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Viotivations

» Porting te new domains or applications Is

expensive

e Current technology requires IE experts

* Expertise difficult to find on the market

—*» SME cannot afford |E experts

~ » Machine learning approaches

o Domain portability is relatively straightforward

o System expertise Is not required for customization

e "Data driven" rule acquisition ensures iull coverage

of- examples




Problems

Ujainjngdatamayjoiexisi,andmayJaeg/ery

~_expensive to acquire

o |_arge volume of training data may: be required

_» Changes.to specifications may. require

reannotation of large guantities of training data

~ » Under:

— systemris not always easy: for non-experts

rol of a domain ac

anding and coni

aptive




o Document structure Degree of automation
* Free text o Semi-automatic
o Semi-structured o Supervised
s Structured  Semi-Supervised
 Unsupervised
Richness of the annotation
» Shallow NLP « Human interaction/contribution
e Deep NLP

« Evaluation/validation
CompleXity of the template e during learning loop

filling rules « Performance: recall and
« Single slot precision

o Multi slot

Amount of data




Learning/ Methods for Template Filling Rules

nductive learning

o Statistical methods

-~ » Bootstrapping:technigques

e Active learning




Documents

-~ » Unstructured (Free) Text
o Regular sentences and paragraphs
e+ linguistic technigues, e.g., NLP

.o Structured Text
e |[temized Information

e Semi-structured: Text

« Ungrammatical, telegraphic (e.g., missing
— attributes, multi-value attributes; ...)
o Specialized programs, e.g., Wrappers




“Information Extraction” Erom Eree liext

B |Vlicrosoft Corporation

Microsoft Corporation CEO

Bill Gates railed against the economic
philosophy of open-source software Microsoft

with Orwellian fervor, denouncing its

communal licensing as a "cancer" that .
g Microsoft

stifled technological innovation.

Today, Microsoft claims to "love" the

open-source concept, by which

software code is made public to Microsoft

_ encourage improvement and
development by outside programmers.
Gates himself says Microsoft will gladly

disclose its crown jewels--the coveted

code behind the Windows operating Free Software Foundation

system--to select customers.

"We can be open source. We love the
concept of shared source,"” said Bill
Veghte, a Microsoft VP. "That's a super-
important shift for us in terms of code
access.“ Bill Gates Microsoft

Bill Veghte Microsoft

Richard Stallman, founder of the Free
Software Foundation, countered
saying...

RichardStallman founder Free Soft..
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Outline

- Free text

)
*Semi—*Supervised
« AutoSlog-TS
-+ Unsupervised
» ExDisco
~ » Semi-structured and unstructured text

 NLP-based'wrappingtechnigues
o RAPIER







NLEP-based Supervised Approaches

nput iIs an annotated corpus

¢ Documents with assoclated templates

~ * A parser

e Chunk parser

o Full sentence parser

o earning the mapping rules

» From linguistic constructions to template

fillers




AuteSlog (1993)

=Xxtracting a concept dictionary for templat
illing
=ull sentence parser
» One slot filler rules

o Domain adaptation performance

» Belore AutoSlog: hand-crafted dictionary.
» two highly skilled graduate students
» 1500 person-hours

¢ AutoSlog:

- A dictionary for the terrorist domain: 5 person hours

» 98% performance achievement of the hand-crafted
dictionary




\Workflow:

slot filler: ,,public building*

..., public buildings were bombed and
a car-bomb was detonated

documents

——P> template filling
Rule

rule learner

CONCEPT NODE:
Name: target-subject-passive-verb-bombed

<subject > passive-verb

Trigger: bombed
- Variable Slots: (target (*S* 1))
linguistic Constraints: (class phys-target *S*)
patterns Constant Slots: (type bombing)
Enabling Conditions:  ((passive))



Linguistic Patterns

Linguistic Pattern Example
<subject> passive-verb <victim> was murdered
<subject> active-verb <perpetrator> bombed

<subject> verb infinitive <perpetrator> attempted to kill
<subject> auxiliary noun <victim> was victim

passive-verb <dobj>"* killed <victim>

active-verb <dobj> bombed <target>

infinitive <dobj> to kill <victim>

verb infinitive <dobj> threatened to attack <<target>
gerund <dobj> killing <victim>

noun auxiliary <dobj> fatality was <vicum>

noun prep <np> bomb against <target>
active-verb prep <np> killed with <instrument> 4
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Error Sources

— + A sentence contains the answer key: strinc
~ PuUt dees not contain the event

fhe sentence parser delivers wrong results

OIrOPESES a Wrong conceptual




Training Data

-~ » MUC-4 corpus

-~ 1500 texts

~ ¢ 1258 answer keys

o 4780 string fillers

- e 1237 conce

ot node definition

—aﬂﬁ—rmq@mléﬁﬂm A0UrS

uman in leop for validation to

ilter out bad

o 450 concept nodes left after human review
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Summany.

e Disadvantages
» Advantages » Human interaction
o Semi-automatic . Sﬁtﬂh/eryﬂaweapprﬁaa%

o |.ess human effort » Need a big amountof
annotation

human annotation
* No generation of rules
« One slot filling rule

o No-mechanism:for filtering
out bad rules




NLEP-based ML Appreaches

o LIEP (Huffman, 1995)

o PALKA (Kim & Moldevan, 1995)
o HASTEN (Krupka, 1995)

~ » CRYSTAL (Soderland et al., 1995)




CRYSTAL [1995]

was bombed by

Concept type: BUILDING BOMBING

SUBJECT: Classes include: <PhysicalTarget>
Terms include: BUILDING
Extract: target

VERB: Root: BOMB
Mode: passive

PREPOS-PHRASE: Preposition: BY
Classes include: <<PersonName >
Extract: perpetrator nare



PALKA [1995]

was bombed by

FP-structure = MeaningFrame + PhrasalPattern

Meaning Frame: (BOMBING agent: ANIMATE
target: PHYS-OBIJ
instrument: PHYS-OBJ
effect: STATE)

Phrasal Pattern:  ((PHYS-OBJ) was bombed by (PERP))

FP-structure:
(BOMBING target: PHYS-OBJ
agent: PERP
pattern: ((target) was bombed by (agent))




was bombed by .

TARGET-was-bombed-by-PERPETRATOR:
noun-group{ TRGT, head( isa(physical-target) ) ),
noun-group{ PERP, head( isa(perpetrator) ) )
verb-group( VG, type(passive), head(bombed) )
preposition{ PREP, head(by) )

LIEP [1995] J

subject{ TRGT, VG ),
post-verbal-prep( VG, PREP ),
prep-object{ PREP. PERP )
S — bombing-event( BE, target(TRGT), agent(PERP) )




HASTEN [1995]

was bomber! by

BOMBING:
TARGET: NP *semantic = physical-object”

VG “root

PERPETRATOR: NP “semantic = terrorist-group”




Semi-Supenvised Approaches




AuteSlog TS [Rilofi, 1996]

|nput: pre-classified documents (relevant vs. irrelevant) |

NLP as preprocessing: full parser for detecting subject-v-
object relatienships

*Principle
-~ *Relevant patterns are patterns eccuring more often in the

— relevant documents

ts of two stages:
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Pattern Extraction

The sentence analyzer produces a syntactic
analysis for each sentence and identified”
‘noun phrases. For each noun phrase, the

“heuristic rules generate a pattern to extract
- noun phrase.

<subject> bombed




Relevance Ellternng

—« the whole text corpus will be processed a

second time using the extracted patterns

~ Obtained by stage 1.

e Then each pattern will be assigned with a

‘elevance rate based on its occurring

frequency: in the relevant documents

he

relatively to its occurrence in |

:ﬁj

al corpus.

e A preferred pattern Is the one which occurs

more often In the relevant documents.




Statistical Eiltering

Relevance Rate:

rel-freq; number of instances of case — frame, in the relevant documents

total-freq; total number of instances of case — frame,

/




WRNAAPAWN -

<subj> exploded
murder of <np>
assassination of <np>
<subj> was killed
<subj> was kidnapped
attack on <np>
<subj> was injured
exploded in <np>

. death of <np>

lO <subj> took_place
11. caused <dobj>

12. claimed <dobj>

13. <subj> was wounded

14.
15.
16.
17.
18.
19.
20.
7.4
22,
s,
24,
25:

<subj> occurred
<subj> was located
took_place on <np>
responsibility for <np>
occurred on <np>
was wounded in <np>
destroyed <dobj>
<subj> was murdered
one of <np>

<subj> kidnapped
exploded on <np>
<subj> died

The Top 25 Extraction Patterns




Empirical Results

1500 MUC-4 texts
—¢50% are relevant.
In stage 1, 32,345 unique extraction patterns.

. : | the 1 1970 pati :
about 85 minutes and kept the best 210
— patterns.

Evaluation




Conclusion

Advantages
» Pioneer approach to automatic learning of extraction patterns
« Reduce the manual annotation

o Disadvantages

 Ranking function Is too dependent on the occurrence of a
pattern, relevant patterns with low freguency can not float to
the top

o Only patterns, not classification




Unsupernvised




ExDisco (Yangarber 2001)

eed
o Bootstrapping
— » Puality/Density: Principle for validation of

each Iteration




Input

3 corpus ofi unclassified and unannot
- documents

‘e 3 seed of patterns, e.g.,

subject(company)-verb(appoint)-ohject(persen)




NLEP as Preprocessing

ull parser for detecting subject-v-ebject relationships

o NE recognition

~_+ EDG formalism (Tapannaien & Jarvinen, 1997) |




trapping;

 Density:
~ * Relevant documents contain more relevant patterns

o Duality:

» documents that are relevant to-the scenario-are
- strong Indicators ofi good patternss |

o good patterns are indicators of relevant documents




Algorithm

Given:

—+ alarge corpus of un-annetated and un-cla ) ments

arns, Initially ¢ \ oc by the use
|atively small ’ e

‘elevant and

* automatic convert each sentence into a set of candidate patterns.

~« choose those patterns which are strongly distributed in the relevant
documents

» Find new concepts
~ » User feedback

"+ Repeat




\Workflow

4 newseeds

pattern
extraction
filtering

relevant I
documents
QS

irrelevant
« documents

partition/classifier

Dependency
Parser

Named Entity

Recognition




- Score(P)=HARI | o6 (HAR)

[H]

Pattern Ranking




Evaluation of Event Extraction

Pattern Base | Recall | Precision
Seed 27 74
ExDisco 092 72
Union of s

Manual-MUC 47 70
Manual-NOW H6 10




ExDIsco

e« Advantages
e Unsupervised
—* Multi-slot template filler rules

¢ Disadvantages
~* Only subject-verb-object patterns, local patterns are ignored
- No generalization of pattern rules (see inductive learning)

» Collocations are not taken into account, e.g., PN take
esponsibility of Company

e Evaluation methods

» Event extraction: integration-of patterns into IE systemand test
recall’and precision

* Qualitative observation: manual evaluation

* Document filtering: using ExDisco as document classifier and
document retrieval system




Relational learning and
Inductive Logic Programming (ILP)

o Allow Induction: over structured

- examples

ihat can Include first-order

ogical re

nboundee

Ntations and U

DI'ESE!

- data structures







RAPIER [Califf, 1998]

o Uses relational learning to construct unbounded pattern-
~ match rules, given a database of texts and filled templat \\

- Primarily consists of a bottom-up search

 Employs limited syntactic and semantic infermation

— » | earn rules forthe complete I1E task




Eilled template of RAPIER

Paoast iilg fFr-crman Newsgrona

Telecommunications. S0OLARIS Systems
Administrator. 38-44K. Immediate need

Leadimg telecommunications firm in need
of am emergetic individual to fill the
following position im the Atlanta
officea:

SUOLARIS SYSTEMS ADMINISTRATOR

Salary: 38-44K with full benefitsa

Location: Atlanta Georgia, no
relocation assjiatance provided

Fillewedl Teamprlate

computer_science_job

title: SOLARTS Sy=stems Administrator
salary: 38-—44K

state: Georgia

city: Atlanta

pPlatform: SOLARIS

area: telecommunications

Figure 1: Sample Message and Filled Template




RAPIER’s rule representation

s Indexed by template name and:-slot name
» Consists of three parts:
-~ 1. A pre-filler pattern
. Filler pattern; (matches the actual slot)
3. Post-filler




Pattern

o Pattern item: matches exactly one word

o Pattern list: has a maximum;:length N

- and matches 0..N words.

s Must satisfy a set ofi constraints

1. Sp

Decific wo

d, POS, Se

antic class

ISts

* 2. Disjunctive




‘ RAPIER Rule J

ORIGINAL DOCUMENT: EXTRACTED DATA:

Al. C Programmer. 38-44K. computer-science-job
Leading JAllfirm in need of title: C Programmer
an energetic individual to salary: 3-44K

fill the following position: area:

AREA extraction pattem:
Pre-filler pattern: word: leading
Filler pattern: l1st: len: 2

Post-filler pattern: : : —
]




RAPIER’S Learning Algerthm

Begins withra most specific definition and
~ compresses it by replacing with more




Implementation

Leag i genera

‘generalization (LGG)

Starts with rui

es containing only.

- generalizations of the filler patterns

o Employs top-down beam search for pre and

nost fillers

~+ Rules are ordered using an information gain

metric and weighted by the size of the rule

-~ (preferring smaller rules)




Example

Located in Atlanta, Georgia.
Offices in Kansas City, Missourl

Pre-hller:

Filler:

1} waord 1) waord:

Lag:

2) word

b at el

atlanta
vhmn

Lag: mmjp»

Lag: In

andd
Pre-hller:
1} waord

Filler:

ol e 1 word:

kansas
s

Lag:
2) word

Lag:

Lag:

TS
2 word:

i il_q.
Ty

10
i Lag:

Post-filler:

1} word:
Lag:

2} word: georgia
Lag:

3) word:
Lag:

T

Post-filler:
1} word:
Lag:

2} word:
Lag:

3) word:
Lag:

SRTEERT TR g
T




H ‘ Example (cont)

Pre—hiller:

arnel

Pre_filler:

Pre-filler:
1} ward: im
Laapgs: Im

aa mac ]
Fre-faller:
I 1y waoard: im
Lag: 1n

Fialler:
1) list; max leEngih
fatlanta
Lagr: rmaraf»

wwasrdl

Filler:

1) hist: max lengtih:
Lagr: Taraj»

F aller:

1) h=sti: max lemngth:
wosrel: {atlamta,

amsass, caly |

Lag: mmjpy

F aller:

1) hast: max bemgith:
Lag: mmjy

ke sas

Paost=-hller:

citw

Post-hler:

Frost -l er:
I} wasred

Lape:

Fost il er-
1} waorred :
Lags:




Example (cont)

Final best rule:

| P re-hller: Filler: Post-hiller
M1 word: im 1) lst: max length: 2 1) word:

lag: in lAg: nnp lag: .
d) lag: nmp
sernantic: stale




Expermentall Evaluation

-+ A set ofi 300 computer-related job posting
fromraustin.jobs

o« A set of 485 seminar announcements from
CMU.

o [hree different versions of RAPIER were
tested

1.words, POS tags, semantic classes
2. words, POS tags
3. words




Perfermance on jol postings
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150 2
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1%
Tranng Examples




Results for seminar annoeuncement task

Systbem

shiime
Pre H

elime

I'-"!'n

Heo

speaker
Pre  Reo

RAPIER
HAP-WT
Hap-u

939 929
6.5 454
9y 459

LS,
Uiy
Uf R

U4 .6

M4
':ll!": fi

Y 394

a0 400
6.4

NATBAY
SRY
WHIsK
WH-rR

98,2 98!
8.6 984

6.2 1000 |
06.2  106.0

405

i i
N30

Wl 5

us5. 7
Utk

872

.5
.4
3a.h




Conclusion

__ s Pros
- = Have the potential to help automate the development process

\v/efame
oYy SlCITS:

= Work well in locating specific data in newsgroup messages

= |dentify-potential-slot fillers-and-their surrounding context with—
limited syntactic and semantic information

= | earn rules from relatively- small sets of examples in some
specific domain

~ +» Cons

= single slot

= regular expression
= Unknown performances for more complicated situations




