistic man-
ner. (Elfring et al. 2013) is a representative of tracking-based
methods. They use MHT to maintain all possible object
states up to N frames. Although perceptions are grounded
in conceptual space, the implied semantic information is not
exploited in the association process, and the potential asso-
ciation errors made by the MHT are not addressed. On the
other hand, Wong (2017) approaches the anchoring prob-
lem using clustering under the assumption that the world is
semi-static. Same as (Elfring et al. 2013), it also relies on
probabilistic inference at the perceptual level without logi-
cal reasoning at the semantic level.

Approaches that use scene context in the form of pairwise
spatial relations between objects to address the anchoring
problem can be found in (Ruiz-Sarmiento et al. 2017) and
(Günther et al. 2018). They use a Conditional Random Field
(CRF) to combine the results of a low-level object recogni-
tion system with a trained matching function based on geo-
metric features and scene context. In our work, we go one
step further by employing Multiple Hypothesis Tracking.
MHT delays the tracking decision for several more frames,
thereby improving the tracking results because it has access
to more information from several frames before committing
to the most likely hypothesis. We also add a knowledge layer
that allows the user to use domain knowledge in the anchor-
ing process.

Preliminaries
Problem Definition
Consider a scene containing an unknown number of ob-
jects. The number at time t, denoted by Nt, changes as
objects enter or leave the scene. Objects are assumed to
have static and dynamic attributes, denoted by st and xt,
respectively. A black-box perceptual module provides di-
rect estimates for these attributes. Let θkt be the kth ob-
ject’s attributes of interest at time t, then θkt = (skt , x

k
t ) with

k ∈ {1, . . . , Nt}. At each time step, the agent has a lim-
ited view of the scene, and the perceptual module provides
Mt observations of the object attributes within the view, de-
noted as Ot = {omt | for m = 1, . . . ,Mt}. We assume that
the perceptual module has a detection rate of pDT and a false
detection rate of pFT . In general, we try to recover the ob-
ject states Θ1:t = {Θ1, . . . ,Θt} from the observations in an
online fashion, namely the posterior p(Θ1:t | O1:t), where

Θt = {θkt | for k = 1, . . . , Nt}.

Data Association

Without the object-to-observation association, the target dis-
tribution p(Θ1:t|O1:t) is difficult to compute. There are
several approaches to the data association problem, such
as Multiple Hypothesis Tracking (Reid 1979) or Markov
chain Monte Carlo data association (Oh, Russell, and Sas-
try 2009). Here we use the MHT approach as in (Kim
et al. 2015) and (Elfring et al. 2013). Specifically, an as-
sociation variable zt is introduced, which is a vector of
length Mt, with each component zmt being the value of
the associated object index k, or 0 for false detections.
The MHT maintains the full distribution of zt, and the
posterior becomes the expectation of p(Θ1:t|z1:t, O1:t) un-
der p(z1:t|O1:t). The joint distribution p(Θ1:t, z1:t|O1:t) is
maintained in a tree structure, with nodes representing as-
sociation hypotheses. Since the full joint distribution is im-
possible to maintain due to the exponentially growing tree
size, approximation techniques such as N -scan pruning are
used. However, these pruning schemes introduce irreversible
association errors. Furthermore, MHT implicitly maximizes
the likelihood p(Ot−N :t|zt−N :t,Θt−N :t) wrt. the associa-
tion variable zt−N :t, and in some cases the likelihood is not
unimodal, for example, when two visually identical objects
swap positions. In these cases, using the perceptual informa-
tion alone is not sufficient to resolve the ambiguities. To ad-
dress these issues, we introduce the symbolic system; on top
of the results from MHT, the anchoring process solves the
data association problem with the inferred scene context.

Symbolic System

To compensate for the drawbacks of MHT, we exploit the
latent semantics in data and domain knowledge. In partic-
ular, we introduce the symbolic system, which contains a
set of symbols Π = {πk} representing physical objects,
a set of predicates Φ = {ϕj(πk, value)} describing the
attributes of these objects, and a set of relational predi-
cates R = {rl(πk, πv)} that encode the spatial relationships
between objects. In summary, the symbolic system is de-
scribed as the union of the three: S = Π ∪ Φ ∪ R. With
the spatial relationships, we can augment the log-likelihood
with a relational likelihood term: log p(Rt, Ot|zt,Θt) =

log p(Rt|Ot, zt,Θt) +
∑Mt

m=1 log p(o
m
t |zt,Θt).

Anchoring Process

Let Ti be the ith track from the MHT defined from time u
to v, and Ti = {omu:v | zmu:v = i}. The anchoring process
then assigns these tracks to symbols by maximizing the aug-
mented log-likelihood mentioned above. We define an an-
chor as a tuple of a symbol defined in the symbolic system
and the corresponding track, namely αk = (πk, Ti). The an-
choring results are represented as a set of anchors. Thus, the
state of the object instance πk between time u and v can be
computed as p(θiu:v|omu:v, zmu:v = i).



Dynamic Anchoring Agent
This section describes the Dynamic Anchoring Agent
(DAA) in detail. The DAA is structured as shown in Fig-
ure 1 and consists of three components: Multiple Hypothe-
sis Tracker, Anchor Management, and Knowledge Base. The
DAA operates in a bottom-up fashion and is driven by per-
ceptual data from a perception module. The perceptual data
can be of different modalities, such as position, orientation,
object class, and color distribution. The Multiple Hypothe-
sis Tracker (MHT) serves as an initial filter to handle false
detections. As a result, the perceptual data is structured as
short, continuous tracks of percepts. Next, the Anchor Man-
agement (AM) module performs the anchoring process, in
which the track-symbol assignments are resolved and stored
as a set of anchors. Finally, the Knowledge Base (KB) up-
dates the semantic information about object instances based
on the latest anchors and supports the AM in the next an-
choring process. The KB also provides interfaces to high-
level modules, such as the task planner, for querying object
states.

Tracker

Perceptual
module

Anchor management

Knowledge base

Planner Visualizer

tracks

percepts

queries
&

updates
responses

semantic
information

object
instances

Dynamic Anchoring Agent

Figure 1: Framework structure of the DAA.

Multiple Hypothesis Tracker
Since the incoming perceptual data contains misdetections
and false alarms, we implemented the Multiple Hypothesis
Tracker (Reid 1979; Kim et al. 2015; Elfring et al. 2013) to
handle the initial data association. The tracker maintains a
set of multi-hypothesis trees, each of which contains possi-
ble sequences of percepts that originate from a real-world
entity. In our demo domain, the percepts consist of three
different object properties, namely position, object class,
and color distribution; however, which properties are used
is flexible and depends on the domain. Association scores
are calculated as the weighted sum of the log-likelihoods
of these properties. To limit the computational complexity,
poorly scored branches are pruned and the N -scan pruning
strategy is applied. However, according to the investigation
in (Wong 2017), the pruning techniques of MHT come with
some non-trivial limitations:

• Correct associations may be erroneously eliminated by
the pruning process.

• Although the association decision is delayed by the N -
scan window, there is no guarantee that the ambiguities
will be resolved after N scans, and hence the algorithm
will still commit to the erroneous associations.
Also, since the MHT only performs tracking and not an-

choring, it cannot re-associate an object that reenters the
scene after a long absence to its previous track (i.e., after
tracking is lost). To account for these problems, the result-
ing tracks are assigned to temporary targets whose identities
are decided during the anchoring process.

Anchor Management
Anchor management is the interface between the tracker and
the knowledge base. It decides whether a track from the
MHT should be associated with an existing symbol or cre-
ate a new one by solving an optimal assignment problem.
The key to the anchoring process is a matching function that
evaluates proposed assignments based on perceptual data as
well as scene context (in our case, spatial relations).

At each time step, the AM receives a set of tracks from
the MHT, which can be divided into three groups: tracks as-
sociated with existing anchors, terminated tracks, and new
tracks. The most recent percepts retrieved from the asso-
ciated tracks are stored for the following process. For ter-
minated tracks, the corresponding anchors are marked as
lost. The optimal assignment between lost anchors and new
tracks is then solved as follows.

Optimal Assignment First, we propose possible assign-
ments by enumerating the combinations between dangling
tracks and lost anchors. For each track, a new candidate an-
chor is also created to account for a possible new object.
Each assignment is validated with the match function de-
pending on static object attributes such as object types and
colors. We then construct a graph where each node repre-
sents a valid assignment. By assuming that a track can only
be assigned to a maximum of one anchor and vice versa,
edges can be created between compatible assignments. The
score of a compatible assignment set is computed as the
weighted sum of sensory similarities and the scene graph
distance given the expected spatial relations:

−ωo[

Mt∑
m:zm

t ̸=0

∥omt − θ
zm
t

t ∥2 +
Mt∑

m:zm
t =0

l(omt )]− ωddzt

where l(omt ) is a function that evaluates the possibility
of the observation coming from a new instance based on
prior knowledge, e.g. object counts and default locations.
These quantities are calculated by a match function with the
support of the knowledge base. The maximum score clique
of the constructed graph contains the most likely assign-
ments. For assignments connecting tracks to new anchors,
new symbols are acquired by querying the knowledge base
and used to initialize the new anchors. For the assignments
with lost anchors, the terminated tracks are stored and re-
placed by the new tracks.

Finally, the relevant instances in the knowledge base can
be updated with the latest percepts of the associated tracks.



Knowledge Base
The Knowledge Base (KB) module contains a database and
a manager to access it. Together with the Prolog scripts that
encode domain knowledge, it forms the symbolic system
and provides query and update services to other modules
such as the anchor management and task planner.

Knowledge Representation In the database, knowledge
is represented by a logical component and a physical com-
ponent. The logical component describes domain-specific
concepts at different levels of abstraction and their rela-
tions. This domain-specific knowledge must be tailored to
the specifics of the particular domain in which the system is
operating and remains static during operation. In our imple-
mentation, we developed a small-scale ontology as shown
in Figure 2. The physical component is the instantiation of
the logical concepts and reflects the current semantic world
states of the agent. The knowledge is encoded in the form of
(Subject, Predicate, Object) triples and stored in an SQLite
database.

Object

Container SmallItem

SmallLoadCarrier Powerdrill Cracker

positioncolor

contains

is_inside_of

inverse prop.
has_prop.

has_prop.

has_prop. has_prop.

is_a is_a

is_ais_ais_a

Figure 2: The small scale ontology

Knowledge Base Manager While the database serves as
storage for the knowledge representation, the knowledge
base manager provides logical reasoning capabilities. The
reasoning capabilities are empowered by rules programmed
in the Prolog language and can be divided into two groups:
indirect relation inference (for properties and classes) and
spatial relation inference.

Furthermore, the KB manager provides query and update
services for other modules to access the knowledge base.
The query service supports the anchoring process and pro-
vides semantic information to modules such as the task plan-
ner. It accepts the following queries:

• is_potential_match: Checks whether the given
percepts potentially originate from the specified instance.

• get_relation_graph: Returns the spatial relations
of the current world model.

• infer_relation_graph: Returns the resulting spa-
tial relations given the hypothesized object states.

• get_all_instances: Returns all object instances
along with their state estimates.

On the other hand, the update service enables other modules
to update the knowledge base, including creating, deleting,
and updating instances.

Consistency Checks Due to the potential errors
from the anchoring process and MHT, the result-
ing updates to the world model may be inconsis-
tent. We try to mitigate this by performing a consis-
tency check before committing the updates. First, we
check for conflicting spatial relations. For example, if
(container_1,contains,item_1) is inferred by
the knowledge base based on new sensor data, then the exist-
ing fact (item_1,is_inside_of,container_2)
that was true previously is deleted. We also check for
duplicate instances. For example, if container_1
from the above example is lost and container_2 is
active, then container_1 and container_2 likely
represent the same physical entity. In this case, we merge
container_1 with container_2.

Experiments
The experiments are divided into three parts. First, we eval-
uate the DAA with a 2D toy dataset and compare the perfor-
mance with the original MHT. In the second part, we further
demonstrate its effectiveness in resolving association ambi-
guities in various challenging situations. Finally, we show
a qualitative example of the integration of DAA on a real
robot.

Evaluation on the Synthetic Dataset We created a
synthetic dataset that contains sequences of object type
and pose observations in chronological order O =
{{o11, o21, . . . }, {o12, o22, . . . }, . . . }, and each observation is
labeled with the ground truth object identifier. The dataset
is generated as follows.

First, we define two types of objects: container and
cup. To ensure that the algorithm can exploit the spatial re-
lations, we set the number of objects of both types to 2, with
one cup always inside a container. This allows us to reuse the
predefined ontology shown in Figure 2, with container
as a subclass of Container and cup as a subclass of
SmallItem.

Objects are scattered and constrained in a 4 × 4 square
space, and objects cannot overlap. To simulate a dynamic
scene, objects follow random circular trajectories with ran-
dom accelerations at each time step (Figure 3a). An ob-
ject emits an observation with probability pDT (Figure 3b).
To simulate objects entering and disappearing from the
scene, we define an observation area of size 3 × 3, cen-
tered in the scene area. Only the objects inside the obser-
vation area can be observed. The position observations are
corrupted with zero mean Gaussian noise. With a proba-
bility of pFT , a spurious observation is generated by sam-
pling uniformly over the entire space. Each generated ob-
servation is labeled with the corresponding object identifier.
Figure 3a shows one set of generated ground truth trajecto-
ries, where container_2 contains cup_1 and the other
objects move independently. Figure 3b shows the rendered
noisy observations that are fed into the MHT.



We sample trajectories with incremental step sizes rang-
ing from 500 to 2000, with pDT fixed at 0.6 and pFT

fixed at 0.05. For each step size, five sequences are sam-
pled. For quantitative evaluation, we run our framework with
the generated sequences and adopt identification accuracy /
F1 score (IDF1), identification precision (IDP) and identi-
fication recall (IDR) as performance metrics (Ristani et al.
2016). Since the MHT is part of our framework, the results
of both the MHT and the DAA can be recorded simultane-
ously during the runs. We compare the corresponding results
with the Python package py-motmetrics2. The full compari-
son is listed in the Table 1.

The generated dataset is challenging for the MHT be-
cause the objects exit and enter the observation area mul-
tiple times and from very different positions; and objects of
the same type sometimes come very close in space (see Fig-
ure 3). This becomes more apparent as the trajectories be-
come longer. The IDF1 trends of both MHT and DAA with
increasing trajectory length is illustrated in Figure 4. The
IDF1 scores of the MHT decrease significantly with increas-
ing trajectory length, while those of the DAA decrease only
slightly. From Table 1 we can see that the DAA also out-
performs the MHT in terms of IDF1, IDP and IDR. A more
intuitive comparison is shown in Figure 3c and Figure 3d,
where we can see that the DAA provides a much more con-
sistent labeling of the observations.
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Figure 3: Visualization of the generated trajectories of length
2000 and the corresponding tracking and anchoring results.
Data points have been downsampled for better visualization.

Experiment with Real Sensor Data In this section, we
demonstrate with real camera data that our framework can
distinguish visually identical instances based on scene con-
text. To this end, we prepare 2 identical small load car-

2https://github.com/cheind/py-motmetrics
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Figure 4: IDF1 scores of MHT and DAA with increasing
trajectory length

Seq.
length

IDF1 IDP IDR

MHT DAA MHT DAA MHT DAA

500 60.68 84.22 62.67 86.82 58.78 81.82
1000 40.30 69.60 41.94 72.28 38.80 67.10
1500 25.60 71.90 26.72 74.58 24.58 69.42
2000 24.10 72.02 25.06 74.66 23.24 69.54

Overall 37.67 74.44 39.11 77.09 36.35 71.97

Table 1: Performance of the MHT and DAA on the identifi-
cation metrics

rier (KLT) boxes, one containing a power drill and the
other some colored boards. For perception, we use the
deep 3D pose estimation system DOPE (Tremblay et al.
2018) together with an Asus Xtion Pro RGB-D camera.
DOPE has been trained beforehand with the 3D models of
the objects present in this experiment, including KLT and
power drill. Besides pose estimation, the perception mod-
ule is also integrated with a color classification component
that takes the segmented color images as input and out-
puts color histograms of the individual object instances.
Thus, the inputs to the DAA include object types, 3D po-
sitions, and color histograms. In this experiment, we also
use the contains/is_inside_of relation pair, and the
contains/2 rule is defined as follows:
contains(Container, Item):-

is_a(Container, onto:’Container’),
is_a(Item, onto:’SmallItem’),
close_enough(Container, Item),
have_common_colors(Container, Item).

close_enough and have_common_colors are two
predefined predicates. The former checks whether two
objects are close in both space and time and the lat-
ter asserts if two instances have common colors. Note
that although object color information is used while in-
ferring contains/is_inside_of relation, it is not
strictly necessary. We can, for instance, replace the
have_common_colors with another rule that checks the



correlation between object positions.
In the first run, both KLT boxes were moved behind the

obstacle and then moved back to the center (see Figure 5a).
For the second run, we completely occluded the camera for
a period of time, causing all objects to be reported as lost.
The objects were then revealed and detected again (see Fig-
ure 5b). In the third run (Figure 5c), we exchanged the posi-
tions of both boxes while the camera was occluded, and then
revealed the objects again. As shown in Figure 5, both boxes
were correctly identified in all runs, despite occlusion and
object dynamics. The supplementary video can be viewed
on our project page3.

(a) Dynamic objects and partial occlusion

(b) Complete occlusion

(c) Complete occlusion and dynamic objects

Figure 5: Example results with live sensor data

Integration with Real Robot Platform As a final exam-
ple, we show the integration of the DAA with the Mobipick
robot platform (see Figure 6). The DAA is fully integrated
with ROS and produces a semantic world model from sen-
sor data that can be used by the robot for task planning and
execution (see (Lima et al. 2023) for details).

Conclusion and Future Work
In this paper, we present a probabilistic object anchoring
framework for semantic world modeling, which is available
on GitHub.4 The proposed framework combines the prob-
abilistic tracker (MHT) with domain knowledge and logi-
cal reasoning. As demonstrated in the experiments, by ex-
ploiting the contains/is_inside_of relations alone,
our framework can effectively resolve association ambigu-
ities arising from the presence of visually identical objects.
The quantitative comparison between our framework and the
MHT-only tracker shows that our framework outperforms
MHT by almost 50% in terms of IDF1 score.

On the other hand, we are also aware of some limita-
tions of our framework. In the experiments, only one pair

3https://sites.google.com/view/
dynamicanchoringagent

4https://github.com/copda/copda

(a) The Mobipick robot in the demo environment (image repro-
duced with permission from (Lima et al. 2023)).

(b) The resulting semantic world model at a later point in time (after
some objects were moved).

Figure 6: Demonstration on real robot

of spatial relations is considered. This quickly becomes in-
sufficient when there are multiple instances with the same
relations, for example, when both KLT boxes in the second
experiment contain power drills. In the future, other rela-
tions such as causal or temporal relations (Hafri and Fire-
stone 2021) can be added to handle the ambiguities involved.
We also note that although some association errors from the
MHT can be revised during the anchoring process, this re-
vision itself can still be error-prone and is irreversible. This
is due to the fact that the DAA is a MAP approximation to
the real association distribution, which can be multimodal.
A possible solution would be representing object attributes
with particle filters combined with batch algorithms such as
the MCMCDA (Oh, Russell, and Sastry 2009). Finally, it is
also beneficial to fuse 3D sensor data, such as depth maps
from 3D cameras, as they provide additional information
about free and occupied space. This information can greatly
reduce the uncertainty of associations. The fusion of object
and metric spatial information can be found in (Wong 2017).
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