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by

Douglas E. Appelt
and

David J. Israel
Artificial Intelligence Center

SRI International
333 Ravenswood Ave.

Menlo Park, CA

We have prepared a set
of notes incorporating the
visual aids used during the
Information Extraction Tu-
torial for the IJCAI-99 tuto-
rial series. This document
also contains additional in-
formation, such as the URLs
of stes on the World Wide
Web containing additional
information likely to be of
interest. If you are reading
this document using an ap-
propriately configured Ac-
robat Reader (available free
from Adobe at http://
w w w . a d o b e . c o m /
p r o d i n d e x / a c r o b a t /
readstep.html) is appropri-

ately configured, you can go directly to these URLs in your web browser by clicking them.
This tutorial is designed to introduce you to the fundamental concepts of information extraction

(IE) technology, and to give you an idea of what the state of the art performance in extraction technol-
ogy is, what is involved in building IE systems, and various approaches taken to their design and
implementation, and the kinds of resources and tools that are available to assist in constructing infor-
mation extraction systems, including linguistic resources such as lexicons and name lists, as well as
tools for annotating training data for automatically trained systems.

Most IE systems process texts in sequential steps (or “phases”) ranging from lexical and morpho-
logical processing, recognition and typing of proper names, parsing of larger syntactic constituents,
resolution of anaphora and coreference, and the ultimate extraction of domain-relevent events and
relationships from the text. We discuss each of these system components and various approaches to
their design.

http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.adobe.com/prodindex/acrobat/readstep.html
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In addition to these tutorial notes, the authors have prepared several other resources related to
information extraction of which you may wish to avail yourself. We have created a web page for this
tutorial at the URL mentioned in the Power Point slide in the next illustration. This page provides many
links of interest to anyone wanting more information about the field of information extraction, includ-
ing pointers to research sites, commercial sites, and system development tools.

We felt that providing this resource would be appreciated by those taking the tutorial, however, we
subject ourselves to the risk that some interesting and relevant information has been inadvertently
omitted during our preparations. Please do not interpret the presence or absence of a link to any system
or research paper to be a positive or negative evaluation of the system or any of its underlying research.

Also, those who have access to a Power-PC based Macintosh system may be interested in the web
site devoted to the TextPro system, written by Doug Appelt. TextPro is a simple information extraction
system that you can download and experiment with on your own. The system incorporates technology
developed under the recently concluded DARPA-sponsored TIPSTER program. The TIPSTER pro-
gram provided much of the support for the recent development of IE technology, as well as the devel-
opment of techniques for information retrieval over very large data collections. In addition to the basic
system, the TextPro package includes a complete name recognizer for English Wall Street Journal
texts, and a finite-state grammar for English noun groups and verb groups. You can learn a lot about
building rule-based information extraction systems by examining these rules written in the Common
Pattern Specification Language developed under the TIPSTER program, even if you do not have appro-
priate hardware to actually run the system.

http://www.ai.sri.com/!appelt/ie-tutorial/
http://www.ai.sri.com/~appelt/TextPro/
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Introduction
Look at your directory; it is full of files.

With a few exceptions, with extensions like
“.gif” and “.jpeg,” they are text files of one kind
or another. A text file is simply a data structure
consisting of alphanumeric and special charac-
ters.  Your operating system, whatever it is, will
have a host of built-in commands for handling
such files. None of these commands need be
especially smart.  In particular, none of them
need know anything about the lexical, syntactic
or semantic-pragmatic structure of the language,
if any, the files are in.  Consider a “word count”
program.  It simply counts the number of se-
quences of characters that are separated by some
conventional delimiter such as a SPACE.  Or
Consider UNIX grep: it searches a file for a string or regular expression matching an input string or
pattern.  The query string need not be a meaningful expression of any language; the same, of course, for

any matches.  If the query string is a meaningful expression of, say, English, that fact is quite irrelevant
to grep.

We speak of text processing only when the programs in question reflect, in some way or other,
meaningful aspects of the language in which the texts are written.  (We should note that Information
Retrieval, Information Extraction, Natural Language Understanding can all be applied to spoken lan-
guage, that is to nontext, audio files; in this tutorial, however, we shall focus solely on Text Processing
applications.)  The simplest IR programs simply perform a variant of grep.  More advanced IR meth-
ods, on the other hand, take into account various aspects of morphology, phrasal structure, etc. Thus,
with respect to morphology, a query searching for documents about “information extraction” might
match on texts containing various form of the root verbs “inform” and “extract.” In the IR world, this is
known as stemming. (For more on IR, visit http://www.cs.jhu.edu/~weiss/ir.html)

One cannot draw a clear boundary separating Information Retrieval from Information Extraction
in terms of the complexity of the language features embodied in the program.  The same is true on the

http://www.cs.jhu.edu/~weiss/ir.html
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other side of this spectrum, dividing Information Extraction from (full) Text Understanding.  The best
way to characterize the different methodologies is in terms of functionality—at least functionality
aimed at, if not achieved—and task requirement.  The task of IR is to search and retrieve documents in
response to queries for information.  The fewer irrelevant documents retrieved, other things being equal
the better; the fewer relevant texts missed, the better. The functionality of Text Understanding systems
cannot be so easily characterized; nor, correlatively, can the task requirements or criteria of success.
What counts as (successfully) understanding a text?

The case of Information Extraction is more like that of IR, at least with respect to having, or at
least allowing, fairly determinate task specifications and criteria of success. Though we should note
that, as with IR, interpersonal agreement on what counts as success is not necessarily easy to come by.
The specification can be presented in two different forms: (i) something very like an IR query—a short
description of the kind of information being sought, or (ii) a database schema or template, specifying
the output format.  Here's an example of a query or narrative, taken from MUC-7:

“A relevant article refers to a vehicle launch that is scheduled, in progress or has actu-
ally occurred and must minimally identify the payload, the date of the launch, whether
the launch is civilian or military, the function of the mission and its status."

What is (a) MUC?  A MUC is either a Message Understanding Conference or a Message Under-
standing Competition.  MUCs were instituted by DARPA in the late '80s in response to the opportuni-
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ties presented by the enormous quantities of on-line texts.  In a very real sense, DARPA created the
field of Information Extraction, in part by focusing in on a certain kind of task.

As sketched above, IE is not a stand-alone task that human analysts typically engage in.  It is an
abstraction from such tasks (note, for instance, that the task is usually specified in a way that either
precludes or discourages rich domain-specific inference) -- an abstraction intended to be achievable

without human intervention.
The experience of the MUCs has dem-

onstrated that IE is a difficult task. We noted
that, unlike Text Understanding, IE allows for
fairly precise metrics of success.  The field
adopted and adapted a version of standard
signal processing measures, keyed to counts
of true and false positives and true and false
negatives.  The names of the two basic mea-
sures, however, have been changed to Preci-
sion and Recall. Interestingly enough, one of
the first things to be discovered was how dif-
ficult the task is for human beings, even for
trained analysts. The natural way to measure
this difficulty is by measuring interannotator

agreement.  For various aspects of the Information Extraction tasks, interannotator agreement has usu-
ally been in the 60-80% range.  This gives some idea of how difficult a task it is. Another bit of evi-
dence, of course, is how well the competing systems have done at MUCs.  The state-of-the-art seems to
have plateaued at around 60% of human performance, even after fairly intensive efforts ranging from a
month to many person-months.

It seems safe to conclude that variations in this number across variations in applications is a crude
measure of the relative difficulty of the applications.  This latter in turn is determined by (i) the nature
of the texts (ii) the complexity and variety of the kinds of information sought and (iii) the appropriate-
ness of the chosen output representation to the information requirements of the task.  We should note
that not much is known in a systematic way aboutany of these factors.  Still, there is a general consen-
sus that the 60% figure represents a rough upper bound on the proportion of relevant information that
"an average document" wears on its sleeve, that is the proportion that the creator(s) of the document
express in a fairly straightforward and explicit way, and  that doesn't require either complex syntatcic
processing or, more usually significant use of domain-specific knowledge assumed to be accessible to
the document's human readers.

Whatever the source of the difficulty,
there are questions to be asked about the 60%
plateau.  One, that we will not discuss here, is
whether and to what extent that number is an
artefact of the fairly complex nature of the
target output representation and of the corre-
spondingly complex scoring algorithm devel-
oped for MUC.  Another is whether there are
uses for a 60% technology, assuming that au-
tomatic creation of data bases from texts is
not a likely candidate application for the fore-
seeable future---not at 60% accuracy.  If one
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thinks of Information Retrieval in this light, perhaps the answer is, "Yes". Indeed, a number of experi-
ments on using IE for IR have been and are being pursued.   We shall return to these at the end of the
tutorial.



7

Building Information Extraction Systems
At this point, we shall turn our attention to what is actually involved in building information

extraction systems. Before discussing in detail the basic parts of an IE system, we point out that there
are two basic approaches to the design of IE systems, which we label as the Knowledge Engineering
Approach and the Automatic Training Approach.

The Knowledge Engineering Approach is characterized by the development of the grammars
used by a component of the IE system by a “knowledge engineer,” i.e. a person who is familiar with the
IE system, and the formalism for expressing rules for that system, who then, either on his own, or in
consultation with an expert in the domain of application, writes rules for the IE system component that
mark or extract the sought-after information. Typically the knowledge engineer will have access to a
moderate-size corpus of domain-relevant texts (a moderate-size corpus is all that a person could rea-
sonably be expected to personally examine), and his or her own intuitions. The latter part is very
important. It is obviously the case that the skill of the knowledge engineer plays a large factor in the
level of performance that will be achieved by the overall system.

In addition to requiring skill and detailed knowledge of a particular IE system, the knowledge
engineering approach usually requires a lot of labor as well. Building a high performance system is
usually an iterative process whereby a set of rules is written, the system is run over a training corpus of
texts, and the output is examined to see where the rules under- and overgenerate. The knowledge
engineer then makes appropriate modifications to the rules, and iterates the process.

The Automatic Training Approach is quite different. Following this approach, it is not necessary
to have someone on hand with detailed knowledge of how the IE system works, or how to write rules
for it. It is necessary only to have someone who knows enough about the domain and the task to take a
corpus of texts, and annotate the texts appropriately for the information being extracted. Typically, the
annotations would focus on one particular aspect of the system’s processing. For example, a name
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recognizer would be trained by annotating a corpus of texts with the domain-relevant proper names. A
coreference component would be trained with a corpus indicating the coreference equivalence classes
for each text.

Once a suitable training corpus as been annotated, a training algorithm is run, resulting in infor-
mation that a system can employ in analyzing novel texts. Another approach to obtaining training data
is to interact with the user during the processing of a text. The user is allowed to indicate whether the
system’s hypotheses about the text are correct, and if not, the system modifies its own rules to accom-
modate the new information.

To a scientist, the automatically
trained systems seem much more
appealing. When grounded on sta-
tistical methods they are backed up
by a sound theory, one can precisely
measure their effectiveness as a
function of the quantity of training
data, they hold out the promise of
relative domain independence, and
don’t rely on any factors as impon-
derable as “the skill of a knowledge
engineer.”

However, human expertise and
intuition should not be short-
changed. Advocates of the knowl-
edge engineering approach are ea-
ger to point out that higher perfor-
mance can be achieved by hand-

crafted systems, particularly when training data is sparse.
This can lead to a sterile debate among partisans of the two approaches over which is “superior.”

Actually, each approach has its advantages and disadvantages, and each can be used to advantage in
appropriate situations.

As was pointed out, the knowledge engineering approach has the advantage that to date, the best
performing systems for various information extraction tasks have been hand crafted. Although auto-
matically trained systems have come close to performing at the level of the hand crafted systems in the
MUC evaluations, the advantage of human ingenuity in anticipating patterns that have not been seen in
the corpus, and in constructing rules at just the right level of generality have given those systems a
small but significant advantage. Also, experience suggests that given a properly designed system, a
bright college undergraduate is capable of competently writing extraction rules with about a week of
training, so “IE system expertise” is less of an obstacle than one might expect.

However, the knowledge engineering approach does require a fairly arduous test-and-debug cycle,
and it is dependent on having linguistic resources at hand, such as appropriate lexicons, as well as
someone with the time, inclination, and ability to write rules. If any of these factors are missing, then
the knowledge engineering approach becomes problematic.

The strengths and weaknesses of the automatic training approach are complementary to those of
the knowledge engineering approach. Rather than focusing on producing rules, the automatic training
approach focuses on producing training data. Corpus statistics or rules are then derived automatically
from the training data, and used to process novel data. As long as someone familiar with the domain is
available to annotate texts, systems can be customized to a specific domain without intervention from
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any developers. Name recognition
is an ideal task for the automatic
training approach because it is
easy to find annotators to produce
large amounts of training data —
almost everyone intuitively knows
what a “company name” is.

The disadvantages of the au-
tomatic training approach also re-
volve around the fact that it is
based on training data. Training
data may be in short supply, or
difficult and expensive to obtain.
Sometimes one may wish to de-
velop an extraction system for a
topic for which there are few rel-
evant examples in a training cor-
pus. Such situations place a pre-
mium on the human intuition of a good rule designer. If the relations that are sought are complex or
technical, annotators may be hard to find, and it may be difficult to produce enough annotated data for
a good training corpus.

Even for simple domains like proper names, there is always a vast area of borderline cases for
which annotation guidelines must be developed. For example, when annotating company names, are
nonprofit entities like universities or the Red Cross considered “companies?” There is no “right” an-
swer to questions like that; the answers must be stipulated and clearly understood by all the annotators.
This implies that considerable care must be taken to ensure that annotations are consistent among all
annotators. Although evidence suggests that the quantity of data is more important than its quality, it is
probably impossible to achieve truly high performance (e.g. F 95 or better on name recognition) with
inconsistent training data.  This implies that it might be more expensive to collect high-quality training
data than one would initially suspect. In fact, for many domains, collecting training data can be just as,
if not more expensive in terms of time and personnel, as writing rules can be.

Another problem worthy of consideration is the impact of shifting specifications on the rule writ-
ing or training task. It is certainly not the case that specifications for extraction rules will be set in
concrete the moment they are thought up. Often, the end users will discover after some experience that
they want the solution to a closely related, yet slightly different problem. Depending on exactly how
these specifications change, it can impact Knowledge Engineered and Automatically Trained systems
differently. Suppose a name recognizer is developed for upper and lower case text, and then the user
decides that it is important to process monocase texts. The automatically trained systems can accom-
modate this change with minimal effort. One need only map the training corpus to all upper case and
run the training algorithm again. A rule based system that relies heavily on case heuristics may have to
be rewritten from scratch. Now suppose that an initial specification for extracting location names states
that names of political jurisdictions are the kind of locations that matter.  Later it is decided that the
names of mountains, rivers, and lakes should also be recognized. The rule writer can accommodate this
change by producing a handful of additional rules and adding them to the rule base. The automatically
trained system is faced with a potentially much more difficult task, namely reannotating all the existing
training data to the new specifications (this may be millions of words) and then retraining.
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It is also worth pointing out that not every module of an IE system has to follow the same design
paradigm. It is perfectly reasonable to produce a system with a rule-based name recognizer that learns
domain rules, or with a statistical name recognizer that operates on hand-generated domain rules when
data is scarce. The considerations relevant to deciding which approach to use are summarized on the

accompanying slide.
In general one should consider using

a knowledge engineered system when lin-
guistic resources like lexicons are available,
there is a skilled rule writer available, train-
ing data is sparse, or expensive to obtain, it
is critical to obtain the last small increment
of performance, and the extraction specifi-
cations are likely to change slightly over
time. Automatically trained systems are best
deployed in complementary situations,
where resources other than raw text are un-
available, training data can be easily and
cheaply obtained, task specifications are
stable, and absolute maximum performance
is not critical.

Approaches to building both automatically trained and knowledge engineered systems compo-
nents are discussed in more detail in the tutorial.

The Architecture of Information Extraction Systems
Although information extraction systems that are built for different tasks often differ from each

other in many ways, there are core elements that are shared by nearly every extraction system, regard-
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less of whether it is designed according to the Knowledge Engineering or Automatic Training para-
digm.

The above illustration shows the four primary modules that every information extraction system
has, namely a tokenizer, some sort of lexical and or morphological processing, some sort of syntactic
analysis, and some sort of domain-specific module that identifies the information being sought in that
particular application. (Actually, some extraction systems like name taggers actually stop at the lexical/
morphological stage, but we are considering systems targeting events and relationships here.)

Depending on the requirements of a particular application, it is likely to be desirable to add addi-
tional modules to the bare-bones system illustrated above.
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Tokenization is a trivial problem for European languages, requiring only that one separate
whitespace characters from nonwhitespace characters. For most newspaper texts, punctuation reliably
indicates sentence boundaries. However, in processing some languages like Chinese or Japanese, it is
not evident from the orthography where the word boundaries are. Therefore extraction systems for
these languages must necessarily be complicated by a word segmentation module.

In addition to normal morphological and lexical processing, some systems may choose to include
various feature tagging modules to identify and categorize part of speech tags, word senses, or names
and other open-class lexical items.

For many domains, a rudimentary syntactic analysis is sufficient to identify the likely predicate-
argument structure of the sentence and its main constituents, but in some cases additional parsing, or
even full parsing my be desirable.

Although it is possible to design an information extraction system that does not resolve corefer-
ences or merge partial results, in many cases it is possible to simplify the domain phase and increase
performance by including modules for that purpose.

In summary, the following factors will influence whether a system needs modules over and above
the “bare-bones” system:
• Language of the text. Some languages will require morphological and word segmentation processing

that English does not require.
•  Genre. Extracting information from speech transcripts requires different techniques than text. For

example, one may need to locate sentence boundaries that are not explicitly present in the transcript.
Texts with mixed-case letters simplify many problems and eliminate much ambiguity that plagues
single-case text. Informal text may contain misspellings and ungrammatical constructs that require
special analysis that newspaper text in general does not need.

•  Text properties. Very long texts may require IR techniques to identify the relevant sections for
processing. Texts that contain images or tabular data require special handling.

•  Task. Tasks like entity identification are relatively simple. If one wants to extract properties of
entities, then the text needs to be analyzed for fragments that express the property. If the task in-
volves extracting events, then entire clauses may have to be analyzed together.
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In this tutorial we will discuss
how these modules are constructed,
however we will not spend much
time discussing modules for which
the specific application of informa-
tion extraction has no particular bear-
ing. For example, the application of
a part of speech tagger to a text in an
information extraction system is no
different than the application of a part
of speech tagger in any other appli-
cation. Therefore, we encourage you
to read other sources in the literature
to find out more about part of speech
taggers.

In understanding the influence
that the general information extraction problem has on the design of IE systems, it helps to understand
information extraction as “compromise natural language processing.” A number of demands are placed
on information extraction systems in terms of the quantity and quality of the texts that are processed. To
meet these demands, some compromises have to be made in how natural language processing is carried
out that are not necessary in other domains like, for example, database question answering.

Typically, IE systems are required to process many thousands of texts in a short period of time.
The compromise made to satisfy this constraint is the use of fast but simple finite-state methods.  Pro-
cessing large volumes of real-world texts implies the adoption of robust techniques that will yield
acceptable performance even in the face of spelling and grammar errors. Also, the problems to which
IE systems are typically applied would typically require a great deal of domain-specific world knowl-
edge to handle properly with a general natural-language processing system. The IE compromise is to
build extraction systems that are very highly dependent on their particular domain of application. Al-
though the core of an extraction system contains some domain independent components, domain-
dependent modules are the rule. This domain dependence arises through the incorporation of domain-
specific extraction rules, or the training of the system on a corpus of domain-relevant texts.

The Components of an Information Extraction System
Morphological Analysis

Many information extraction systems for
languages with simple inflectional morphol-
ogy, like English, do not have a morphologi-
cal analysis component at all. In English, it is
easy to simply list all inflectional variants of
a word explicitly in the lexicon, and this is in
fact how the TextPro system mentioned ear-
lier works. For languages like French, with
more complex inflectional morphology, a
morphological analysis component makes
more sense, but for a language like German,
where compound nominals are agglutinated
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into a single word, morphological analysis is essential.
Lexical Lookup

The next task that is usually per-
formed in the lexical/morphological
component of an extraction system
is lexical lookup. This raises the
question of precisely what the lexi-
con should include. Since informa-
tion extraction systems must deal
with highly unconstrained real-world
text, there is a great deal of tempta-
tion to try to cover as much of the
language as possible in the system’s
lexicon. In addition, the specific do-
main of application is likely to intro-
duce a sublanguage of terms relevant
to that particular domain. The ques-
tion arises about whether one should
try to broaden the lexicon so that it
covers almost any likely domain-specific sublanguage, or augment the lexicon with domain-specific
entries for each application.

It is somewhat paradoxical that bigger does not necessarily imply better when lexicons are consid-
ered. The larger the lexicon, the more likely it is to contain rare senses of common words. My favorite
example is the word “has been” as a noun in the COMLEX lexicon. The problem is, that unless some
rare sense is an important part of a domain-relevant sublanguage, the presence of these rare senses in
the lexicon will at best complicate parsing, and at worst create a space of possibilities in which incor-
rect analyses of common phrases are likely to be found and selected. We have had the actual experience
of updating an extraction system by doing nothing more than adding a bigger, more comprehensive
lexicon. The bottom line performance of the system actually declined after the “improvement.”

The general lesson to draw from this experiment is to beware the large list. Large lists of anything,
including person names, locations, or just a large lexicon of ordinary words, tend to have unintended
consequences caused by the introduction of unexpected ambiguity. In many cases, augmenting a lexi-

con or word list with a small quantity
of domain-specific information is bet-
ter than using a large superset of the
required vocabulary just because it is
available. If large lists are employed, it
is almost always necessary to devise a
strategy for dealing with the ambigu-
ity introduced thereby.
Part of Speech Tagging

As mentioned earlier, some ex-
traction systems do various kinds of
tagging, including part of speech tag-
ging, to make subsequent analysis
easier. It might be conjectured that part
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of speech tagging would be a good way
to deal with rare word senses, and the spu-
rious ambiguity that can be introduced by
large name lists.

Part of speech tagging is certainly
useful toward that end, however, if the only
reason one does part of speech tagging is
to avoid incorrect analyses caused by rare
word senses, there may be easier and faster
ways to accomplish the same ends.

Even the best part of speech taggers,
whether rule based or statistically based,
are correct about 95% of the time. This
may sound impressive, but it turns out that
many of the cases where the information
provided by a tagger would be most use-
ful are precisely the cases in which the tagger is most likely to make errors. This eventuality has to be
balanced against the fact that part of speech tagging does not come for free. It takes some time to do,
and some effort to train, particularly if the texts to be processed by the system are from a highly
domain-specific sublanguage, like military messages, for which taggers trained on normal data are less
accurate.

If what one is primarily interested in is the elimination of rare word senses, it may make more
sense to use simple frequency data to reject an analysis when it employs a rare sense of a word, and
competing analyses exist using a common sense. Taggers incorporate the same information by assign-
ing a very low prior probability to the tags for rare senses. This check is very quick and simple, and

while not perfect, is a good compro-
mise between accuracy and efficiency.
Names and Structured Items

One of the most important tasks
for the lexical and morphological com-
ponent of an extraction system to deal
with is to assign lexical features to lexi-
cal items that may have internal struc-
ture, but be too numerous to explicitly
enumerate (e.g. dates, times, spelled-
out numbers) and proper names.
Proper names are particularly impor-
tant for extraction systems, because
typically one wants to extract events,
properties, and relations about some
particular object, and that object is usu-
ally identified by its name.

Although proper names are of
critical importance, they present some difficult problems for an extraction system. One problem is that
proper names are huge classes and it is difficult, if not impossible to enumerate their members. For
example, there are hundreds of thousands of names of locations around the world. Many of these names
are in languages other than the one in which the extraction system is designed, and hence are likely to
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cause spurious ambiguity with other items in
the system’s lexicon. Locations tend to be fairly
stable over time, however, new companies
come into being all the time; in fact many Wall
Street Journal articles are about the formation
of new companies. These new company names
will not be on any preexisting list. Person
names from different languages are likely to
have different conventions for the order of fam-
ily and given name. Typically there are no strict
rules governing the coinage of new names, and
this is particularly true for the names of new
products, which can have almost any internal
structure. Our favorite example is the name of
the margarine, I Can’t Believe It’s Not Butter.

The difficulty of the name recognition task depends on the type of text one is analyzing. In En-
glish, upper and lower case make it relatively easy to recognize the fact that a sequence of words is a
proper name. The key problem is determining what kind of a name it is. If the text is all one case, as
may well be the situation when one is processing the output of a speech recognizer, simply recognizing
that a word is a name may be difficult given the considerable overlap between proper names and ordi-
nary English words.

Because of the presence of proper names in almost any text that one would wish to analyze, and
because of the importance of proper names in the identification of objects of interest, almost every
information extraction system implements some kind of proper name identifier. As we mentioned ear-
lier, it is possible to design most components of an extraction system by approaching the design prob-
lem as one of building a hand-crafted rule-based system, or an automatically trained system.

Although several approaches are possible, the most well-known name recognition systems are
based on Hidden Markov Models. Finite state rule based systems for name recognition have also been
developed that attain a very high level of performance. Two such rule systems are publicly available
over the Web: SRI’s FASTUS and TextPro systems. You can find pointers on the tutorial web site.

As mentioned earlier, rule-based systems tend to have a performance advantage over automati-
cally trained systems in recall and precision. Evaluations over the past few years have supported this

assertion with respect to name recogniz-
ers. The most recent performance evalu-
ation, the DARPA-sponsored Broadcast
News workshop in March, 1999, shows
the rule-based and automatically trained
systems with virtually the same perfor-
mance on transcribed speech. The abil-
ity of the BBN Identifinder name recog-
nizer to close this gap is due to a combi-
nation of having a good underlying sta-
tistical model, together with much more
training data than was available for ear-
lier evaluations.

There is not a great deal to say about
building a rule-based name recognizer,
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other than that it is more a matter of time and effort than exceptional skill and cleverness. One begins
with lexicons that categorize names. Often it is easy to recognize a name in mixed-case text because of
capitalization, but only by looking the name up in a lexicon is it possible to determine what type of
name it is.  Fortunately, many names have internal structure. A pattern like “<Word> <Word>, Inc.”
almost certainly designates a company.  After scanning a corpus of text with several hundred names, it
is easy to write rules that cover the kinds of examples seen.

Once some rules have been written, it is good to evaluate the system by running it on a corpus of
texts to observe what kinds of names are still missing, and where mistakes are being made. Mistakes
that are easy to make are those involving coincidentally capitalized words next to names like “Yester-
day IBM announced...” or perhaps tagging “General Electric” as a person with a military title. You will
discover many tiresome, ad-hoc facts, like “Michigan State” is the name of a university, while “New
York State” is a location.

Assuming that one starts with a lexicon of about 5,000 company names and abbreviations, about
1,000 human first and last names, and about 20,000 domestic and international locations, iterative rule
writing and error correcting should yield a solidly performing recognizer with two to three weeks of
effort, consisting of around 100 rules.

A particularly good way to construct a trainable name tagger is to base one on Hidden Markov
Models. A Hidden Markov Model is a particular kind of probabilistic model based on a sequence of
events, in this case, sequential consideration of the words in a text. It is presumed that the individual
events are parts of some larger constituents, like names of particular type. Whether a word is part of a
name or not is a random event with an estimable probability. For example, the word “John” could refer
to a person, and hence be a name, or it could refer generically to the client of a prostitute, and hence be
an ordinary common noun. The probability of name versus non-name readings can be estimated from
a training corpus in which the names have been annotated. In a Hidden Markov model, it is hypoth-
esized that there is an underlying finite state machine (not directly observable, hence hidden) that
changes state with each input element. The probability of a recognized constituent is conditioned not
only on the words seen, but the state that the machine is in at that moment. For example, “John”
followed by “Smith” is likely to be a person, while “John” followed by “Deere” is likely to be a com-
pany (a manufacturer of heavy farming and construction equipment). So constructing an HMM recog-
nizer depends on two things: constructing a good hidden state model, and then examining enough
training data to accurately estimate the probabilities of the various state transitions given sequences of
words.
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When the recognizer is being
run, it computes the maximum
likelihood path through the hidden
state model for the input word se-
quence, thus marking spans of in-
put that correspond to names. The
search algorithm usually used to
find such a path is called the Viterbi
algorithm. This algorithm is well
explained in literature on speech
recognition.

How much data is necessary
to train an HMM name recognizer
so that it achieves state-of-the-art
performance? There is some em-
pirical data about the application
of HMMs to recognizing names in

transcribed speech that suggests that the amount of data required is substantial, but not overwhelmingly
so.

It is generally true that the performance of trainable modules is a function of the quantity of
training data, at least up to a point. Recent experience from two developers of HMM-based name
recognizers that system performance bears a roughly log-linear relationship to the training data quan-
tity, at least up to about 1.2 million words
of training data, and beyond that point, no
data has been publicized. One can expect a
rough performance increase of about 1.5
points in F-measure for each doubling in the
quantity of training data, depending on pre-
cisely what the underlying model being
trained is. The Mitre system seemed to top
out at a lower level of performance than the
BBN system, but the reason for this is not
clear. BBN has claimed that the quantity of
training data is more important than the pre-
cise consistency of the data, however they
concede that for very high levels of perfor-
mance, the accuracy of the training data
becomes more critical.

Obtaining 1.2 million words of training data requires transcribing and annotating approximately
200 hours of broadcast news programming, or if annotating text, this would amount to approximately
1,777 average-length Wall Street Journal articles. To guarantee a high degree of accuracy in the training
data, it is a good idea to have the annotations reviewed by another annotator. Assuming that annotation
of broadcast news data proceeds at approximately double real time, this would imply that it would
require about 800 hours, or 20 person-weeks of labor to annotate and check the amount of data required
to reasonably expect F-90 level performance from a trainable name-recognizer. This is almost certainly
more time than would be required by a skilled rule writer to write a rule-based name recognizer achiev-
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ing the same level of performance, assuming all the necessary resources, such as lexicons and name
lists are already available.

Assuming that one doesn’t have the tools immediately at hand for building a rule-based name
recognizer, where might they be obtained? Unfortunately, computational resources for some languages
are scarce, but for English, most European languages, as well as Japanese and Chinese, the situation
regarding the availability of resources is quite good. If one resource that you do have available is
money, then the Linguistic Data Consortium has a great deal to offer. LDC has comprehensive lexicons
available for some languages (COMLEX for English, and CELEX for English, Dutch and German),
annotated data for training parsers and part of speech taggers (the Penn Treebank), and other data

useful for building information extraction sys-
tems, including all the annotated MUC and
TIPSTER data. To find out precisely what is
offered and the terms under which it may be
obtained, you should visit their web site at
http://www.ldc.upenn.edu/.

You should also pay a visit to the web
site of the Computing Research Laboratory
at New Mexico State University (http://
crl.nmsu.edu/Resources/resource.htm). New
Mexico State University used to host the Con-
sortium for Lexical Research about five years
ago, which had a number of lexical resources,
including lexicons, parsers, and taggers avail-
able for a variety of languages. The Comput-

ing Research Laboratory makes these resources publicly available for research purposes. They have
also developed a number of software tools that assist in various aspects of the development of informa-
tion extraction systems.

Finally, you should not ignore the possibility of obtaining information free of charge from various
databases on the World Wide Web.  The Securities and Exchange Commission’s EDGAR database is a
good way to get a list of every publicly traded corporation on U.S. stock exchanges (more than 14,000
companies) and the Census Bureau is also a good source of person-name data.

http://www.ldc.upenn.edu/
http://crl.nmsu.edu/Resources/resource.htm
http://crl.nmsu.edu/Resources/resource.htm
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In addition to these general resources, SRI International has published various aspects of its own
IE systems. You can examine the SRI FASTUS name recognition and parsing grammars (written in its
own native FASTSPEC formalism), and you can download the TextPro system, mentioned earlier,
which includes a name recognizer and parser written in the Common Pattern Specification Language
(CPSL).

Syntactic Analysis in
Information Extraction
Systems

As mentioned previously, natural
language processing in information ex-
traction systems is often a question of
making compromises to what one might
consider ideal natural-language process-
ing, driven by the need to process large
quantities of real-world text within rea-
sonable time constraints. Fortunately, the
fact that information extraction is prop-
erly directed toward extracting relatively
simple relationships among singular en-

tities mitigates the adverse effects of some of these compromises.
Typically, information extraction systems are designed to produce structurally simple fragment

parses. These simple fragments can be described with finite-state grammars that can be processed
easily, robustly and quickly. Semantic analysis is usually limited to finding the predicate argument
structure of a small set of core propositions. Constructs that cause semantic difficulties, such as quan-
tifiers, modals, and propositional attitudes are treated in a simplified manner, if they are handled at all.
One of the factors that complicates parsing is the attachment of modifiers, and constituents such as
prepositional phrases, In information extraction systems, these kind of attachment decisions are usu-
ally ignored for all except a small set of domain-relevant words. In this simpler set of cases it is possible
to apply domain heuristics to getting attachment decisions correct that would be difficult to do in
general. Because one has some idea of what the domain relevant types of objects are, it is often possible
to distinguish prepositional arguments from
locative prepositions for the narrow set of
cases of interest. In the cases where the sen-
tences are not domain-relevant, no informa-
tion would be extracted, so a correct analy-
sis is irrelevant, except to the extent that it
might complicate the analysis of domain-
relevant clauses in the same sentence.

One may well wonder what the pen-
alty one pays for making the shallow-pars-
ing compromise that one usually makes in
information extraction, and if there might
be something to gain by really doing full
parsing. Experience suggests that it is in fact
advantageous to make the compromises
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outlined above. Full parsing, particu-
larly without the benefit of domain-spe-
cific guidance, is error prone, and the
combinatorial explosion on long sen-
tences mean that full parsing is in gen-
eral slow. It is not unusual in newspa-
per text to encounter sentences that are
fifty words long, and even hundred
word sentences are not unheard of. Be-
cause the information targeted by ex-
traction systems is simple, and confined
to a small set of domain-relevant events
and relationships, the shallow analysis
typical of information extraction sys-
tems is adequate most of the time. Even
if a grammar and full parser were ca-

pable in theory of finding a correct analysis, there is no guarantee that it will find its way through the
competing ambiguities. Therefore, the experience has been that full parsing offers very little gain that

comes with a large price tag. A consensus has
therefore emerged that shallow, finite state analy-
ses are the superior alternative.

The illustration at left shows what a typical
finite-state analysis of a fairly complex sentence
would look like. Noun groups and verb groups are
marked, as well as “particles,” a category that in-
cludes prepositions, conjunctions, and relative pro-
nouns. The analysis does not, however, attempt to
make any decisions about how these particles form
constituents and attach to larger structures. To the
extent that these decisions have to be made at all,
they are made during domain-specific analysis.
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The above illustrations show what kinds of meaningful information is extracted from the basic
constituents. This particular analysis is what is produced by the SRI International FASTUS system, but
it is fairly typical of the kind of shallow analysis used by IE systems. In general, the heads of constitu-

ents are marked. Number and definite-
ness are extracted from the determiner
of noun groups, and information about
tense and voice is extracted from the
auxiliary in verb groups. Typically, the
semantics of adjectival and adverbial
modifiers are ignored, except for a
small number of domain-relevant
cases. Particles constitute their own
constituents, and are further analyzed
by domain rules, provided they occur
in domain-relevant contexts.

Of course, it is not possible for
IE systems to completely ignore com-
plex syntactic structures because
sometimes relevant information is con-
veyed in complex sentences. However,
because of the shallowness of the se-

mantic analysis, it is often possible to use expedient techniques that extract the correct information
from complex sentences, even if such analyses would be inadequate in general.

Relative clauses attached to the subject of a clause can be analyzed by a nondeterministic domain
rule, assuming both clauses contain domain-relevant information. In this case, the subject noun group
is the subject of both the main clause and the relative clause, and it requires only that a rule skip a
relative pronoun to attach the subject to the relative clause. To get the connection between the subject
and the main clause, the domain pattern must
be written to optionally skip a relative clause.
If both rules work together, then the informa-
tion from the entire sentence is correctly re-
covered. Relative clauses attached to objects
are harder to handle, because they are more
likely to contain gaps. There is no easy way
to handle these sentences, and sometimes they
can just be ignored, because they are less com-
mon in formal writing. The penalty for miss-
ing these sentences is surprisingly small.

Coordination presents what is probably
the most difficult problem in syntactic analy-
sis for any natural-language processing sys-
tem. There is no single approach to handling
coordination in shallow parsing — the par-
ticular approach taken depends on just what is being coordinated, as well as domain-relevant properties
of the sentence.
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IE systems typically do not
handle disjunction except in some
limited cases, because simple seman-
tic representations such as template
structures are not sufficiently pow-
erful to represent disjunction in gen-
eral. Therefore, we will confine our
discussion to conjunction.

Sentential conjunction is easily
handled because at the level of analy-
sis typical of IE systems, it can be
ignored. Conjunction is usually im-
plicit in all the information extracted.
Verb phrase conjunction requires a
technique similar to the handling of
relative clauses outlined above. A
domain rule recognizes the subject,

then optionally skips the first conjunct of the verb phrase before recognizing what is probably the
second conjunct. If the rule is allowed to apply twice, then both verb phrases will be properly associ-
ated with the subject.

Conjunction of simple noun groups is best handled by additional syntax phases. If two noun
groups are separated by a conjunction, particularly if the two potential conjuncts refer to objects of the
same domain-relevant type, a rule can combine them into a single noun group. Conjunctions of lexical
items like nouns, adjectives, and prepositions are best handled directly by grammar rules.

Conjunctions of non-constituents is essentially impossible to handle with any “tricks,” because
the early syntactic phase cannot produce any non-constituents as output.

The attachment of prepositional phrases is another problem for shallow parsing systems. Certain
prepositions, notably “of” and “for” are
usually close-attaching, and the second
syntactic analysis phase can often
handle these prepositions. If the prepo-
sitions are subcategorized for by do-
main relevant verbs, and the objects are
domain-relevant, then the domain phase
can interpret the arguments appropri-
ately. Otherwise, all prepositional
phrases are treated as adverbial ad-
juncts. Temporal and locative adjuncts
are typically interpreted by a domain
phase, assuming the event that they
modify is domain-relevant. Even if not,
the domain phase may track the tem-
poral and locative modifiers in case they
can be merged with other events. Prepo-
sitional phrases with no discernible
domain relevance are treated like adverbials, although since they make no semantic contribution to the
analysis, it does not really matter precisely how they are treated.
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Coreference in Information Extraction Systems
MUC-6 introduced a new task on which systems were to be evaluated: the Coreference Task.  In a

very real sense, though, IE systems had
always been evaluated on this task, if only
implicitly.  The reason for this is simply
that application relevant entities will be
referred to in many different ways
throughout a given text and thus, success
on the IE task was, to a least some extent,
conditional on success at determining
when one noun phrase referred to the very
same entity as another noun phrase.  In
what is perhaps the simplest kind of case,
this might mean recognizing full identity
of strings.  But consider what might be
thought of as the next simplest case: rec-
ognizing the various forms of a personal
proper name.  Thus an article on Microsoft
might include “William H. Gates,” “Mr. Gates,” “William Gates,” “Bill Gates,” “Mr. Bill H. Gates,”
even “Billy Gates” (??).  This problem of recognizing different forms of a personal proper name gets
worse when you consider that Gates might, for all we know, be a place name (consider “Lincoln,”
“Washington”) or even a company name (consider “Ford,” “Dupont”).  How about book titles, e.g.,
“David Copperfield?” And, of course, there are the problems posed directly by recognizing the differ-
ent forms of company or other organizational names.

Consider “International Business Ma-
chines” and “IBM;” “Atlantic Richfield Com-
pany” and “ARCO”, “General Motors Cor-
poration,” “General Motors” (a major nui-
sance), and “GM,”  Such cases suggest the
following routine: assume that name-recog-
nizer does an adequate job on the full form
of such names.  Suppose the system has rec-
ognized a word or sequence of words with
(at least) initial letter capitalized. Check such
words to see if they might be acronyms or
aliases for a previously recognized name in
the given text. This check can be done as fol-
lows: If the unknown name is a single word,

The important fact to bear in mind about parsing in information extraction systems, is that fast,
robust techniques are necessary, and this necessarily implies simple, shallow analyses. The result is
that errors will be made in parsing, and that some of the analyses will blur syntactic and semantic
distinctions that would be made in a linguistically correct analysis. However, as long a the domain is a
problem suitable for the application of information extraction techniques, the price one pays for mak-
ing errors in syntactic processing is small. Most of the errors will creep into the analysis from other
sources, including named entity identification, coreference, and inadequate domain coverage.
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check to see whether it can be formed by taking the initial letters of a full, multiword name occurring
elsewhere in the text. (All caps is often an indication that the item is an acronym or abbreviation of such
a name.)  In other cases, check whether the item contains substrings from such a name.

Before moving on to consider other types of coreference, a brief word on temporal references is in
order.  It is easy enough to imagine IE applications for which it would be essential to determine either
the absolute or at the very least the relative temporal location of events, where by absolute temporal
location we mean that given by a calendar date and clock time.  But of course, in texts we also encoun-
ter references to such temporal locations in other forms, e.g., "today", "four days ago", “three weeks
from Monday,” etc.  To determine coreference here one must (i) determine the date (of (publication of
production) of the text and (ii) do a little calendar arithmetic.

The special case of temporal coreference illustrates the point that reference and hence coreference
can be to all manner of entities. Just to give a flavor of the thing: (i) groups or collections, as in “The
jury deliberated for only 15 minutes after they heard Doug testify about the IE system.  It quickly
decided ...” (ii) to events, as in “The testimony was riveting; it completely destroyed the prosecution's
case.”  (iii) to abstract entities of indeterminate nature, as in “The case, its weakness apparent to anyone
who dared look at it, ...” Then there are references to types or kinds: “Juries usually consist of 12
people; but in some jurisdictions, they can have 6 or 9 members. A jury is often unable to agree on
where to eat lunch.”

Reference to groups or collections, in particular, is the most obvious case in which the importance
of capturing a referential relationship beyond identity manifests itself.  We often introduce a group and
then refer to its members or to subgroups, as in “The jurors decided where to eat.  All liked sushi, but
five preferred sashimi; the one who was chosen foreperson wanted Macdonald's.”  In this tutorial, we
will simply ignore all such relationships.

The case of names is often quite an important one,  but it is not what most theoreticians have in
mind when they speak of the problem of coreference.  Typically they have in mind the problems of
resolving pronominal and discourse-definite reference.  These form the core of what is called “ana-
phora” or “anaphoric reference”—that is, reference by one term that is dependent in some way on the
reference of another, typically earlier term occurrence.  Thus, with respect to pronoun reference, con-
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sider: “Bill Gates dropped out of Harvard; his-
tory has shown that not graduating didn't hurt
him one bit.” By discourse definite reference,
we mean such cases as the following: “I saw a
man yesterday with a cat in his hat.  The cat
was a tabby; the man was shabby.”  Consider
also the following kind of case: “Bill Gates is
the richest man in the world....Many people in
the software industry fear and respect the guy.”
The first definite description “the richest man
in the world” does, indeed, refer (let us stipu-
late) to Gates, but it does so in a sense inde-
pendently of the earlier occurrence of “Bill
Gates;” the second description in contrast, is
dependent for its referent on that earlier oc-

currence.
There is a large and rich literature on the problem of anaphora in the above limited sense.  Suffice

it to say here (i) that the literature in question presupposes at the very least full syntactic analyses of the
texts and (ii) that work on pronominal and discourse-definite coreference in IE system can be seen as
attempting to approximate the kinds of algorithms presented in this literature, adapted to the context of
very sparse and incomplete syntactic input.  Here we sketch a generic IE coreference algorithm.

It is assumed that certain syntactic and semantic features are recognized.  It may even be assumed
that certain surface grammatical relations, especially that of being the subject of a sentence (clause) or
direct object of a verb are recognized. The algorithm is structured around the idea that different types of
referring expressions have different backward-looking scopes within which to look for possible ante-
cedent referring expressions---that is, to look for “accessible antecedents.”  Thus, for instance, the
scope of a proper name can be taken to be the whole text.  The scope of a discourse definite seems much
narrower; that of a pronoun, narrower still.  The precise size of these scopes is best determined experi-
mentally; the larger the scope, of course, the more candidates to be checked and the more room for
error.
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As we have seen already, the case of determining coreference between proper names is rather a
special one, best handled by the name-recognition module. So we shall focus on the treatment of
pronouns and discourse definites.

Once a set of possible antecedents for a given noun phrase has been determined, they can be
filtered by checking for semantic consistency. Thus, for example, “Mr. Gates” will be filtered out of the
set of antecedents for an occurrence of the pronouns “she” or “it” or “them.” That is, the algorithm
checks for consistency in number and gender.  Similarly, “Bill Gates” can't be an antecedent of “the
company” or “the jury.”  Consider the following: “The big automaker is planning to get out the car
business.  The company feels that it can never longer make a profit making cars.”  To recognize the
coreference among “the big automaker,” “it” and “the company,” the system has to recognize that an
automaker is a company.  This recognition can be realized either by manually constructing an applica-
tion-specific sort hierarchy or by using a more general, application-independent resource such as Cyc
(http://www.cyc.com/) or Wordnet (http://www.cogsci.princeton.edu/~wn/).  The problem with the such
resources is that, even assuming that all the required classificatory information is available, one has to
figure out how to make use of it.

After filtering out semantically inconsistent accessible antecedents, one then has to choose which
of the remaining candidates, if any, are most likely antecedents.  To do this, one takes advantage of their
relative locations in the text.  First one looks for candidate earlier in the same sentence, preferring those
that occur earlier in the natural left-to-right order.  Thus, in “American Airlines called for mediation in
its negotiation with its union,” both “its” corefer with “American Airlines,” not with semantically con-

http://www.cyc.com/
http://www.cogsci.princeton.edu/~wn/
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sistent “negotiation” or “mediation.” This heuristic, though, fails to capture cases in which parallelism
between elements, especially in different clauses of a single sentence, plays a role in determining
coreference.  Thus in “American Airlines called the request for mediation premature and characterized
it as a bargaining ploy,” the “it” does not corefer with “American Airlines,” but rather with “the request
(for mediation).”

If there are no candidate antecedents
earlier in the sentence, look to the immedi-
ately preceding sentence, again preferring
candidates that occur earlier in that sentence
in left-to-right order.  If nothing comes up,
look back at earlier sentences in the same
paragraph, moving backward a sentence at a
time, but now, within a given sentence pre-
fer most rightward candidates, that is, those
occurring later in the sentence.  Finally, if
the scope extends back beyond a paragraph
boundary, look to sentences in the preced-
ing paragraph, again preferring later (more
rightward) to earlier occurrences.

Aside from coreference between names,
the above algorithm is silent for the case of

indefinites as well.  Indefinites are usually used to introduce entities into texts and thus are not likely to
corefer with expressions occurring earlier; but there are exceptions.  Sometimes indefinites are used to
refer to types or species. Thus one might see: “Whales are large marine mammals.  A whale can grow
to be 100 feet long and weigh more than 80 tons.”

The fact that IE parsers are incomplete, shallow and not fully reliable motivates looking for some
form of statistical or corpus-based approach to coreference.  (See, for example, TE-36 under http://
ciir.cs.umass.edu/info/psfiles/tepubs/te.html.)  The basic idea can be sketched as follows: produce, by
hand, a key in which all coreference pairs are tagged as such.  Determine which system-recognizable
features of the individual expressions and of the coreference pairs are relevant to the coreference judg-
ment and apply some learning technique using the resulting feature-vectors.  The learning technique
can be probabilistic or nonprobabilistic; in the case of UMASS's RESOLVE system, nonprobabilistic
decision trees were constructed/trained.

The above idea is based on coreference
pairs, but as we have seen above, we may
need to group together all coreferring ex-
pressions, that is, we may need to construct
a set of chains of such coreference pairs or
more fully a set of equivalence classes of
referring expressions, equivalent precisely
in that every member of such a class refers
to the same thing.  Moreover, certain appli-
cations may require that the output of an IE
system be probabilistic.  For instance, the
IE system may feed a downstream system
which fuses its output with possibly con-
tradictory information from other sources;

http://ciir.cs.umass.edu/info/psfiles/tepubs/te.html
http://ciir.cs.umass.edu/info/psfiles/tepubs/te.html
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to do this the fusion system needs to know the IE system's degree of certainty with respect to its results
and to possible alternatives.  A natural way to think of this is to think of a probability space consisting
of all referring expressions, whose `events' in turn consist of all subsets of these—that is all possible

equivalence classes.  One wants then
to induce a probabilistic model over
this space.  But this cannot be done
by simply aggregating pairwise prob-
abilities of coreference, as these pair-
wise probabilities need not be con-
sistently combinable into larger
equivalence classes.  Suppose we
have a text with just three referring
expressions: A, B and C.  Suppose
further that given the training corpus
it is .505 probable that expression A
and B corefer and that it is .504 prob-
able that B and C corefer.  Suppose
we know that A and C cannot core-
fer.  Then the two pairings of A and
B and B and C exclude each other.
But then their probabilities sum to

greater than 1. There are various approaches to such problems of combination.   We shall not explore
these here; it is enough to note that there are significant problems in coming up with an adequate
probabilistic treatment of coreference.

Extraction of Domain-Specific Events and Relations
With the exception of name recogni-

tion, none of the many intermediate tasks
performed by an IE system of the kinds we
have been discussing are of much indepen-
dent interest.  The ultimate goal of such a
system is to extract information from texts.
What information?  That is to be determined
by the client---not just determined but also
clearly specified and not, one hopes, by the
client alone, without some input from the
IE system developers.  We have already said
that the kinds of texts most apt for IE sys-
tems are those whose primary purpose is the
communication of factual information.  Even
such texts contain hints, if only for the
knowledgeable, as to the motives and pur-
poses and perhaps even the emotions of the human agents involved in the events/relationships de-
scribed.  But just as IE systems are not well-suited to discerning the mental state of the writer of the
texts, such systems are extremely unlikely to be any good at discerning such features of cognitive state
of the agents described in the texts. Second, IE systems may not be well suited for tasks in which
almost every sentence in a large corpus, and indeed almost every `piece of information' in those sen-
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tences is relevant.    So it is important that
clients/users and system developers agree
on a reasonable and feasible task specifi-
cation.  Then an output representation
must be decided on and designed.

This task can be done well or
badly—or anywhere in between.  The
design of templates, or more generally,
abstract data structures, as output forms
for automatic information extraction sys-
tems must be sensitive to three different
but interacting considerations: (i) the tem-
plate as a representational device, (ii) the
template as something to be generated
from the text input (iii) the template as
input to further processing, by humans or
programs, or both.  The last consideration, we hope, is clear, though we make no claims to having
thought through human-factors issues determining readability/graspability of various structures.  The
first point is little enough touched on; it is briefly discussed in a paper by Hobbs and Israel ftp://
ftp.ai.sri.com/pub/papers/hlt94.ps.gz and at greater length in ftp://ftp.ai.sri.com/pub/papers/
ord_report.ps.gz.  The second point, intimately connected to the first, is that there should be a good
match between the output representation of the information to be extracted and the typical mode of
expression of that information in the texts.

Consider MUC-6 for example.  The task was to extract information about management changes.
The template for the task was organized around `succession events'.  These had slots for an organiza-
tion, a post, a reason for the change and and a `in_and_out' slot with a rather complicated structure.
Even without considering any texts, this is a rather unnatural structure given the information require-
ment.  It is even more unnatural given the texts.  For example, it is often the case that a single event

report (e.g.  “John Smith left Microsoft
to head a new subsidiary at Apple.”) cor-
responds to multiple succession events--
Smith's leaving Microsoft and his enter-
ing Apple.  Conversely, it is (even more)
typical to have a single succession event
expressed by multiple sentences (event-
reports), often far removed from one an-
other in the text.  Also, static informa-
tion (e.g.  “John Smith has been chair-
man for the last five years.”)  is often es-
sential to filling the final template, al-
though the succession event structure
provides no way of representing this
static information.  We felt that a more

appropriate representation of the domain involved two kinds of structures: states and transitions.  A
state consists of the association among a person, an organization, and a position at a given point in time.
A transition is a ternary relation between states and reasons, associating a start state and and end state
with a transition reason.  A post processor was written to generate the official MUC-6 templates from

ftp://ftp.ai.sri.com/pub/papers/hlt94.ps.gz
ftp://ftp.ai.sri.com/pub/papers/hlt94.ps.gz
ftp://ftp.ai.sri.com/pub/papers/ord_report.ps.gz
ftp://ftp.ai.sri.com/pub/papers/ord_report.ps.gz


31

this internal representation.  (We have found that even after negotiations with client/users, such a strat-
egy is often necessary.)

Assuming that a reasonable task specifi-
cation and output format have been arrived at,
the next stage in developing a knowledge- or
rule-based IE system is to read some texts and
identify the most common and most reliably in-
dicative clausal patterns in which relevant in-
formation is expressed.  One then builds rules
to cover these patterns and then moves on to
less common, but still reliable patterns, etc.
This is the standard, molecular approach—
molecular because it focus on clausal or even
full sentential molecules of text and complete
molecules of information that fully specify rel-
evant events or relationships.  This approach
aims first at high precision, settling for low re-
call, the expectation being that as one moves to
less common, but still reliable clausal patterns,
recall will go up without too high a cost in pre-
cision.  We should note here that yet another
thing to get clear about with the clients or in-
tended end-users is what kind of a precision-
recall trade-off they are aiming at:   Which is
more important for their application: avoiding
false positives (high precision) or avoiding false
negatives (high recall)?

There is another approach to the develop-
ment of rule-based IE systems.  We call it the

atomic approach; the method here is to start with high recall and low precision, with the expectation
that more reliable filters of false positives can be developed at not too great a cost in recall.  The basic
idea is to assume that every noun phrase of the right sort and every verb of the right type, independently
of the syntactic relations obtaining among them, indicates an event/relationship of interest.  Such a
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design leads to a proliferation of very partial descriptions of possible events/relationships; one then has
to merge these descriptions in some way to produce more fully instantianted events/relationships and
then to filter the results according to some application-specific criteria.

This is a reasonable approach for certain
extraction tasks, even those tasks for which high
recall and low precision is not an acceptable
tradeoff.  Such tasks are characterized by the
following features: (1) entities in the domain
have easily determined types and (2) the tem-
plates are structured so that there is only one or
a very small number of possible slots that an
entity of a given type can fill and only entities of
a given type can fill those slots.  The microelec-
tronics domain of the MUC-5 evaluation was a
good example of a domain with these character-
istics, and techniques similar to these were suc-
cessfully applied by at least one system in that
evaluation.  The same was true for labor nego-
tiations applications used as a training exercise
for MUC-6.

The existence of the two approaches raises
the question as to whether, and how, results from
both, that is, from high recall and high precision
systems, can be combined to produce a result
that would be better than either system taken on
its own The answer is by no means obvious.

In any event, even in high precision, low
recall systems, we must merge partial descrip-
tions of relevant events/relationships.  Merging
is essentially a unification operation; the precise
specifications for merging are provided by the
system developer when the domain template is
defined.  The developer specifies for each slot
what type of data is contained in that slot, and
for each data type, the system provides proce-
dures that compare two items of that type and
decide whether they are identical or necessarily
distinct, whether one is more or less general than
the other or the two are incomparable.  Depend-
ing on the results of this comparison, the merge
instructions specify whether the objects can be
merged, or if not, the candidates should be com-
bined as distinct items of a set, or if the merge
should be rejected as inconsistent.  The merger
makes the assumption that these comparison and

merge decisions are context independent, i.e. it is not necessary to know anything other than the values
of the slots to determine whether they merge.  One can also allow limited cross-slot constraints in the
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form of equality and inequality constraints.
Thus, in the case of the MUC-6 management
succession application, one type of transition
might require that the company in the initial state
be distinct from that in the final state; while
another, might require that the positions be the
same.

With merging as with coreference, the
more application-specific domain knowledge
one can make effective use of, the better.  Con-
sider, in the MUC-4 terrorist activity applica-
tion, a text containing the following: “The bank
was the target of the attack....The lobby was
completely destroyed.”  In order to merge these
two pieces of information about the attack, one
has to recognize that lobbies are parts of banks-
-that is, physical parts of bank buildings, as op-
posed, for example, to loan departments being
functional parts of banks as financial institu-
tions--and hence can be destroyed by attacks on
banks.  Again, such relationships can be hand
coded in some way or recourse can be had to a
domain-independent knowledge base, such as
Cyc.

There has been very little work on training
mergers or learning merging strategies and what
little experience there has been, has not been
happy. We shall report on experiments and
analysis conducted at SRI. (This is largely the
work of Andy Kehler, and more information is
available at http://www.ai.sri.com/~kehler/Pa-
pers/MDLP.ps.gz)  There are two ways in which
one might attempt to identify better merging
strategies.  First, one could perform data analy-
ses to identify good merging principles,
handcode them, and test the results. Alterna-
tively, one could attempt to have merging strat-
egies be acquired by the system automatically,
using some training mechanism.

The first method requires an extensive
analysis of merging results. We developed de-
tailed mechanisms for tracing merging behav-
ior and distributed transcripts among several project participants.  One would attempt to identify a
variety of constraints which appeared to be extremely reliable, in particular, characteristics of tem-
plates that were almost always correlated with incorrect merges.  These constraints would have to be
implemented and tested.  The problem is that this might well lead to no significant change in end-to-
end performance as measured by F-score.  Indeed, this was exactly our experience, which highlights

http://www.ai.sri.com/~kehler/Papers/MDLP.ps.gz
http://www.ai.sri.com/~kehler/Papers/MDLP.ps.gz
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some of the problems with handcoding system im-
provements.  For one, the processes of data analy-
sis, system coding, and testing are labor intensive.
One cannot try all possible alternative sets of con-
straints one might consider, so one can never be
sure that other, unattempted constraints would not
have fared better.  Second, it could be that one
will be misguided by the relatively small data sets
that one can analyze by hand.

There are other, longer-term considerations
for moving away from handcoding merging im-
provements.  For one, the optimal merging strat-
egy is highly dependent on the quality of the in-
put it receives, which is constantly evolving in any
realistic development setting, thus requiring con-
tinual re-experimentation.  Thus, changes that
improve performance at one point in system de-
velopment could potentially decrease performance
at another time, or vice versa. Second, a general
goal of IE research is to have systems that can be
trained for new applications long after the system
developers are involved, which precludes experi-
mentation by hand.

These considerations motivate research to
determine if merging strategies can be learned au-
tomatically.  There are several different types of
learning, including supervised, unsupervised, and
an area in between which one might call indirectly

supervised.  Researchers at SRI have explored all three.  While we are unaware of any other reported
research on this task, other work has addressed other MUC-style tasks.  Researchers at BBN (Ralph
Weischedel, TIPSTER 18-month meeting) report on learned merging strategies achieving good perfor-
mance on the less complex template entity and template relation tasks in MUC-7, although no compari-
son with a similar hand-coded system was provided.

In a first set of experiments, the SRI researchers took the approach most commonly pursued in the
computational linguistics literature, namely supervised learning.  Supervised methods require a set of

training data that the learning algorithm can con-
sult in constructing its model.  For our initial ex-
periments, we ran the 100 MUC-6 training mes-
sages through FASTUS and wrote out feature sig-
natures for the 534 merges that the system per-
formed.  The feature signatures were created by
asking a set of 50 questions about the context in
which the proposed merge is taking place, refer-
encing the content of the two templates and/or the
distance between the phrases from which each tem-
plate was created.  Some example questions are:
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(i) SUBSUMED?: true if the contents of one template completely subsume the contents of the
other.

(ii) UNNAMED-REFERENCES?: true if either transition has a slot filled with an object lacking a
proper name, e.g., “an employee” in the person slot.  While these objects can merge with other (perhaps
named) entities of the same type, in general they should not.

(iii) LESS-THAN-700-CHARS?: true if the phrases from which the templates are created are less
than 700 characters apart in the text.

After the feature signatures were written, we examined the texts and manually encoded a key for
each.

We attempted two approaches to classifying merges using this corpus as training data.  The first
was to grow a classification tree. At each node, the algorithm asks each question and selects the one

resulting in the purest split of the data.  En-
tropy was used as the measure of node purity.
In the second set of experiments, we used the
approach to maximum entropy modeling de-
scribed by Berger et al.  The two possible val-
ues for each of the same 50 questions (i.e., yes
or no) were paired with each of the two pos-
sible outcomes for merging (i.e., correct merge
or not) to create a set of feature functions, or
features for short, which were used in turn to
define constraints on a probabilistic model.  We
used the learned maximum entropy model as a
classifier by considering any merge with a prob-
ability strictly greater than 0.5 to be correct,
and otherwise incorrect.

Out of the available set of questions, each approach selects only those that are most informative
for the classifier being developed. In the case of the decision tree, questions are selected based on how
well they split the data.  In the case of maximum entropy, the algorithm approximates the gain in the
model's predictiveness that would result from imposing the constraints corresponding to each of the
existing inactive features, and selects the one with the highest anticipated payoff.  One potential advan-
tage of maximum entropy is that it does not split data like a decision tree does, which may prove
important as training sets will necessarily be limited in their size.

We ran experiments using three different such divisions, using each example twice in a training set
and once in a test set.  In each case the maxi-
mum entropy classifier chose features corre-
sponding to either 6 or 7 of the available ques-
tions, whereas the decision tree classifier
asked anywhere from 7 to 14 questions to get
to the deepest leaf node.  In each case there
was considerable, but not total, overlap in the
questions utilized.  The maximum entropy
classifier made a total of 31 errors, in which
14 correct merges were classified as incorrect
and 17 incorrect merges were classified as
correct.  This is compared to a total of 139
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errors out of the 534 merges that the current merger made according to the annotations.
These results may appear to be positive, as it would seem that both methods found some reliable

information on which to make classifications.  However, our goal here was to improve end-to-end
performance on the scenario template task, and thus we wanted to know how much of an impact these
improved merging strategies have on that performance.

As an information gathering experiment, we applied FASTUS using the new mergers to the cor-
pus of messages that produced the training data.  We would of course expect these experiments to yield
better results than when applied to unseen messages.  Nonetheless, the results were humbling -- both
experiments failed to improve the performance of the overall system, and in fact degraded it slightly.
Generally, a point of precision was gained at the expense of a point or two of recall.

Clearly, there is a rift between what one might consider to be good performance at discriminating
correct and incorrect merges based on human judgments, and the effect these decisions have on overall
performance.  Because the baseline FASTUS algorithm merges too liberally, using the classifiers cause
many of the incorrect merges that were previously performed to be blocked, at the expense of blocking
a smaller number of correct merges.  Thus, it is possible that the correct merges the system performs
help its end-to-end performance much more than incorrect merges hurt it.  For instance, it may be that
correct merges often result in well-populated templates that have a marked impact on performance,
whereas incorrect merges may often add only one incorrect slot to an otherwise correct template, or
even result in templates that do not pass the threshold for extractability at all.  In fact, in certain circum-
stances incorrect merges can actually help performance, if two incorrect templates that would produce
incorrect end results are unified to become one.

In any case, it should be clear that improved performance on an isolated subcomponent of an IE
system, as measured against human annotations for that subcomponent, does not necessarily translate
to improved end-to-end system performance.  Add this to the cost of creating this annotated data —
which will continually become obsolete as the upstream FASTUS modules undergo development —
and it becomes clear that we need to look to other methods for learning merging mechanisms.

Several factors could influence the likelihood of a potential merge within a particular application,
and it therefore seems that something tied to the application needs to guide the learning process.

When developing an IE system, one typically encodes (or is given) a moderate-size set of end-to-
end development keys for a set of sample messages.  These keys need to be encoded only once.  We did
not use these keys for supervised learning because of the difficulties in aligning the inaccurate and
incomplete intermediate templates produced by the system with the (normalized) end results.  How-
ever, we can use the keys to evaluate the end results of the system, and attempt to tune a merging
strategy based on these evaluations.  After all, it is improved end-to-end performance that we are seek-
ing in the first place.

Thus, we consider a form of what we are calling indirectly supervised learning.  We use the HAC
mechanism described in the previous section, but attempt to learn the similarity metric instead of stat-
ing it explicitly.  The search through the space of possible similarity metrics will be driven by end-to-
end performance on a set of training messages.

We start by defining a space of similarity metrics.  In a preliminary experiment, we used 7 of the
questions that were used in the supervised experiments, coupled with their negations, for a total of 14
questions.  These questions are assigned weights, either positive or negative, that get incorporated into
a similarity metric when the question is true of a potential merge.

We used an annealing strategy to tune the weights.  The algorithm begins by processing the 100-
message MUC-6 development set, usually with a randomly selected initial configuration that estab-
lishes a baseline F-score.  The algorithm then iterates, selecting some of the questions at random (per-
haps just one, perhaps all of them) and permuting their weights by a random amount, either positive or
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negative.  The system is then rerun over the training set and the F-score measured.  Any permutation
resulting in an F-score that is strictly greater than the current baseline is adopted as the new baseline.
To stay out of local maxima, a permutation leading to a decrease in performance may also be adopted.
This is the annealing part -- such negative permutations are accepted with a probability that is propor-
tional to a steadily decreasing measure of ̀ temperature', and inversely proportional to the magnitude of
the decrement in performance.  Thus, permutations that decrease performance slightly in early stages
of the search are likely to be adopted, whereas permutations that decrease performance either signifi-
cantly or in later stages of the search are not.

The learner was not able to leverage the available features to acquire a much better merging strat-
egy than the one it started with.  Perhaps even more surprising, however, is that there were also not
lower low points — only iteration 10 achieved a score lower than 58.  Because the learner was not given
any bias with respect to the permutations it attempted, some of those it considered were intuitively poor
(e.g., boosting the weight for phrases that are very far apart, lowering the weight for sparsely filled
templates with no overlap).  Thus, one might have expected certain of these to devastate performance,
but none did.  It seems that as long as a certain amount of merging is performed, it matters less which
templates are actually merged, and in what order.

In sum, the learned mechanisms were neither significantly better nor worse than a hand-coded
merging strategy.  The inability to outperform the existing strategy could be attributed to several facts.
We suspect that a major problem is the lack of accessible, reliable, and informative indicators for
merging decisions.  Unlike lower-level problems in natural language processing (NLP) in which local
information appears to bear highly on the outcome, including, for instance, part-of-speech tagging and
sense disambiguation none of the questions we have formulated appear to be particularly indicative of
what effect a potential merge will have on system performance.  This suggests that more research is
needed to identify ways to access the necessary knowledge from independent sources such as existing
knowledge bases, or by mining it from online text corpora using unsupervised or indirectly supervised
learning techniques.

The contrast between domain- and application-specific ideas and general domain- and applica-
tion-independent resources has been a recurring one in this tutorial and in the work on which it reports.
Customizing an extraction system to an application has been a long and tedious process.  One must
determine all the ways in which the target information is expressed in a given corpus, and then think of
all the plausible variants of those ways, so that appropriate regular patterns can be written.  Given that

computational linguists have been de-
veloping general grammatical systems
for a long time, one might be led to
believe that systems that are based on
linguistically-motivated English gram-
mars would be much easier to adapt to
a new domain.  But as already noted, it
has been the experience of MUC de-
velopers that systems based on general
grammars have not performed as well
as those that have been customized in
a more application-dependent manner.
The reasons for this are more practical
than theoretical.  General grammars of
English, by virtue of being general, are
also highly ambiguous.  One conse-
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quence of this ambiguity is that a relatively
long processing time is required for each
sentence; this implies, in turn, a relatively
long develop-test-debug cycle.  Moreover,
these systems have proved rather brittle when
faced with the multitude of problems that
arise when confronted by real-world text.

One might naturally wonder whether
one can have the advantages of both worlds:
tightly defined, mostly unambiguous patterns
that cover precisely the ways the target in-
formation is expressed, and a way of captur-
ing the linguistic generalizations that would
make it unnecessary for an analyst to enu-
merate all the possible ways of expressing

it.
One approach in this direction is to

localize the domain-dependence of the
rules to the maximum extent possible.  The
idea is to divide the rules of the domain
phase into domain-dependent and domain-
independent portions.  The domain-inde-
pendent part of the domain-phase consists
of a number of rules that one might char-
acterize as parameterized macros. The
rules cover various syntactic constructs at
a relatively coarse granularity, the objec-
tive being to construct the appropriate
predicate-argument relations for verbs that
behave according to that pattern.  The do-
main-dependent rules comprise the clus-
ters of parameters that must be instanti-
ated by the “macros” to produce the ac-

tual rules.  These domain-dependent rules
specify precisely which verbs carry the do-
main-relevant information, and specify the
domain-dependent restrictions on the argu-
ments, as well as the semantics for the rule.

As for domain-specific rules, these, too,
are centered around verbs. In a typical infor-
mation extraction task, one is interested in
events and relationships holding among enti-
ties, and these are usually specified by verbs.
Verbs, of course, have corresponding nominal-
izations, so the macros should automatically
instantiate nominalization patterns as well.
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The success of this general approach depends heavily on two prerequisites: reliable coreference
resolution and a well-developed parser.  The coreference module is necessary because it relieves the

developer of the domain phase of the burden of an-
ticipating all the variations that would result from
pronominal and definite reference. Otherwise the
developer must see to it that every rule that involves
a company as subject also applies to “it,”  when it
refers to a company, as well as to “the company,”
“the concern,” etc. The parser has the responsibil-
ity of correctly analyzing appositives and noun-
phrase conjunction.  This makes it possible for the
domain phase to skip complements correctly.  If all
this work is done, then the specification of domain-
specific rules can be a surprisingly simple task.

In sum, the macro rules facility preserves the
ability to write patterns that are tightly constrained
to fit the particular relevant sentences of the domain,
but with the additional advantage of automatically

generating all of the possible linguistic variations in an error-free manner.  A developer need no longer
lament having failed to include a “passive” variant of a particular pattern simply because no instance
occurred in the training corpus.  Also, the information specified by the domain-dependent rules is
relatively straightforward to provide, so that with the help of a suitable user interface, it is possible to
imagine an analyst supplying the system with the information needed to customize it to a new extrac-
tion task.

The idea naturally arises, then, of a system based on learning from examples supplied by the user/
developer.  One begins with a system of hand-produced rules for the general domain of the application.
The user is provided an interface with texts on one side, for example, and a template on the other.  Thue
user selects a span of text, hopefully literally a span--that is a contiguous segment and either drops and
drags that text into a slot in the template or fills out the template with a selelction from a predetermined
set of alternatives on the basis of the text selected.  This activity is logged and moniroredby the system,
thereby developing a case base of example pairs of texts and template fills. The system generates
simple and safe generalizations of its existing rule-base on the basis of these observed cases.  These
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might be presented to the suer/developer for inspection and editing. In any case, the system is then run
with the new rules and the output presented to the user/developer, who then corrects and edits the new
templates.  This process is iterated.

As in all case- or example-based learning, there are issues as to similarity among cases and issues
of dimensions and degrees of generalization to be faced. Unfortunately nothing beyond very prelimi-
nary experiments along these lines has been done.

Finally, as for applications: there has been some experimentation with using IE grammars as post-
filters applied to the output of standard IR system routing queries.  (A full description of this experi-
ment is available at http://www.ai.sri.com/pubs/papers/Bear9711:Using/document.ps.gz.)

Researchers have pursued a variety of approaches to integrating natural language processing with
document retrieval systems.  The central idea in the literature is that some, perhaps shallow variant of
the kind of syntactic and semantic analysis performed by general-purpose natural language processing
systems can provide information useful for improving the indexing, and thus the retrieval, of docu-
ments. The work in this area has seen some success, but significant performance improvements have
yet to be demonstrated.  We pursued a different hypothesis, that an information extraction (IE) system
can be pipelined with a document retrieval system in such a way as to improve performance on routing
tasks.

The goal of a document retrieval system, as embodied in the routing task of TRECs, is to consult
a large database of documents and return a subset of documents ordered by decreasing likelihood of
being relevant to a particular topic.  In the TREC6 routing task, a document retrieval system returns the
1000 documents it judges most likely to be relevant to a query out of a database of roughly one million
documents.  A system performs well if a high proportion of the articles returned, high relative to the
ratio of relevant articles in the corpus, are relevant to the topic, and if the relevant articles are ranked
earlier in its ordering than the irrelevant ones.

The experimental approach to using NLP techniques for IR was to adapt an IE system, SRI's
FASTUS system, to enable the writing of small grammars for many topics and to use those grammars
as queries to be run against the top 2000 documents for those topics, as determined by an IR system—
in this case GE's version of SMART.  As noted above, the output of an IR system for a given topic on
the routing task is a list of the documents ordered by decreasing likelihood of relevance. The adaptation
of FASTUS involved having each grammar rule that matched some segment of an article assign a score
to that segment. One then summed the scores to get a total for the article.

http://www.ai.sri.com/pubs/papers/Bear9711:Using/document.ps.gz
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For each of the topics for which grammars were written, FASTUS processed each article in GE's
2000 top articles for that topic and ranked them by score.  The highest-scoring articles were ranked
first, and importantly, in the case of ties GE's order was used.

Overall we improved the average precision very slightly over our input, from 27% to 27.3%.
FASTUS improved the average precision (non-interpolated) compared to the GE input on 17 of

the 23 topics.  On 12 of these the resulting average precision was above the median; in seven of these
cases, we transformed above median input into an even better ordering.  On one of these 7, FASTUS
had the best average precision (.6322).  There are several possible reasons for this success.  The most
likely is that there was less training data for this topic than for any of the others: 100 articles instead of
(app.) 1000.  Our approach may suffer less from this relative scarcity of training data than purely
statistical approaches.  We only wrote grammars for two of the topics that had 100 or fewer training
articles, so this is still conjecture. On the other topic of this kind, we very slightly improved above-
median input.  Finally, the topic may just be one where the information tends to be expressed in ways
that IE patterns can recognize.

On six of the topics, FASTUS lowered the average precision of the input order.  A characterization
of these cases is instructive.  Two of these had 7 and 8 relevant documents in the training sets, respec-
tively.  When faced with that little data, we could only guess at the various ways in which relevant
information might be expressed and at which patterns would recognize them.  Obviously we did not
make very good guesses.


