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Abstract

The Internet presents numerous sources of useful information—telephone directories, product
catalogs, stock quotes, event listings, etc. Recently, many systems have been built that automatically
gather and manipulate such information on a user’s behalf. However, these resources are usually
formatted for use by people (e.g., the relevant content is embedded in HTML pages), so extracting
their content is difficult. Most systems use customizedwrapperprocedures to perform this extraction
task. Unfortunately, writing wrappers is tedious and error-prone. As an alternative, we advocate
wrapper induction, a technique for automatically constructing wrappers. In this article, we describe
six wrapper classes, and use a combination of empirical and analytical techniques to evaluate the
computational tradeoffs among them. We first considerexpressiveness: how well the classes can
handle actual Internet resources, and the extent to which wrappers in one class can mimic those in
another. We then turn toefficiency: we measure the number of examples and time required to learn
wrappers in each class, and we compare these results to PAC models of our task and asymptotic
complexity analyses of our algorithms. Summarizing our results, we find that most of our wrapper
classes are reasonably useful (70% of surveyed sites can be handled in total), yet can rapidly learned
(learning usually requires just a handful of examples and a fraction of a CPU second per example).
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Internet presents a stunning variety of on-line information resources: telephone
directories, retail product catalogs, weather forecasts, airline schedules, event schedules,
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and many more. Recently, there has been much interest in systems (such as software agents
[30,36,49,66] or information-integration systems [8,18,19,45,55]) that automatically
access such resources, manipulating their content on a user’s behalf.

Numerous technical problems arise when building such a system. These challenges have
lead to work on resource discovery [13], Web query languages [48,57], semi-structured
data models [1,15], query planning [24,36,55], reasoning about local completeness [28,53]
and ontological [31,56] knowledge, and handling heterogeneous identifiers [20,59].

In this article, we address yet another challenge: we would like to build systems that
make use of the Internet’s content, but much of this content is formatted for people rather
than machines. Specifically, the content is often embedded in an HTML page, and an
information-integration system must extract the relevant text, while discarding irrelevant
material such as HTML tags or advertisements. In this article, we describe techniques that
enable information-integration systems to automatically make use of such valuable but
obscured information.

Fig. 1 provides a concrete example of the sort of information resource with which we
are concerned. Consider a fictitious Internet site that provides information about countries
and their telephone country codes. When the form in Fig. 1(a) is submitted, the resource
responds as shown in Fig. 1(b), which was rendered from the HTML shown in Fig. 1(c). Of
course, this raw HTML is of little use to a system seeking information about countries and
their country codes. Such a system must extract the response’s actual content; see Fig. 1(d).

One way to perform this extraction task is to invoke the customized wrapper procedure
ccwrapLR, shown in Fig. 1(e).ccwrapLR has two nested loops; the outer ‘while’ loop
extracts a country/code pair, and the inner ‘for’ loop extracts these two attributes in
sequence.ccwrapLR is ‘hard-wired’ to the country/code site, with the inner loop iterating
exactly twice for each iteration of the outer loop.

TheccwrapLR procedure works because the site exhibits a uniform formatting conven-
tion: countries are rendered in bold, while countrycodesare in italics.ccwrapLR oper-
ates by scanning the HTML document for particular strings (‘<B>’, ‘ </B> ’, ‘ <I> ’ and
‘</I> ’) that identify the text fragments to be extracted. These strings are identified by
ccwrapLR as`1, r1, `2 andr2, respectively. The notatioǹk (k ∈ {1,2}) indicates that the
string delimits theleft-hand edge of an attribute to be extracted, whilerk indicates aright
delimiter.

When given a page such asPcc, ccwrapLR sequentially scans the entire page. The outer
loop checks whether there are additional country/code pairs to extract, by looking for the
delimiter ‘<B>’ in the unscanned portion of the page. As long as the beginning of a country
is found, the inner loop is invoked to extract the appropriate page substrings.

Where does theccwrapLR wrapper come from? Few Internet sites publish their
formatting conventions, and thus the designer of an information-gathering system must
manually construct such a wrapper for each resource. While an individual wrapper is
usually structurally quite simple, hand-coding the details is tedious and error-prone.
Moreover, we are interested in the scaling issues that arise as we build systems that
integrate information from hundreds or thousands of Internet sources. Excite’s ‘Jango’
shopping agent, for example, relied on several hundred wrappers, each with a mean time
to failure of about one month [74]. Finally, most sites periodically change their formatting
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(a) (b)

<HTML><TITLE>Some Country Codes</TITLE><BODY>
<B>Congo</B> <I>242</I><BR>
<B>Egypt</B> <I>20</I><BR>
<B>Belize</B> <I>501</I><BR>
<B>Spain</B> <I>34</I><BR>
</BODY></HTML>

(c)

〈‘Congo’, ‘242 ’〉,
〈‘Egypt ’ , ‘20 ’ 〉,
〈‘Belize ’, ‘501 ’ 〉,
〈‘Spain ’, ‘34 ’〉


(d)

procedureccwrapLR(pageP )
while there are more occurrences inP of ‘<B>’

for each〈`k, rk〉 ∈ {〈‘<B>’, ‘</B> ’ 〉, 〈‘<I> ’ , ‘</I> ’〉}
scan inP to next occurrence of̀k ; save position as start ofkth attribute
scan inP to next occurrence ofrk ; save position as end ofkth attribute

return extracted{. . . , 〈country, code〉, . . .} pairs

(e)

Fig. 1. A fictitious Internet site providing information about countries and their telephone country codes: (a) the
search form; (b) an example response page; (c)Pcc, the HTML page for (b); (d) the response’s content; and (e)
theccwrapLR procedure, which generates (d) from (c).

conventions, which usually breaks an existing wrapper [51]. For these reasons, wrapper
programming and maintenance is a serious knowledge-engineering.

To facilitate wrapper construction and maintenance, we advocatewrapper induction
[50,52], a technique for automatically learning wrappers. Wrapper induction involves
generalizing from a set of examples of a resource’s pages, each annotated with the text
fragments to be extracted. For example, given a set of〈page, content〉 pairs such as
〈Fig. 1(c),Fig. 1(d)〉, our wrapper induction algorithm generatesccwrapLR.
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As in many machine-learning applications, the key to effective learning is tobias the
learning algorithm [58]. In our work, biases correspond towrapper classes. For example,
ccwrapLR is an instance of a wrapper class we call Left-Right (LR), which extracts the text
indicated by specific left- and right-hand delimiters. In this article we describe LR as well
as several wrapper classes that extend it in various ways.

While the particular classes we have identified are interesting in their own right, in
this article we focus on the computational tradeoffs among them. We have compared our
wrapper classes using a combination of empirical and analytical techniques. Our evaluation
can be characterized in terms of the following hierarchical organization:

I — EXPRESSIVENESS: The first issue concerns how useful the wrapper classes are for
handling actual Internet resources, and the extent to which sites handled by one class
can be handled by others.

I-1 — COVERAGE: We conducted a survey of actual Internet sites, to determine which
can be handled by each class. Unlike similar information-extraction and -retrieval
tasks, we are interested only in wrappers that exhibit 100% precision and recall. Thus
rather than measuring the accuracy of a wrapper class, we are interested incoverage,
the fraction of Internet sites for which there exists a 100%-accurate wrapper in the
class. Our classes can handle 70% of the sites in total; see Fig. 15 in Section 5.1.

I-2 — RELATIVE EXPRESSIVENESS: A more formal question is the extent to which
wrappers in one class can mimic those in another. The relationships turn out to be
rather subtle; see Theorem 1 in Section 5.2.

II — EFFICIENCY: Our expressiveness results demonstrate the usefulness of our wrapper
classes, but can they be learned quickly? We decompose this second aspect of our
analysis into two parts: how many examples are needed, and how much computation
is required?

II-1 — SAMPLE COST: Intuitively, the more examples provided to the learner, the more
likely that the wrapper is correct. We assessed the number of examples required both
empirically and analytically.

II-1-a — EMPIRICAL RESULTS: We measured the number of examples needed to
learn a wrapper that performs perfectly on a suite of test pages. We find that 2–3
examples usually suffice; see Fig. 18 in Section 6.1.1.

II-1-b — SAMPLE COMPLEXITY: We also developed a PAC [7,73] model of our
learning task, which formalizes the intuition that more examples improves learning.
We have derived bounds on the number of examples needed to ensure (with high
probability) that learned wrappers rarely (with low probability) make mistakes. We
have shown that the number of examples required is polynomial in the relevant
parameters; see Theorem 2 in Section 6.1.2.

II-2 — INDUCTION COST: While sample cost measures the number of examples
required, we are also concerned with the time to process the examples.
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II-2-a — EMPIRICAL RESULTS: When tested on actual Internet sites, our learning
algorithms usually require less than one CPU second per example; see Fig. 19 in
Section 6.2.1.

II-2-b — TIME COMPLEXITY: We have also performed a complexity analysis on our
algorithms. As stated in Theorem 3 in Section 6.2.2, most of our wrapper classes can
be learned in polynomial time.

The remainder of this article is organized as follows. We begin in Section 2 with a formal
characterization of wrappers and our wrapper induction task. In Section 3 we describe the
LR class just mentioned, and in Section 4 we describe five variants of LR. We then evaluate
these six classes as described: in Section 5 we discuss expressiveness (issue I above), and
in Section 6 we turn to efficiency (issue II). Wrapper induction requires that the example
pages be properly labeled prior to learning; in Section 7 we briefly introducecorroboration,
our work on automating this page-labeling step. We conclude with a discussion of related
(Section 8) and future (Section 9) research.

2. Wrapper induction

The wrapper induction problem is framed in terms of a simple model of information
extraction; see Fig. 2.

Resources, queries, and pages.As shown in Fig. 2, aninformation resourceS is a
function from aqueryQ to aresponse pageP .

QueryQ describes the desired information, in terms of an expression in some query
languageQ. For typical Internet resources, the query is represented by the arguments
to a CGI script; alternatively,Q might be SQL or KQML. (We are concerned mainly
with the response pages, and so will largely ignoreQ. This focus is motivated by our
assumption that the issues related to learning to extract information from the responses can
be decoupled from the issues related to learning to pose queries. Of course, learning to
pose queries is an important research issue; see [23] for some interesting progress.)

Response pageP is the resource’s answer to the query. We takeP to be a string over
some alphabetΣ . Typically, Σ is the ASCII character set, and the pages are HTML
documents. For example, earlier we saw the query response in Fig. 1(c); for convenience,
we will hereafter refer to this page asPcc. Note that our techniques are motivated by, but
do not rely on, the use of HTML. For example, the responses might be natural language
text, or obey a standard such as KIF or XML.

Attributes and tuples. We adopt a standard relational data model. Associated with each
information resource is a set ofK distinct attributes, each representing a column in the
relational model. In the country/code example, there areK = 2 attributes.

query
Q ∈QH⇒

resource
S H⇒ page

P ∈Σ∗H⇒
wrapper
W ∈W H⇒

label
L ∈ L

Fig. 2. A simple model of information extraction: resources map queries to pages, and wrappers map pages to
labels.
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A tuple is a vector〈A1, . . . ,AK 〉 of K strings;Ak ∈ Σ∗ for eachk. StringAk is the
valueof tuple’skth attribute. Whereas attributes represent columns in the relational model,
tuples represent rows. The example country/code pagePcc contains four tuples, the first
of which is〈‘Congo’ , ‘242 ’〉. Note that attributes values must not overlap.

Content and labels. Thecontentof a page is the set of tuples it contains. For example,
the content of the example country/code page is shown in Fig. 1(d).

The literal string notation used in Fig. 1(d) is adequate, but since pages have unbounded
length, we use instead a cleaner and more concise representation of a page’s content. Rather
than listing the attributes explicitly, a page’slabelrepresents the content in terms of a set of
indices into the page. Note that representing a pages content with such indices is visually
simpler than, but computationally equivalent to, the literal string notation.

For example, the label for the example country/code pagePcc is

Lcc=



〈〈50,55〉, 〈63,66〉〉,〈〈78,83〉, 〈91,93〉〉,〈〈105,111〉, 〈119,122〉〉,〈〈134,139〉, 〈147,149〉〉


.

LabelLcc indicates that the example country/code page contains four tuples, where each
tuple consists ofK = 2 attributes values. Each value is represented by a pair of integers.
Consider the first pair,〈50,55〉. These integers indicate that the first attribute of the first
tuple is the substring between positions 50 and 55 (i.e., the string ‘Congo’); inspection of
Fig. 1(c) reveals that these integers are correct. Similarly, the last pair,〈147,149〉, indicates
that the last attribute’s country code occurs between positions 147 and 149 (i.e., the string
‘34 ’).

More generally, the content of pageP is represented as the label

L=



〈〈b1,1, e1,1〉, . . . , 〈b1,k, e1,k〉, . . . , 〈b1,K, e1,K〉
〉
,

...〈〈bm,1, em,1〉, . . . , 〈bm,k, em,k〉, . . . , 〈bm,K, em,K 〉
〉
,

...〈〈b|L|,1, e|L|,1〉, . . . , 〈b|L|,k, e|L|,k〉, . . . , 〈b|L|,K, e|L|,K〉〉


.

LabelL encodes the content of pageP . The page contains|L|> 0 tuples, each of which
hasK > 0 attributes. The integers 16 k 6K are the attributes indices, while the integers
16m6 |L| index tuples within the page. Each pair〈bm,k, em,k〉 encodes a single attribute
value. The valuebm,k is the index inP of thebeginningof thekth attribute value in themth
tuple. Similarly,em,k is end index of thekth attribute value in themth tuple. Thus, thekth
attribute of themth tuple occurs between positionsbm,k andem,k of pageP . For example,
the pair〈b3,2, e3,2〉 = 〈147,149〉 above encodes the second (country code) attribute of the
example page’s fourth tuple.

The symbolL in Fig. 2 refers to the (infinite) set of all labels.
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Wrappers and wrapper classes.As shown in Fig. 2, awrapperW is a function from a
page to a label; the notationW(P)= L indicates that the result of invoking wrapperW on
pageP is labelL.

At this level of abstraction, a wrapper is simply an arbitrary procedure, but in this article
we examine several classes of wrappers. Formally, awrapper classW is simply a set
of wrappers. The classes we consider are infinite, comprising all ways to “instantiate” a
“template” for writing wrappers in each class.

The wrapper induction problem.Finally, we are in a position to state our task: we want
to learn a wrapper for information resourceS, and we will be interested in wrappers from
some classW .

Intuitively, the input to our learning system is a sample ofS ’s pages and their associated
labels, and the output should be a wrapperW ∈W . Ideally, we wantW to output the
appropriate label for all ofS ’s pages. In general we can not make such a guarantee, so (in
the spirit of inductive learning) we demand thatW generate the correct labels for a given
set of training examples.

More formally, thewrapper induction problem(with respect to a particular wrapper
classW) is as follows:

input: a setE = {. . . , 〈Pn,Ln〉, . . .} of examples, where eachPn is a page, and eachLn is
a label;

output: a wrapperW ∈W , such thatW(Pn)= Ln for every〈Pn,Ln〉 ∈ E .

3. The LR wrapper class

TheccwrapLR procedure (Fig. 1(e)) illustrates a “programming idiom”—using left- and
right-hand delimiters to extract the relevant fragments—that is useful for resources other
than just the country/code site. The Left-Right (LR) wrapper class is one way to formalize
this idiom. As shown in Fig. 3, LR is a generalization ofccwrapLR that allows:

(1) the delimiters to be arbitrary strings (instead of the specific values ‘<B>’, ‘ </B> ’,
etc.); and

(2) any numberK of attributesA1, . . . ,AK (rather than exactly two).
Note that although the delimiters in this example are entire HTML tags, our techniques

do not require this. For example, the left/right delimiters ‘<A href=" ’ and ‘"> ’ could

procedureexecLR(wrapper〈`1, r1, . . . , `K, rK 〉, pageP )
m← 0
while there are more occurrences inP of `1 [i]
m←m+ 1
for each〈`k, rk〉 ∈ {〈`1, r1〉, . . . , 〈`K, rK 〉}

scan inP to the next occurrence of̀k ; save position asbm,k [ii ]
scan inP to the next occurrence ofrk ; save position asem,k [iii ]

return label{. . . , 〈〈bm,1, em,1〉, . . . , 〈bm,K, em,K 〉〉, . . .}

Fig. 3. TheexecLR procedure specifies how an LR wrapper is executed.
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be used to extract URLs. Indeed, the text might not be HTML at all: ‘( ’ and ‘) ’ might be
valid area code delimiters for phone numbers such as ‘(206)367-2578 ’.

TheexecLR routine specifies how LR wrappers behave. Earlier we stated that theW(P)

is the label that results from invoking wrapperW on pageP ; execLR is simply a procedure
for computingW(P) fromW andP , for the case whenW is an LR wrapper.

The values of̀ 1, . . . , `K indicate the left-hand attribute delimiters, whiler1, . . . , rK
indicate the right-hand delimiters. For example, ifexecLR is invoked with the parameters
K = 2, `1= ‘<B>’, r1= ‘</B> ’, `2= ‘<I> ’ and r2= ‘</I> ’, thenexecLR behaves like
ccwrapLR. 2

Notice that the behavior of the country/code wrapperccwrapLR can be entirely
encapsulated in terms of a vector of four strings〈‘<B>’ , ‘</B> ’ , ‘<I> ’ , ‘</I> ’〉.

More generally, any LR wrapper for a site containingK attributes is equivalent to a
vector of 2K strings〈`1, r1, . . . , `K, rK 〉, and any such vector can be interpreted as an LR
wrapper. Given this equivalence, we use the notation〈`1, r1, . . . , `K, rK 〉 as a shorthand
for the LR wrapper obtained by partially evaluatingexecLR with the given delimiters.

LR is very simple; indeed one might wonder whether it is so simple as to be
useless. Before describing our algorithm for automatically constructing LR wrappers, it
is worthwhile to look ahead to our main empirical results. We find that LR is reasonably
useful (it can handle 53% of a surveyed collection of Internet sites; Section 5.1), yet LR
wrappers can be learned in just a few seconds (Section 6.2.1), based on just a handful of
examples (Section 6.1.1).

Since an LR wrapper is simply a vector〈`1, r1, . . . , `K, rK 〉, the LR wrapper induction
problem thus is one of identifying 2K delimiter strings〈`1, r1, . . . , `K, rK 〉, on the basis
of a setE = {. . . , 〈Pn,Ln〉, . . .} of example pages and their labels. More precisely, we must
solve the following constraint satisfaction problem (CSP):

variables: delimiters`1, r1, . . . ,`K , rK ;

domains: each delimiter is an arbitrary string;

constraints: W(Pn) = Ln for every 〈Pn,Ln〉 ∈ E , where LR wrapperW = 〈`1, r1, . . . ,

`K, rK 〉.
In the remainder of this section we describelearnLR, an algorithm that solves problems of
this form.

3.1. Delimiter candidates

We begin by noting that the domains of the 2K variables are tightly constrained by
the examplesE . At the very least, the delimiters must be substrings of the examples.
Of course, we can do much better. On the basis of just the single example〈Pcc,Lcc〉,
we know thatr2 (the right-hand delimiter for the code attribute) must be a prefix of
‘</I><BR> ⇓</BODY></HTML>’ 3 . To see this, note that ifr2 is not a prefix of this

2 Note thatccwrapLR is described somewhat informally; for example, a wrapper is supposed to output a label
consisting of〈bm,k, em,k〉 pairs, butccwrapLR does not explicitly mention these indices. The intent is thatexecLR
is both a generalization and a more precise specification ofccwrapLR.

3 The symbol ‘⇓’ indicates a new-line character.
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string, then every wrapper with this delimiter will, at the very least, fail to extract ‘34 ’
as the code attribute forPcc’s fourth tuple. Thus the candidates forr2 are all prefixes of
‘</I><BR> ⇓</BODY></HTML>’.

A similar analysis applies to all 2K delimiters. In detail, the candidates for the delimiters
are generated as follows:

Candidates for thèk. Consider̀ 2, the left-hand delimiter for the code attribute. Recall
the fragments ‘Congo</B> <I> ’, ‘ Egypt</B> <I> ’, etc. that precede the country
codes in Fig. 1(c). Given these fragments, we know that`2 must be a suffix of ‘</B>
<I> ’. Thus the candidates for̀2 are the eight non-empty suffixes of this string.

Delimiter `1 is more complicated, because the strings prior to the first attribute oc-
cur between the first attribute and the last attribute of the previous tuple, as well as be-
tween the start of the page and the first tuple. In the example, the strings under consider-
ation are ‘<HTML><TITLE>Some Country Codes</TITLE><BODY> ⇓<B>’ and
‘</I><BR> ⇓<B>’. Clearly `1 must be a suffix of these strings. Thus the candidates for
`1 can be generated by enumerating the suffixes of one such fragment. (For efficiency, the
shortest string yields the fewest candidates.)

To generalize this discussion, we have concluded that the candidates for delimiter`k
given the example setE—writtencands`(k,E)—are generated by enumerating the suffixes
of the shortest string occurring to the left of each instance of attributek in each example.
(As mentioned in the previous paragraph, the casek = 1 is special: we must enumerate the
suffixes of the shortest string either between adjacent tuples or before the first tuple.) For
example, ifE = {〈Pcc,Lcc〉}, then we have:

cands`(1,E)=


‘</I></BR> ⇓<B>’, ‘ /I></BR> ⇓<B>’, ‘ I></BR> ⇓<B>’,

‘></BR>⇓<B>’, ‘</BR>⇓<B>’, ‘ /BR>⇓<B>’, ‘BR>⇓<B>’,

‘R>⇓<B>’, ‘>⇓<B>’, ‘⇓<B>’, ‘<B>’, ‘B>’ , ‘>’

 ,

cands`(2,E)=
‘</B> <I> ’, ‘ /B> <I> ’, ‘B> <I> ’, ‘> <I> ’ , ‘ <I> ’ ,

‘<I> ’, ‘ I> ’, ‘>’

 .
(1)

Candidates for therk . The candidates for the right-hand delimiters are generated
similarly, but there are two differences. First, the strings under consideration occur to
the right of the appropriate attribute (rather than to the left). Second,rk must be a
prefix (not a suffix) of these strings. For example, the delimiterr1 must be a prefix
of the string ‘</B> <I> ’, while r2 must be a prefix of both ‘</I><BR> ⇓<B>’ and
‘</I><BR> ⇓</BODY></HTML>’.

More generally, the candidates for delimiterrk given the example setE—written
candsr (k,E)—are generated by enumerating the prefixes of the shortest string occurring
to the right of each instance of attributek in each example. (As discussed above,`1 is is a
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special case. Similarly,rK is a special case: we must enumerate the prefixes of the shortest
string occurring either between adjacent tuples or after the last tuple.) For example:

candsr (1,E)=
‘</B> <I> ’, ‘</B> <I ’ , ‘</B> < ’ , ‘</B> ’ , ‘</B> ’ ,

‘</B ’, ‘</ ’, ‘<’

 ,
candsr (2,E)=


‘</I></BR> ⇓<B>’, ‘</I></BR> ⇓<B’, ‘</I></BR> ⇓<’,

‘</I></BR> ⇓’, ‘</I></BR> ’, ‘</I></BR ’, ‘</I></B ’,

‘</I></ ’, ‘</I>< ’, ‘</I> ’, ‘</I ’, ‘</ ’, ‘<’

 .
(2)

3.2. Delimiter independence

Given these candidates for each delimiter, a naïve algorithm for learning an LR wrapper
is the following:

procedurelearnLR(examplesE)—naïve version

(1) Generate the candidate setscands`(k,E) andcandsr (k,E) for each delimiter.
(2) Enumerate the cross product of these candidate sets; each elementW =
〈`1, r1, . . . , `K, rK 〉 of this cross product is a wrapper. Halt ifW is satisfactory,
i.e.,execLR(W,Pn)= Ln for every〈Pn,Ln〉 ∈ E .

Unfortunately, this algorithm is slow: it runs in time proportional to the product of the
number of candidates for each delimiter, and each delimiter can have many candidates.

We can devise a faster algorithm by observing that the 2K delimiters aremutually
independent, in that whether a candidate is valid for a particular delimiter in no way
depends on any other delimiters. For example, we can evaluate whether ‘</I> ’ is
satisfactory forr2 without reasoning about any of the other delimiters.

To see that this independence property holds, recall theexecLR procedure. At each point
in its execution,execLR is searching its input pageP for exactly one of the 2K delimiters.
If any of these searches fails to identify the correct location inP , then the label output by
execLR will be incorrect. But whether these searches return the right answer depends only
on the delimiter under consideration and the example pages—not on the other delimiters.

Put another way, once we’ve committed to a particular candidate for some delimiter,
there is no way the candidate can be made invalid, no matter what candidates are selected
for the other delimiters. The contrapositive of this assertion also makes intuitive sense:
if a candidate is invalid, there is no way to repair it, no matter how carefully we select
candidates for other delimiters. Note that this independence property is guaranteed; it is
not merely a heuristic that facilitates learning.

The significance of this observation is that we can decompose the original 2K-variable
CSP problem into 2K subproblems, and solve each in isolation. In pseudo-code, our
improved LR wrapper induction algorithms is as follows:

procedurelearnLR(examplesE)—efficient version

(1) Generate the candidate setscands`(k,E) andcandsr (k,E) for each delimiter.
(2) For each delimiter, select a valid candidate.
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This algorithm is much faster than the original naïve algorithm: it runs in time proportional
to the sum (rather than product) of the number of candidates for each delimiter.

3.3. Candidate validity

Of course the second step of this improved algorithm requires that we precisely
characterize the conditions under which a delimiter candidate is valid.

Consider first therk delimiters. TheexecLR procedure searches forrk during the
execution of line [iii ] in Fig. 3. The algorithm has identified the beginning of some instance
of the kth attribute in line [ii ], and is trying to locate the end of the instance. Thus a
candidateu for delimiterrk must satisfy two constraints:

Constraint CA
r : u must not be a substring of any instance of attributek in any of the

example pages.

Constraint CB
r : u must be a prefix of the text that occurs immediately following each

instance of attributek in every example page.

If these constraints are violated by a candidateu for delimiterrk , then every wrapper that
includes the assignmentrk = u will fail for at least one of the examplesE . If constraintCA

r

is violated, then attributek will be too short; ifCB
r is violated, it will be too long.

We can summarize this discussion as follows. We are interested in the conditions that
must hold if some candidateu is to be valid as a value for delimiterrk , with respect to
a given set of examplesE . We will refer to these conditions asvalidr (u, k,E). We have
seen thatvalidr (u, k,E) holds if and only if candidateu satisfies constraintsCA

r andCB
r for

delimiterrk with respect to example setE . Returning to the example, if we apply thevalidr
test to the candidates generated bycandsr (Eq. (2)), we have:

validr (‘</B> <I> ’,1,E) = TRUE validr (‘</I></BR> ⇓<B>’,2,E) = FALSE

validr (‘</B> <I ’,1,E) = TRUE validr (‘</I></BR> ⇓<B’,2,E) = FALSE

validr (‘</B> < ’,1,E) = TRUE validr (‘</I></BR> ⇓<’,2,E) = TRUE

validr (‘</B> ’ ,1,E) = TRUE validr (‘</I></BR> ⇓’,2,E) = TRUE

validr (‘</B> ’,1,E) = TRUE validr (‘</I></BR> ’,2,E) = TRUE

validr (‘</B ’,1,E) = TRUE validr (‘</I></BR ’,2,E) = TRUE

validr (‘</ ’,1,E) = TRUE validr (‘</I></B ’,2,E) = TRUE

validr (‘<’,1,E) = TRUE validr (‘</I></ ’,2,E) = TRUE

validr (‘</I>< ’,2,E) = TRUE

validr (‘</I> ’ ,2,E) = TRUE

validr (‘</I ’ ,2,E) = TRUE

validr (‘</ ’ ,2,E) = TRUE

validr (‘<’ ,2,E) = TRUE

What are the constraints on the`k? TheexecLR procedure searches for delimiter`k
under two different circumstances. First, at line [ii ] in Fig. 3 the algorithm has just located
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the end of the previous attribute and is searching for the beginning of thekth attribute by
scanning forward for̀ k. Thus`k must be a proper suffix4 of the text occurring between
each instance of attributek and the previous attribute.

The second reference tòk occurs in line [i] of execLR; note that this constraint applies
only to `1. At this pointexecLR is checking to see whether there are additional tuples to
be extracted. So we require that`1 not be a substring of any example’s “tail” (i.e., the text
occurring after the last tuple).

More precisely, we have shown that a candidateu for delimiter `k must satisfy two
constraints:

Constraint CA

` : u must be a proper suffix of the text that occurs immediately before each
instance of attributek in every example page.

Constraint CB

` : for `1, u must not be a substring of any example page’s tail.

If these constraints are violated, then every wrapper that includes the assignment`k = u
will disagree with the examplesE . If constraintCA

` is violated, then at least one of
the starting indicesbm,k computed byexecLR will be incorrect (either less or greater
than the correct value, or undefined, depending howu violates constraintCA

` ). If CB

` is
violated, thenexecLR will attempt to extract too many examples from the page for which
u violatesCB

` .
To summarize, we are interested in the conditions that must hold if some candidateu

is to be valid as a value for delimiter`k , with respect to example setE . We will refer to
these conditions asvalid`(u, k,E). We have seen thatvalid`(u, k,E) holds if and only if
candidateu satisfies constraintsCA

` andCB

` for delimiter`k with respect toE . Returning to
the example, we have:

valid`(‘</I></BR> ⇓<B>’,1,E) = FALSE valid`(‘</B> <I> ’ ,2,E) = TRUE

valid`(‘ /I></BR> ⇓<B>’,1,E) = FALSE valid`(‘ /B> <I> ’ ,2,E) = TRUE

valid`(‘ I></BR> ⇓<B>’,1,E) = FALSE valid`(‘B> <I> ’ ,2,E) = TRUE

valid`(‘></BR>⇓<B>’,1,E) = FALSE valid`(‘> <I> ’ ,2,E) = TRUE

valid`(‘</BR>⇓<B>’,1,E) = FALSE valid`(‘<I> ’ ,2,E) = TRUE

valid`(‘ /BR>⇓<B>’,1,E) = FALSE valid`(‘<I> ’ ,2,E) = TRUE

valid`(‘BR>⇓<B>’,1,E) = FALSE valid`(‘ I> ’ ,2,E) = FALSE

valid`(‘R>⇓<B>’,1,E) = FALSE valid`(‘>’ ,2,E) = FALSE

valid`(‘>⇓<B>’,1,E) = TRUE

valid`(‘⇓<B>’,1,E) = TRUE

valid`(‘<B>’,1,E) = TRUE

valid`(‘B>’,1,E) = TRUE

valid`(‘>’,1,E) = FALSE

4 String s is a proper suffixof string s′ if s is a suffix ofs′ and moreovers occurs ins′ only as a suffix. For
example, ‘cde ’ is a proper suffix of ‘deabcde ’, while ‘de ’ is not.
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3.4. ThelearnLR algorithm

With this background in place, we are in a position to precisely describelearnLR, an
algorithm for learning LR wrappers. Fig. 4 lists the algorithm, as well as thecandsx , validx
and related subroutines.

As described earlier,learnLR operates by considering each delimiter in turn. For each
delimiter, the algorithm enumerates the candidatescandsx(k,E) (x ∈ {`, r}), stopping
when it identifies a candidateu satisfying validx(u, k,E). After a candidate for each

procedurelearnLR(examplesE )
for each 16 k 6K

for eachu∈cands`(k,E): if valid`(u, k,E) then`k←u and terminate this loop [i]
for each 16 k 6K

for eachu∈candsr (k,E): if validr (u, k,E) thenrk←u and terminate this loop [ii ]
return LR wrapper〈`1, r1, . . . , `K, rK 〉

procedurecands`(indexk, examplesE )
return the set of all suffixes of the shortest string inneighbors`(k,E) [iii ]

procedurecandsr (indexk, examplesE )
return the set of all prefixes of the shortest string inneighborsr (k,E)

procedurevalid`(candidateu, indexk, examplesE )
for eachs ∈ neighbors`(k,E): if u is not a proper suffix ofs then returnFALSE CA

`
if k = 1 then for eachs ∈ tails(E): if u is a substring ofs then returnFALSE CB

`
returnTRUE

procedurevalidr (candidateu, indexk, examplesE )
for eachs ∈ attribs(k,E): if u is a substring ofs then returnFALSE CA

r

for eachs ∈ neighborsr (k,E): if u is not a prefix ofs then returnFALSE CB
r

returnTRUE

procedureattribs(indexk, examplesE )
return∪〈Pn,Ln〉∈E {Pn[bm,k, em,k ] | 〈. . . , 〈bm,k, em,k〉, . . .〉 ∈ Ln}

procedureneighbors`(indexk, examplesE )
if k = 1 then returnseps(K,E)∪ heads(E) else returnseps(k−1,E)

procedureneighborsr (indexk, examplesE )
if k =K then returnseps(K,E)∪ tails(E) else returnseps(k,E)

procedureheads(examplesE )
return{Pn[1, b1,1] | 〈Pn, {〈〈b1,1, e1,1〉, . . .〉, . . .}〉 ∈ E}

proceduretails(examplesE )
return{Pn[e|Ln|,K , |Pn|] | 〈Pn, {. . . , 〈. . . , 〈b|Ln|,K, e|Ln|,K 〉〉}〉 ∈ E}

procedureseps(indexk, examplesE )
if k =K then

return∪〈Pn,Ln〉∈E {Pn[em,K,bm+1,1] | 〈. . . , 〈bm,K , em,K 〉〉 ∈Ln ∧ m< |Ln|}
else

return∪〈Pn,Ln〉∈E {Pn[em,k, bm,k+1] | 〈. . . , 〈bm,k, em,k〉, . . .〉 ∈ Ln}

Fig. 4. ThelearnLR algorithm.
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delimiter has been validated,learnLR simply assembles the delimiters. No additional
verification is necessary, because the constraints enforced by thevalidx subroutines ensure
that the learned wrapper is satisfactory.

For example, if we invokelearnLR with the single exampleE = {〈Pcc,Lcc〉}, then the
learning algorithm outputs the wrapper:

`1 = ‘>⇓<B>’ r1 = ‘</B> <I> ’

`2 = ‘</B> <I> ’ r2 = ‘</I><BR> ⇓<’

(assuming that the candidates are considered as ordered in Eqs. (1) and (2)).5

As shown in Fig. 4,learnLR invokes several subroutines. We have already discussed the
candsx andvalidx subroutines. To review:candsr (k,E) generates a set of candidates for
delimiterrk ; cands`(k,E) generates the candidates for`k ; validr (u, k,E) verifies whether
candidateu is acceptable for delimiterrk ; andvalid`(u, k,E) verifies candidates for̀k.

Subroutinescandsx and validx require access to particular fragments of the example
pages. For example, to verify constraintCA

` , valid` must reason about the page fragments
that correspond to the attributes of the examples. This access is provided by four additional
subroutines:

attribs(k,E): returns a set containing all values of thekth attribute in each example. If
E = {〈Pcc,Lcc〉}, then:

attribs(1,E)= {‘Congo’, ‘Egypt ’, ‘Belize ’, ‘Spain ’},
attribs(2,E)= {‘242 ’ , ‘20 ’ , ‘501 ’ , ‘34 ’}.

Note that each example〈Pn,Ln〉 ∈ E provides|Ln| values of each attribute, and thus
|attribs(k,E)| =∑n |Ln|.

heads(E): returns the fragments of each page before the first tuple. For example:

heads(E)
= {‘<HTML><TITLE>Some County Codes</TITLE><BODY> ⇓<B>’ }.

Note that each example provides one head:|heads(E)| = |E |.
tails(E): returns the fragments of each page following the last tuple. For example:

tails(E)= {‘</I><BR> ⇓</BODY></HTML>’}.

Note that|tails(E)| = |E |.
5 Although these delimiters are different thanccwrapLR’s, it is straightforward to verify that both wrappers are

correct for the example〈Pcc,Lcc〉. Which delimiters are better is a subtle matter. For example, if the learned
wrapper should be as robust as possible, then perhapslearnLR should prefer short candidates. On the other hand,
perhaps robustness is not desired, since the system using the wrapper learns later that the site has changed format;
in this case, perhapslearnLR should prefer long candidates. Though important, these concerns are beyond the
scope of this article.
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seps(k,E): returns the fragments of each page between thekth and((k modK) + 1)th
attributes. For example:

seps(1,E)= {‘</B> <I> ’ , ‘</B> <I> ’ , ‘</B> <I> ’ , ‘</B> <I> ’},
seps(2,E)= {‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’}.

Notice thatseps(K,E) does not includetails(E). Except for this case, each exam-
ple 〈Pn,Ln〉 ∈ E provides |Ln| separators:|attribs(k,E)| = ∑n |Ln| (k < K), and
|attribs(K,E)| =∑n(|Ln| − 1).

Note that the fragments returned by these subroutines are readily generated, since each
example inE consists of a page together with its label.

Finally, the sets returned byseps, tails andheads provide relatively low-level access to
the relevant substrings of the examples. Theneighborsx subroutine provides a useful higher
level of abstraction. Specifically,neighbors`(k,E) returns all strings to the left of thekth
attributes, whether these strings are in the heads or the bodies of the pages. Similarly,
neighborsr (k,E) returns all strings to the right of thekth attribute, whether in the tails or
bodies. For example:

neighbors`(1,E)=


‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’,

‘<HTML><TITLE>Some County Codes</TITLE>

<BODY>⇓<B>’

 ,
neighbors`(2,E)= {‘</B> <I> ’, ‘</B> <I> ’ , ‘</B> <I> ’ , ‘</B> <I> ’},
neighborsr (1,E)= {‘</B> <I> ’, ‘</B> <I> ’ , ‘</B> <I> ’ , ‘</B> <I> ’},

neighborsr (2,E)=
‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’, ‘</I><BR> ⇓<B>’,

‘</I><BR> ⇓</BODY></HTML>’

 .
4. Beyond LR

We have introduced the LR wrapper class; in this section we describe five variants. Since
we will describe each class in the same way that we described LR, a brief review is in order.

An LR wrapper is specified in terms of a vector〈`1, r1, . . . , `K, rK 〉 of 2K delimiters;
the execLR procedure specifies how these delimiters are interpreted. We also described
learnLR, an algorithm for learning LR wrappers. The key tolearnLR is that it identifies each
of the 2K delimiters independently. For each delimiter,learnLR considers candidates from
the set generated by thecandsx procedure. Each such candidate is then tested using the
validx procedures. Thevalidx procedures ensure that the candidates satisfy the appropriate
constraints:CA

` andCB
` for the`k , andCA

r CB
r for therk .

In the remainder of this section, we describe five classes that extend LR in various ways.
For each such wrapper classW , we:
• motivate and describe the differences betweenW , LR, and the other classes;
• define classW in terms of a vector of delimiter strings and a procedureexecW ;
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• define the setcandsx of candidates for each delimiter;
• define the constraints that the delimiters must satisfy, and describe avalidx procedure

that verifies whether these constraints are satisfied; and
• define thelearnW procedure, which selects candidates from thecandsx procedures

and tests them using themvalidx procedures.

4.1. The HLRT wrapper class

The LR wrapper class requires that resources format their pages in a very simple manner.
Specifically, there must exist delimiters that reliably indicate the left- and right-hand sides
of the fragments to be extracted. Of course, not all resources obey such restrictions. For
example, Fig. 5 shows a variant of the country/code example. Notice that the page in
Fig. 5(b)—which we will refer to asP ∗cc—contains additional text rendered in bold. It
is straightforward to show that no LR wrapper can handle pageP ∗cc. The difficulty is that
there is no`1 delimiter that reliably discriminates between bold country text and bold
irrelevant text.

However, theccwrapHLRT procedure (Fig. 5(c)) can handleP ∗cc. This wrapper operates
by searching for two additional delimiters, ‘<P>’ and ‘<HR>’. The headdelimiter ‘<P>’
indicates the beginning of the page’s body. Thetail delimiter ‘<HR>’ indicates the end of
the page’s body.ccwrapHLRT is an instance of the HLRT wrapper class, just asccwrapLR
exemplifies LR.

More formally, a Head-Left-Right-Tail (HLRT) wrapper is a vector of 2K + 2 strings
〈h, t, `1, r1, . . . , `K, rK 〉. Like LR, HLRT wrapper use 2K delimiters to determine the left-
and right-hand sides of the fragments to be extracted. In addition, HLRT wrappers include a
head delimiterh and a tail delimitert . For example,ccwrapHLRT corresponds to the HLRT
wrapper〈‘<P>’ , ‘<HR>’, ‘<B>’ , ‘</B> ’ , ‘<I> ’ , ‘</I> ’〉.

Just asexecLR defines the meaning of an LR wrapper, theexecHLRT procedure (Fig. 5(d))
specifies the behavior of an HLRT wrapper.execHLRT operates by first skipping over the
head of the page by searching for the first occurrence of the head delimiterh. HLRT
wrappers then operate much like LR wrappers, using the`k andrk delimiters to extract each
attribute in term. However, LR and HLRT wrappers use a different termination criterion:
rather than stopping when there are no more occurrences of`1, HLRT wrappers halt when
t occurs before the next occurrence of`1.

Having defined the HLRT wrapper class, we now describelearnHLRT, an algorithm
for learning HLRT wrappers; see Fig. 6. As with LR, the learning task is to find a set
of delimiters that are consistent with a set of examples. All but three of the 2K + 2
delimiters〈h, t, `1, r1, . . . , `K, rK 〉 can be learned using the originallearnLR algorithm; the
exceptions areh, t and`1. Thus line [i] of learnHLRT in Fig. 6 simply invokeslearnLR. 6

Recall that all 2K LR delimiters are mutually independent. In contrast,h, t and `1
interact, in the sense that whether a particular candidate is valid for one of these three

6 To simplify the presentation, we describe thelearnHLRT algorithm as invokinglearnLR, and then discarding
and re-learning̀ 1. Of course HLRT’sraison d’êtreis that a consistent LR wrapper consistent might not exist.
Specifically, there may be no valid̀1. Therefore,learnHLRT must pass a flag tolearnLR instructing it to ignore
`1. While important, we will not clutter our description of the algorithms with this detail.
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(a)

<HTML><TITLE>Some Country Codes</TITLE><BODY>

<B>Some Country Codes</B><P>

<B>Congo</B> <I>242</I><BR>

<B>Egypt</B> <I>20</I><BR>

<B>Belize</B> <I>501</I><BR>

<B>Spain</B> <I>34</I><BR>

<HR><B>End</B></BODY></HTML>

(b)

procedureccwrapHLRT(pageP )
scan to the first occurrence inP of ‘<P>’
while the next occurrence of ‘<B>’ in P occurs before the next occurrence of ‘<HR>’

for each〈`k, rk〉 ∈ {〈‘<B>’, ‘</B> ’〉, 〈‘<I> ’ , ‘</I> ’〉}
scan inP to next occurrence of̀k ; save position as start ofkth attribute
scan inP to next occurrence ofrk ; save position as end ofkth attribute

return extracted{. . . , 〈country, code〉, . . .} pairs

(c)

procedureexecHLRT(wrapper〈h, t, `1, r1, . . . , `K, rK 〉, pageP )
m← 0
scan inP to the first occurrence ofh [i]
while the next occurrence of̀1 in P occurs before the next occurrence oft [ii ]
m←m+ 1
for each〈`k, rk〉 ∈ {〈`1, r1〉, . . . , 〈`K, rK 〉}

scan inP to the next occurrence of̀k ; save position asbm,k [iii ]
scan inP to the next occurrence ofrk ; save position asem,k

return label{. . . , 〈〈bm,1, em,1〉, . . . , 〈bm,K, em,K 〉〉, . . .}
(d)

Fig. 5. A variant on the country/code resources in Fig. 1: (a) an example response page; (b)P ∗cc, the HTML page
for (a); (c) the HLRT wrapperccwrapHLRT; and (d) theexecHLRT procedure.
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procedurelearnHLRT(examplesE )
〈·, r1, . . . , `K, rK 〉← learnLR(E) [i]
for eachu`1 ∈ cands`(1,E) [ii ]

for eachuh ∈ candsh(E) [iii ]
for eachut ∈ candst (E) [iv]

if valid`1,h,t (u`1, uh,ut ,E) then [v]
`1←u`1, h←uh, t←ut , and terminate these three loops [vi]

return HLRT wrapper〈h, t, `1, r1, . . . , `K, rK 〉
procedurecandsh(examplesE )

return the set of all substrings of the shortest string inheads(E)
procedurecandst (examplesE )

return the set of all substrings of the shortest string intails(E)
procedurevalid`1,h,t (candidatesu`1, uh, ut , examplesE )

for eachs ∈ heads(E)
if uh is not a substring ofs then returnFALSE CA

`1,h,t

if u`1 is not a proper suffix ofscan(s, uh) then returnFALSE CB
`1,h,t

if ut occurs beforeu`1 in scan(s, uh), then returnFALSE CC
`1,h,t

for eachs ∈ tails(E)
if ut is not a substring ofs then returnFALSE CD

`1,h,t

if u`1 occurs beforeut in s then returnFALSE CE
`1,h,t

for eachs ∈ seps(K,E)
if u`1 is not a proper suffix ofs then returnFALSE CF

`1,h,t

if ut occurs beforeu`1 in s then returnFALSE CG
`1,h,t

returnTRUE

procedurescan(stringss1, s2)
return the suffix ofs1 following the first occurrence ofs2
(e.g.,scan(‘abcdefcdgh ’, ‘cd ’)= ‘cdefcdgh ’)

Fig. 6. ThelearnHLRT algorithm.

delimiters depends on the choice for the other two. For example, is ‘<B>’ valid for `1?
The answer depends on the choice forh and t . If h = ‘<HTML>’, then ‘<B>’ is not
valid for `1, becauseexecLR will not skip the irrelevant bold text ‘<B>Some Country
Codes</B> ’. On the other hand, ifh = ‘<P>’, then `1 = ‘<B>’ causes no problems.
Similarly, `1 and t interact:`1 = ‘<B>’ is acceptable ift = ‘<HR>’, but unacceptable if
t = ‘</HTML>’.

The ramification of this discussion is that, unliker1, `2, r2, . . . , `K andrK , candidates
for the three delimitersh, t and `1 must be considering jointly. As shown in lines [ii–
vi], learnHLRT uses a triply-nested loop to enumerate all combinations of candidates for
h, t and`1. As with execLR, candidates for̀1 are generated using thecands` procedure.
Candidates forh are computed with thecandsh procedure. Sinceh must be a substring of
every example’s head,candsh(E) simply returns the substrings of the shortest head inE .
Similarly, the candidates fort are generated bycandst (E), which generates the substrings
of the shortest tail inE .
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To complete the description oflearnHLRT, we must discussvalid`1,h,t , which determines
whether a particular combination of candidatesuh, ut , andu`1 for h, t , and`1 (respect-
ively) are satisfactory. By examiningexecHLRT, we can see that the constraints are as
follows:

Constraint CA

`1,h,t
: uh must be a substring of every page’s head (otherwiseexecHLRT line

[i] will fail). 7

Constraint CB
`1,h,t

: u`1 must be a proper suffix of the portion of each page’s head after the
first occurrence ofuh (otherwiseexecHLRT line [iii ] will fail for m= k = 1).

Constraint CC

`1,h,t
: ut must not occur between the first occurrence ofh in any page and

the subsequent occurrence of`1 (otherwiseexecHLRT will terminate at line [ii ] without
extracting anything).

Constraint CD

`1,h,t
: ut must be a substring of every page’s tail (otherwiseexecHLRT line

[ii ] will never terminate).

Constraint CE
`1,h,t

: u`1 must not occur beforet in every page’s tail (otherwiseexecHLRT
line [iii ] will iterate too many times).

Constraint CF
`1,h,t

: u`1 must be a proper suffix of the text between tuples in every page
(otherwiseexecHLRT line [iii ] will fail for k = 1).

Constraint CG

`1,h,t
: ut must not occur beforeu`1 in the text between tuples in any page

(otherwiseexecHLRT line [ii ] will terminate early).

Before proceeding, let us illustratelearnHLRT with the modified country/code example
in Fig. 5. If E contains just the single exampleP ∗cc and its label, then we have that:

candsh(E)=
{the 87· 86/2= 3741 substrings of the 87 character string

‘<HTML><TITLE>Some Country Codes</TITLE><BODY> ⇓
<B>Some Country Codes</B><P> ⇓<B>’

candst (E)=
{

the 41· 40/2= 820 substrings of the 41 character string
‘</I><BR> ⇓<HR><B>End</B></BODY></HTML>’

(cands`(1,E) returns 13 candidates, as listed in Eq. (1)).learnHLRT enumerates the
3741· 820 · 13= 39,879,060 ways to choose one candidate from each set, stopping
when one such combination satisfiesvalid`1,h,t . Fortunately, many of the combinations are
valid, so learnHLRT soon terminates, returning a wrapper such asccwrapHLRT. (Without
specifying the order in which candidates are considered, we cannot say which wrapper is
returned.)

7 This notation is somewhat imposing; the idea is simply to unambiguously refer to the various constraints.
Thus,CA

`1,h,t
refers to “part A” of the constraints that apply to delimiters`1, h andt , just asCA

`
refers to “part A”

of the constraints that apply to the`k delimiters.
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4.2. The OCLR wrapper class

The LR wrapper class is quite restrictive, and HLRT is one of many ways to extend the
LR class; the Open-Close-Left-Right (OCLR) class is an alternative.

Instead of using head and tail delimiters to indicate the body of the page, the OCLR
class usesopenandclosedelimiters to indicate the beginning and end of each tuple in the
page. For example, Fig. 7 lists an example resource that is well-suited to OCLR, as well as
ccwrapOCLR, an example of the OCLR class.

WrapperccwrapOCLR operates by using the delimiters delimiters ‘<LI> · · ·<BR>’ to
find tuples within each page, just as ‘<B>· · ·</B> ’ indicates countries and ‘<I> · · ·</I> ’
indicates codes within a single tuple. ‘<LI> ’ is theopendelimiter, and ‘<BR>’ is theclose
delimiter.

<HTML><TITLE>Some Country Codes</TITLE><BODY>
<B>Some Country Codes</B><P><UL>
<LI><B>Congo</B> <I>242</I><BR>
<LI><B>Egypt</B> <I>20</I><BR>
<LI><B>Belize</B> <I>501</I><BR>
<LI><B>Spain</B> <I>34</I><BR>
</UL><HR><B>End</B></BODY></HTML>

(a)

procedureccwrapOCLR(pageP )
while there are more occurrences of ‘<LI> ’ in P

scan to the next occurrence of ‘<LI> ’ in P
for each〈`k, rk〉 ∈ {〈‘<B>’, ‘</B> ’〉, 〈‘ <I> ’, ‘</I> ’〉}

scan inP to next occurrence of̀k ; save position as start ofkth attribute
scan inP to next occurrence ofrk ; save position as end ofkth attribute

scan to the next occurrence of ‘<BR>’ in P
return extracted{. . . , 〈country, code〉, . . .} pairs

(b)

procedureexecOCLR(wrapper〈o, c, `1, r1, . . . , `K, rK 〉, pageP )
m← 0
while there are more occurrences ofo in P [i]
m←m+ 1
scan to the next occurrence ofo in P [ii ]
for each〈`k, rk〉 ∈ {〈`1, r1〉, . . . , 〈`K , rK 〉}

scan inP to the next occurrence of̀k ; save position asbm,k [iii ]
scan inP to the next occurrence ofrk ; save position asem,k

scan to the next occurrence ofc in P [iv]
return label{. . . , 〈〈bm,1, em,1〉, . . . , 〈bm,K , em,K 〉〉, . . .}

(c)

Fig. 7. The OCLR wrapper class: (a) a second variant on the Fig. 1’s country/code resources; (b) the OCLR
wrapperccwrapOCLR; and (c)execOCLR, a generalization ofccwrapOCLR.
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Fig. 7 also listsexecOCLR, a generalization ofccwrapOCLR. As indicated, an OCLR
wrapper is a vector of 2K + 2 strings 〈o, c, `1, r1, . . . , `K, rK 〉, where o is the open
delimiter andc is the close delimiter. For example,ccwrapOCLR useso = ‘<LI> ’ and
c= ‘<BR>’.

Given this specification of the OCLR wrapper class, we are in a position to describe
learnOCLR, an algorithm for learning OCLR; see Fig. 8. As with the classes discussed so
far, learnOCLR operates by generating and evaluating a set of candidates for each of the
2K + 2 delimiters〈o, c, `1, r1, . . . , `K, rK 〉.

Specifically, like LR and HLRT, the 2K − 1 delimitersr1, `2, r2, . . . , `K andrK are
independent of each other ando, c and `1. Thus line [i] of learnOCLR simply invokes
learnLR to determiner1, `2, r2, . . . , `K andrK .

Recall that for HLRT, delimitersh, t and`1 interact. Similarly, for OCLR, delimiterso,
c and`1 interact. For example,̀1= ‘<B>’ is valid if o= ‘<LI> ’ andc= ‘<BR>’, but not
if o = ‘<’ and c = ‘>’. Thus just aslearnHLRT uses triply-nested loops to enumerate the
candidates forh, t and`1, learnOCLR uses a similar loop structure foro, c, and`1.

What are the candidates foro andc? Notice that these two delimiters must both occur
between each tuple in each example. The invocationseps(K,E) (see Fig. 4) returns the
set strings between the tuples. The candidates for botho andc are denotedcandso,c(E) in
Fig. 8; candso,c(E) enumerates the substrings of the shortest member ofseps(K,E) (i.e.,
the shortest inter-tuple separator).

procedurelearnOCLR(examplesE )
〈·, r1, . . . , `K, rK 〉← learnLR(E) [i]
for eachu`1 ∈ cands`(1,E) [ii ]

for eachuo ∈ candso,c(E) [iii ]
for eachuc ∈ candso,c(E) [iv]

if valid`1,o,c(u`1, uo,uc,E) then [v]
`1←u`1, o←uo , c←uc, and terminate these three loops [vi]

return OCLR wrapper〈o, c, `1, r1, . . . , `K, rK 〉
procedurecandso,c(examplesE )

return the set of all substrings of the shortest string inseps(K,E)
procedurevalid`1,o,c(candidatesu`1, uo , uc , examplesE )

for eachs ∈ heads(E)
if uo is not a substring ofs then returnFALSE CA

`1,o,c

if u`1 is not a proper suffix ofscan(s, uo) then returnFALSE CB
`1,o,c

for eachs ∈ tails(E)
if uc is not a substring ofs then returnFALSE CC

`1,o,c

if uo occurs afteruc in s then returnFALSE CD
`1,o,c

for eachs ∈ seps(K,E)
if uo is not a substring ofs then returnFALSE CE

`1,o,c

if uc is not a substring ofs then returnFALSE CF
`1,o,c

if u`1 is not a proper suffix ofscan(scan(s, uc), uo) then returnFALSE CG
`1,o,c

returnTRUE

Fig. 8. ThelearnOCLR algorithm.
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Finally, thevalid`1,o,c procedure must evaluate a triplet of candidatesu`1, uo anduc ,
for `1, o and c (respectively). As shown in Fig. 8,valid`1,o,c implements the following
constraints, which derive from an examination ofexecOCLR:

Constraint CA

`1,o,c
: uo must be a substring of every page’s head (otherwiseexecOCLR line

[i] will fail).

Constraint CB

`1,o,c
: u`1 must be a proper suffix of the portion of each page’s head after the

first occurrence ofo (otherwiseexecOCLR line [iii ] will fail for m= k = 1).

Constraint CC

`1,o,c
: uc must be a substring of every page’s tail (otherwiseexecOCLR line

[iv] will fail).

Constraint CD

`1,o,c
: uo must not occur afteruc in any page’s tail (otherwiseexecOCLR line

[i] will extract too many tuples).

Constraint CE
`1,o,c

: uo must be a substring of the text between tuples in every page
(otherwiseexecOCLR line [ii ] will fail).

Constraint CF

`1,o,c
: uc must be a substring of the text between tuples in every page

(otherwiseexecOCLR line [iv] will fail).

Constraint CG

`1,o,c
: u`1 must be a proper suffix of the text that occurs aftero, in the text

that occurs afterc, in the text between tuples, in every page (otherwiseexecOCLR line
[iii ] will fail).

As shown in Fig. 8, thevalid`1,o,c procedure implements these seven constraints.

4.3. The HOCLRT wrapper class

We have introduced OCLR and HLRT, two variants on the simple LR wrapper
class. As shown in Fig. 9, the Head-Open-Close-Left-Right-Tail (HOCLRT) class
combines the functionality of HLRT and OCLR. An HOCLRT wrapper is a vector
〈h, t, o, c, `1, r1, . . . , `K, rK 〉 of 2K + 4 delimiters. For example,ccwrapHOCLRT in
Fig. 9(a) corresponds to the wrapper〈‘<P>’ , ‘<HR>’, ‘<LI> ’, ‘<BR>’ , ‘<B>’ , ‘</B> ’ ,
‘<I> ’, ‘</I> ’〉.

The execHOCLRT procedure (Fig. 9(b)) is a generalization ofccwrapHOCLRT. The head
delimiter h is used to determine the end of the page’s head; the opening and closing
delimiterso andc demarcate individual tuples, and the tail delimitert indicates that the
page contains no more tuples.

Fig. 10 listslearnHOCLRT, an algorithm for learning HOCLRT wrappers. Recall that for
LR, all of the delimiters are mutually independent; while for HLRT,`1, h and t must
be learned jointly, and for OCLR,̀1, o andc must be learned jointly. As expected, the
five HOCLRT delimiters̀ 1, h, t , o and c must be learned jointly. LikelearnHLRT and
learnOCLR, thelearnHOCLRT algorithm first invokeslearnLR to learnr1, `2, r2, . . . ,`K and
rK . learnHOCLRT then uses a quintuply-nested loop structure to enumerate all combinations
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procedureccwrapHOCLRT(pageP )
scan to the first occurrence inP of ‘<P>’
while the next occurrence of ‘<LI> ’ in P occurs before the next occurrence of ‘<HR>’

scan to the next occurrence of ‘<LI> ’ in P
for each〈`k, rk〉 ∈ {〈‘<B>’, ‘</B> ’ 〉, 〈‘<I> ’ , ‘</I> ’〉}

scan inP to next occurrence of̀k ; save position as start ofkth attribute
scan inP to next occurrence ofrk ; save position as end ofkth attribute

scan to the next occurrence of ‘<BR>’ in P
return extracted{. . . , 〈country, code〉, . . .} pairs

(a)

procedureexecHOCLRT(wrapper〈h, t, o, c, `1, r1, . . . , `K, rK 〉, pageP )
scan to the first occurrence inP of h [i]
m← 0
while the next occurrence ofo in P occurs before the next occurrence oft [ii ]
m←m+ 1
scan to the next occurrence ofo in P [iii ]
for each〈`k, rk〉 ∈ {〈`1, r1〉, . . . , 〈`K, rK 〉}

scan inP to the next occurrence of̀k ; save position asbm,k [iv]
scan inP to the next occurrence ofrk ; save position asem,k

scan to the next occurrence ofc in P [v]
return label{. . . , 〈〈bm,1, em,1〉, . . . , 〈bm,K , em,K 〉〉, . . .}

(b)

Fig. 9. The HOCLRT wrapper class: (a)ccwrapHOCLRT, an HOCLRT wrapper for Fig. 7’s variant of the
country/code resources; and (b) theexecHOCLRT procedure, a generalization ofccwrapHOCLRT.

of candidates for̀ 1, h, t , o and c. As before, the candidates for`1 are provided by
cands`(1,E); for h by candsh(E); for t by candst (E); and foro andc by candso,c(E).

Only thevalid`1,h,t,o,c subroutine in Fig. 10 remains to be explained. An examination of
execHOCLRT reveals that the following constraints must be satisfied for candidatesu`1, uo,
uc, uh andut to be consistent with a given set of examples pages:

Constraint CA

`1,h,t,o,c
: uh must occur in every page’s head (otherwiseexecHOCLRT line [i]

will fail).

Constraint CB

`1,h,t,o,c
: uo must occur in every page’s head (otherwiseexecHOCLRT line [ii ]

will fail).

Constraint CC

`1,h,t,o,c
: u`1 must be a proper suffix of the text occurring afteruo, in the

text occurring afteruh, in every head (otherwiseexecHOCLRT line [iv] will fail for
m= k = 1).

Constraint CD
`1,h,t,o,c

: ut must not occur beforeu`1, in the text occurring afteruo, in the
text occurring afteruh, in every head (otherwiseexecHOCLRT line [ii ] will halt without
extracting any tuples).
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procedurelearnHOCLRT(examplesE )
〈·, r1, . . . , `K, rK 〉← learnLR(E)
for eachu`1 ∈ cands`(1,E)

for eachuo ∈ candso,c(E)
for eachuc ∈ candso,c(E)

for eachuh ∈ candsh(E)
for eachut ∈ candst (E)

if valid`1,h,t,o,c(u`1, uh,ut , uo,uc,E) then
`1←u`1, o←uo , c←uc, h←uh, t←ut and terminate these five loops

return HOCLRT wrapper〈h, t, o, c, `1, r1, . . . , `K, rK 〉
procedurevalid`1,h,t,o,c(candidatesu`1, uh, ut , uo , uc, examplesE )

for eachs ∈ heads(E)
if uh is not a substring ofs then returnFALSE CA

`1,h,t,o,c

if uo is not a substring ofs then returnFALSE CB
`1,h,t,o,c

if u`1 is not a proper suffix ofscan(scan(s, uh),uo) then returnFALSE CC
`1,h,t,o,c

if ut occurs beforeu`1 in scan(scan(s, uh),uo) then returnFALSE CD
`1,h,t,o,c

for eachs ∈ tails(E)
if ut is not a substring ofs then returnFALSE CE

`1,h,t,o,c

if uc is not a substring ofs then returnFALSE CF
`1,h,t,o,c

if uo occurs beforeut in scan(s, uc) then returnFALSE CG
`1,h,t,o,c

for eachs ∈ seps(K,E)
if uo is not a substring ofs then returnFALSE CH

`1,h,t,o,c

if uc is not a substring ofs then returnFALSE C I
`1,h,t,o,c

if u`1 is not a proper suffix ofscan(scan(s, uc), uo) then returnFALSE CJ
`1,h,t,o,c

if ut occurs beforeu`1 in scan(scan(s, uc), uo) then returnFALSE CK
`1,h,t,o,c

returnTRUE

Fig. 10. ThelearnHOCLRT algorithm.

Constraint CE
`1,h,t,o,c

: ut must occur in every page’s tail (otherwiseexecHOCLRT line [ii ]
will fail).

Constraint CF

`1,h,t,o,c
: uc must occur in every page’s tail (otherwiseexecHOCLRT line [v]

will fail).

Constraint CG

`1,h,t,o,c
: ut must occur beforeuo in the text occurring afteruc, in every

page’s tail (otherwiseexecHOCLRT line [ii ] will extract too many tuples).

Constraint CH
`1,h,t,o,c

: uo must be a substring of the text between each tuple in each page
(otherwiseexecHOCLRT line [ii ] will fail).

Constraint C I

`1,h,t,o,c
: uc must be a substring of the text between each tuple in each page

(otherwiseexecHOCLRT line [v] will fail).

Constraint CJ

`1,h,t,o,c
: u`1 must be a proper suffix of the text occurring afteruo, in the text

occurring afteruc, in the text between each tuple in each page (otherwiseexecHOCLRT
line [iv] will fail for k = 1).
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Constraint CK
`1,h,t,o,c

: ut must occur afteru`1 in the text occurring afteruo, in the text
occurring afteruc, in the text between each tuple in each page (otherwiseexecHOCLRT

line [iv] will fail for k = 1).

Thevalid`1,h,t,o,c procedure in Fig. 10 implements these eleven constraints.

4.4. Nested documents

The wrapper classes introduced so far (LR, OCLR, HLRT and HOCLRT) assume that
documents are structured in a relational ortabularmanner. Of course, many documents are
not tabular. The remaining two wrapper classes are concerned withhierarchically nested
(or just “nested”) documents, which represent one way to relax the tabularity assumption.
In this section, we describe documents with nested structure; in Sections 4.5 and 4.6 we
introduce wrapper classes for extracting such structure.

While a rectangular table is the prototypical example of a document exhibiting tabular
structure, nested documents have a tree-like structure. Consider the document in Fig. 11(a)
from a telephone directory in which a person can have any number of addresses, and an
address can have any number of telephones. Unlike the previous examples, this document
does not contain HTML tags, and therefore demonstrates that our wrapper induction
techniques are not limited to HTML text.

In a document with nested structure, values forK attributes are presented, with the
information organized hierarchically rather than in a table. Attributes residing “below”
attribute k represent additional information or details about the object represented by
attributes 1 tok. For each attribute, there may be any number (possibly zero) of values
for the given attribute. The only constraint is that values can be provided for attributek

only if values are also provided for attributes 1 tok − 1.
In the telephone directory example, there areK = 3 attributes: people’s names,

addresses, and telephone numbers. The constraint that each attribute can have any number
of values corresponds to the fact that a person can have any number of addresses, and an
address can have any number of telephone numbers. The constraint that attributek can
have a value only if attributes 1 tok − 1 have values corresponds to the fact that there can
be no “floating” telephone number without an associated address, or a “floating” address
without an associated person.

The information-extraction model introduced in Section 2 used a natural definition of
a tabular document’s content; namely, the the substrings of the document corresponding
to the attribute values for each tuple. For nested documents, we extend this idea in a
straightforward manner. The content of a nested document is a tree of depth of mostK.
Edges encode the attribute values, while nodes group related attribute values. For example,
the content of the telephone directory document is shown in Fig. 11(b).

More formally, a nested document’s label is a tree, encoded according to following
recursive definition:

label⇒{. . . ,node, . . .}
node⇒ [〈b, e〉; label] .
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(a)

(b)

(c)

Fig. 11. An example of a document with nested structure: (a) the document (note that this document does not
contain HTML tags); (b) a tree representing the document’s content; and (c) the document’s label (see text for
details).

That is, alabel structure is a set of zero or morenodes. A node structure consists of an
interval〈b, e〉 and aLABEL structure, where〈b, e〉 are the indices of the text that labels the
edge to the node’s parent, andlabel represents its children.
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The label for the telephone directory example is shown in Fig. 11(c), assuming that
nested entries are indented with a single tab character per level, and each line ends with
a single new-line character (recall that this document is plain text and does not contain
HTML tags). For instance, the pair〈7,10〉 in the first row indicates that characters 7–10
of the document are the first name in the directory, i.e., ‘John ’. Similarly, characters 138–
142 are the last name, ‘Sally ’. Sally has two addresses: the first, from 154–163, has
no telephone; the second, from 175–186, has three telephone numbers (from 197–204,
215–222 and 233–240).

Note that a tabular structure is a special case of a nested structure, in which the root
has one child for each tuple, all other interior nodes have exactly one child, and every
leaf has depthK. We will overload the term “label” to mean either a tabular or a nested
label; the interpretation will be clear from context. Note that this “reduction” from tabular
to nested wrapperoutputsdoes not imply a reduction between wrapperclasses, as we
show in Section 5. For example, in Section 4.5 we define the N-LR wrapper class which
extracts nested structures, but there exists documents for which an LR wrapper exists that
extracts the correct tabular structure, but for which there does not exist an N-LR wrapper
that extracts the nested structure to which this tabular structure is equivalent.

4.5. The N-LR wrapper class

N-LR is a simple wrapper class for extracting nested structure. Like the other classes,
associated with each delimiter is a left-hand delimiter`k and a right-hand delimiterrk . In
the tabular wrappers, after extracting the value of thekth attribute for some particular tuple,
then the wrapper extracts the(k + 1)st attribute value (or the first, in the case ofk =K).
Nested-structure wrappers generalize this procedure: after extracting thekth attribute, the
next extracted value could belong to attributesk+ 1,k, k− 1, k− 2, . . . , 2 or 1. The N-LR
wrapper class uses the relative position of the`k delimiters to indicate how the page should
be interpreted: the next value to be extracted is indicated by which`k delimiters occurs
next. For example, if an N-LR wrapper has extracted up to position 1350, and there is a
name starting at position 1450 and an address starting at position 1400, then the wrapper
will extract the address next, since 1400< 1450.

More precisely, an N-LR wrapper is a vector of 2K strings〈`1, r1, . . . , `K, rK 〉. The
execN-LR procedure (Fig. 12(a)) uses these delimiters as just described. Line [i] is the key
to execN-LR. The algorithm determines which attribute (among thek + 1 possibilities)
k′ occurs next. The termination condition (line [ii ]) is satisfied whenever none of the`k′
occur—i.e., when the wrapper has reached the end of the page. Note that if line [i] of
execN-LR were replaced by “k← (k modK)+ 1”, then execN-LR would be identical to
execLR.

For example, the N-LR wrapper

〈‘name: ’ , ‘⇓’ , ‘address: ’ , ‘⇓’ , ‘phone: ’ , ‘⇓’ 〉
extracts the content from the telephone directory document. As a second example, the
N-LR wrapper〈‘<B>’ , ‘</B> ’, ‘<I> ’, ‘</I> ’〉 extracts the desired structure from the
country/code pagePcc shown in Fig. 1. Of course this resource is tabular rather than nested
and thus does not expose the full power of N-LR. As mentioned above, tabular structure is
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procedureexecN-LR(wrapper〈`1, r1, . . . , `K, rK 〉, pageP )
k← 0
loop
k← the indexk′ ∈ [1,min(1+ k,K)] such that̀ k′ occurs first inP [i]
exit loop if no suchk exists [ii ]
b← the position of̀ k in P
e← the position ofrk following `k in P
save〈b, e〉 as indices of next value ofkth attribute

return nested label{. . . , [〈b, e〉; {. . .}], . . .}
(a)

procedurelearnN-LR(examplesE )
for eachur1 ∈ candsN

r (1,E)
. . .

for eachurK ∈ candsN
r (K,E)

for eachu`1 ∈ candsN
`
(1,E)

. . .

for eachu`K ∈ candsN
`(K,E)

W ←〈u`1, ur1, . . . , u`K ,urK 〉
if ∀〈Pn,Ln〉∈E execN-LR(W,Pn)= Ln then returnW [i]

(b)

Fig. 12. The N-LR wrapper class: (a) theexecN-LR procedure defines how an N-LR wrapper is executed; and (b)
the learnN-LR algorithm learns N-LR wrappers.

a special case of nested structure, and so the invocationexecN-LR(〈‘<B>’ , ‘</B> ’ , ‘<I> ’ ,
‘</I> ’〉,Pcc) returns a degenerate tree that is equivalent to labelLcc.

As with the other classes, we are interested in automatically learning N-LR wrappers.
Recall that LR’s delimiters are mutually independent, while some of HLRT’s, OCLR’s
and HOCLRT’s delimiters interact. The situation for N-LR is even worse:all 2K N-LR
delimiters interact. To see this, recall that after extracting a value for attributek, line [i] of
execN-LR is looking fork + 1 delimiters (̀ 1, `2, . . . , `k and`k+1). In short, the choice of
each`k depends on the choice for the otherk + 1 delimiters. The result of this analysis
is that, unlike LR, HLRT, OCLR and HOCLRT, the 2K-variable CSP for learning N-
LR is not decomposed into 2K subproblems, and solearnN-LR uses an exponential-time
generate-and-test algorithm; see Fig. 12(b).8

The candidates for each delimiter are generated by thecandsN
x procedures, trivial

generalizations of thecandsx procedures that handle nested rather than tabular labels.

8 Actually, the rk delimiters are independent, so the 2K-variable CSP can be decomposed intoK + 1
subproblems: finding therk individually, and jointly finding thè k . We ignore this more sophisticated approach,
though see Section 4.7 for a discussion of related issues.
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procedureexecN-HLRT(wrapper〈h, t, `1, r1, . . . , `K, rK 〉, pageP )
k← 0
scan inP to the first occurrence ofh
loop
k← the indexk′ ∈ [1,min(1+ k,K)] such that̀ k′ occurs first inP [i]
exit loop if t occurs beforèk in P [ii ]
b← the position of̀ k in P
e← the position ofrk following `k in P
save〈b, e〉 as indices of next value ofkth attribute

return nested label{. . . , 〈〈b, e〉, {. . .}〉, . . .}
(a)

procedurelearnN-HLRT(examplesE )
for eachur1 ∈ candsN

r (1,E)
. . .

for eachurK ∈ candsN
r (K,E)

for eachu`1 ∈ candsN
`(1,E)

. . .

for eachu`K ∈ candsN
`
(K,E)

for eachuh ∈ candsN
h(E)

for eachut ∈ candsN
t (E)

W ←〈uh,ut , u`1, ur1, . . . , u`K ,urK 〉
if ∀〈Pn,Ln〉∈E execN-HLRT(W,Pn)= Ln then returnW

(b)

Fig. 13. The N-HLRT wrapper class: (a)execN-HLRT defines how an N-HLRT wrapper is executed; and (b)
learnN-HLRT is an algorithm for learning N-HLRT.

4.6. The N-HLRT wrapper class

The HLRT and N-LR class are two straightforward ways to extend the LR class to
handle more complicated pages. The sixth class we describe, N-HLRT, combines the
functionality of N-LR and HLRT. An N-HLRT wrapper is a vector of 2K + 2 strings
〈h, t, `1, r1, . . . , `K, rK 〉. The execution of such a wrapper is defined byexecN-HLRT; see
Fig. 13(a).

As with N-LR, the N-HLRT delimiters interact, and thus learning is a matter of
generating and testing the set of viable wrappers; see thelearnN-HLRT in Fig. 13(b).
learnN-HLRT operates just likeexecN-LR, except that two additional delimiters—h andt—
must also be considered.

4.7. Pushing tests into generation

As described in Section 3.2, the LR wrapper classes can be learned efficiently be two
2K-variable CSP to which LR wrapper induction corresponds can be decomposed into 2K
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independent one-variable CSPs. We have shown that this independence property does not
hold completely for the other wrapper classes. For example, for HLRT, the`1, h and t
delimiters must jointly satisfy constraintsCA

`1,h,t
–CG

`1,h,t
. With the constraints formalized in

this manner, we described thelearnW algorithms as straightforward generate-and-test over
the space of delimiter candidates.

However, additional optimization is possible. For example, inlearnHLRT, only constraint
CC

`1,h,t
mentions all three variablesu`1, uh andut , while CA

`1,h,t
mentions onlyuh, CD

`1,h,t

mentions onlyut , andCF

`1,h,t
mentions onlyu`1. This observation suggests an improved

learnHLRT algorithm that verifies one ofCA
`1,h,t

, CD
`1,h,t

or CF
`1,h,t

first, CC

`1,h,t
last, and

the remaining constraints in between. However, the optimal ordering depends on the
particular training examplesE , and we have not developed a provably-optimal algorithm
for adaptively selecting the order in which constraints are verified.

We have also neglected the related issue of search control. ThelearnW algorithms as
stated test candidates in an arbitrary order, but the algorithms could use heuristics to order
the candidates. For example, presumably very long and very short candidates are less likely
likely to be valid, and therefore the algorithm could order the candidates in terms of their
difference from the mean length.

Constraint ordering and search control are two ways that the generate-and-testlearnW
algorithms can be made more efficient by pushing the tests into the generation process.
While important, we leave further study of these issues to future work.

4.8. Review

In the next two sections, we evaluate the efficiency and expressiveness of the six wrapper
classes we have defined. Before proceeding, a brief review is in order.

We have defined the LR, HLRT, OCLR, HOCLRT, N-LR and N-HLRT wrapper classes.
Each classW is characterized by a vector of delimiters, the “interpretation” or “semantics”
of which is defined by the correspondingexecW procedure. We illustrated each class by
describingccwrapW , a wrapper in the class for the example country/code resource.

We also presented thelearnW algorithms, which learn a wrapper for classW . The
variouslearnW all use thecandsx subroutines (which generate a set of candidates for each
delimiter), and thevalidx subroutines (which verify whether candidates are consistent with
the examples). These subroutines in turn rely on theheads, tails, attribs, seps, neighborsx
andscan lower-level subroutines, which access various portions of the examples.

Finally, we discussed techniques for improving the efficiency of thelearnW wrapper.

5. Expressiveness

It is important—from both a practical and theoretical perspective—to evaluate and
compare our wrapper classes. In this and the following section, we perform a detailed
analysis of the classes according to the criteria listed in Section 1. We begin with
expressiveness. The fundamental issues are how well the classes handle actual Internet
sites, and the relationship between the sites wrappable by each class.
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5.1. Empirical results: Coverage survey

We begin with an empirical investigation of thecoverageof our wrapper classes.
Roughly, we are interested in the fraction of Internet sites can be handled by each class. In
a nutshell, we surveyed a large collection of resources, and found that the majority (70%
in total) of the resources can be covered by our six wrapper classes.

We examined sites listed at www.search.com, an index of 448 Internet sites.9 A wide
variety of topics are included: from the Abele Owners’ Network (“over 30,000 properties
nationwide; the national resource for homes sold by owner”) to Zipper (“find the name
of your representative or senator, along with the address, phone number, email, and Web
page”). While the Internet obviously contains more than 448 sites, we expect that this index
is representative of the kind of sites that information integration systems might use.

To perform the survey, we first randomly selected 30 (6.7%) of the sites from
www.search.com’s index. Fig. 14 lists the surveyed sites, as well as the number of attributes
(K) extracted from each;K ranges from two to eighteen.

Next, for each of the thirty sites, we gathered the responses to ten sample queries. The
queries were chosen by hand to be appropriate to the resource. For example, for site 1
(a computer hardware vendor), the sample queries were ‘pentium pro’, ‘newton’, ‘hard
disk’, ‘cache memory’, ‘macintosh’, ‘server’, ‘mainframe’, ‘zip’, ‘backup’ and ‘monitor’.
Our intent was to solicit “normal” rather than unusual responses (e.g., error responses,
pages containing no data, etc.).10 To complete the survey, we determined how to fill in a
thirty-by-six matrix, indicating for each resource whether it can be handled by each of the
wrapper classes. To fill in this matrix, we labeled the examples by hand, and then used the
learnW algorithms to try to learn a wrapper in classW that is consistent with the resource’s
ten examples.

One possible concern with this survey was that we might inadvertently bias the
experiment in favor of sites that are more amenable to simple delimiter-based wrappers. To
maintain objectivity, we randomly selected sites listed as www.search.com, an independent
organization. Also, the difficulty of wrapping the site does not depend on the queries
because a site either is or is not wrappable by a given wrapper class, regardless of the
query. Therefore the fact that we hand-selected the queries did not bias the experiment.

Our results are listed in Fig. 15. ‘×’ indicates that there does not exist a wrapper in the
class that can handle the site, while ‘

√
’ indicates that the class can handle the site. To

count as handling a site, a wrapper must be 100% accurate on the ten sample pages.
Fig. 16 summarizes Fig. 15. Each line in the table indicates the coverage of one or more

wrapper classes. For example, the first line indicates that 70% of the surveyed sites can
be handled by one or more of the six wrapper classes, while other lines show that the
individual classes cover between 13% and 57% of the sites. We also report the coverage
for several groups of wrapper classes. The groups are organized hierarchically: the first

9 The site www.search.com is constantly updating its index. The survey was conducted in July 1997; some sites
might have disappeared or changed significantly since then.
10 While learning to handle such exceptional situations is important, our work does not address this problem;

see [23] for some interesting progress in this area.
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resource URL K

1 Computer ESP http://www.computeresp.com 4
2 CNN/Time AllPolitics Search http://allpolitics.com/ 4
3 Film.com Search http://www.film.com/admin/search.htm 6
4 Yahoo People Search: Telephone/Address http://www.yahoo.com/search/people/ 4
5 Cinemachine: The Movie Review Search Engine http://www.cinemachine.com/ 2
6 PharmWeb’s World Wide List of Pharmacy Schoolshttp://www.pharmweb.net/ 13
7 TravelData’s Bed and Breakfast Search http://www.ultranet.com/biz/inns/search-form.html 4
8 NEWS.COM http://www.news.com/ 3
9 Internet Travel Network http://www.itn.net/ 13

10 Time World Wide http://pathfinder.com/time/ 4
11 Internet Address Finder http://www.iaf.net/ 6
12 Expedia World Guide http://www.expedia.com/pub/genfts.dll 2
13 thrive@pathfinder http://pathfinder.com/thrive/index.html 4
14 Monster Job Newsgroups http://www.monster.com/ 3
15 NewJour: Electronic Journals & Newsletters http://gort.ucsd.edu/newjour/ 2
16 Zipper http://www.voxpop.org/zipper/ 11
17 Coolware Classifieds Electronic Job Guide http://www.jobsjobsjobs.com 2
18 Ultimate Band List http://ubl.com 2
19 Shops.Net http://shops.net/ 5
20 Democratic Party Online http://www.democrats.org/ 6
21 Complete Works of William Shakespeare http://the-tech.mit.edu/Shakespeare/works.html 5
22 Bible (Revised Standard Version) http://etext.virginia.edu/rsv.browse.html 3
23 Virtual Garden http://pathfinder.com/vg/ 3
24 Foreign Languages for Travelers Site Search http://www.travlang.com/ 4
25 U.S. Tax Code On-Line http://www.fourmilab.ch/ustax/ustax.html 2
26 CD Club Web Server http://www.cd-clubs.com/ 5
27 Expedia Currency Converter http://www.expedia.com/pub/curcnvt.dll 6
28 Cyberider Cycling WWW Site http://blueridge.infomkt.ibm.com/bikes/ 3
29 Security APL Quote Server http://qs.secapl.com/ 18
30 Congressional Quarterly’s On The Job http://voter96.cqalert.com/cq_job.htm 8

Fig. 14. The surveyed information resources.
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site LR HLRT OCLR HOCLRT N-LR N-HLRT

1
√ √ √ √ × ×

2 × × × × × ×
3

√ √ √ √ × ×
4

√ √ √ √ √ √

5
√ √ √ √ × √

6 × × × × × ×
7 × × × × × √

8
√ √ √ √ × √

9 × × × × × ×
10

√ √ √ √ × ×
11 × × × × × ×
12 × √ × √ × √

13
√ √ √ √ × ×

14 × √ × √ × √

15
√ √ √ √ × √

16 × × × × × ×
17 × × × × × √

18 × × × × × √

19
√ √ √ √ √ √

20
√ √ √ √ √ √

21 × × × × × ×
22

√ √ √ √ × √

23
√ √ √ √ × √

24 × × × × × ×
25

√ √ √ √ × √

26 × × × × × ×
27

√ √ √ √ × √

28
√ × √ × √ ×

29 × × × × × ×
30

√ √ √ √ × ×
coverage16 (53%) 17 (57%) 16 (53%) 17 (57%) 4 (13%) 15 (50%)total: 21 (70%)

Fig. 15. Coverage results: the surveyed sites that can be handled by each wrapper class.



48 N. Kushmerick / Artificial Intelligence 118 (2000) 15–68

wrapper class(es) coverage (%)

LR∪HLRT∪OCLR∪HOCLRT∪N-LR∪N-HLRT 70
LR∪HLRT∪OCLR∪HOCLRT 60

LR∪OCLR 53
LR 53
OCLR 53

HLRT∪HOCLRT 57
HLRT 57
HOCLRT 57

N-LR∪N-HLRT 53
N-LR 13
N-HLRT 50

N-LR∪N-HLRT but not LR∪HLRT∪OCLR∪HOCLRT 25

Fig. 16. A summary of Fig. 15.

split distinguishes between tabular and nested classes, then between “HT” and “non-HT”
classes, and finally the “OC” and “non-OC” classes.

Notice that the two “OC” classes (OCLR and HOCLRT) handle exactly the same sites
as their “non-OC” counterparts (LR and HLRT, respectively). We are interested in “OC”
wrappers because the original Metacrawler [66] used them [65]. In Section 5.2, we show
that there exist sites that can be handled by OCLR but not LR, and by HOCLRT but not
HLRT. These empirical results suggest that this theoretical result has modest practical
significance.

A second observation is that the N-LR and N-HLRT classes perform worst. Recall that
we introduced the N-LR and N-HLRT wrapper classes in order to handle the resources
whose content exhibited a nested rather than tabular structure. The last line of Fig. 16
shows how successful we were: we find that N-LR and N-HLRT cover 25% of the sites
that the other four classes can not handle. We conclude that, despite their relatively poor
showing overall, N-LR and N-HLRT do indeed provide expressiveness not available with
the other four classes.

The six wrapper classes can handle a total of 70% of the surveyed sites. The
remaining 30% have several characteristics that complicate wrapping. Sites 6, 9, 11,
16 and 24 illustrate the common problem of missing attributes: if countries appear
as ‘<B>Ireland</B> ’ but are sometimes absent, then a wrapper cannot simply
search for ‘<B>· · ·</B> ’. Sites 2, 21 and 29 illustrate the second common problem of
requiring disjunction: a site might display countries as either ‘<B>Ireland</B> ’ or
‘<I>Greece</I> ’, and so a wrapper must search for a disjunctive pattern. Finally, site
26 renders information in fixed-width columns, but our delimiter-based wrappers require
specific constant strings.

5.2. Formal results: Relative expressiveness

While the empirical coverage results are important, we also sought a more theoretical
understanding of the expressiveness tradeoffs between the various classes. Our analysis
is couched in terms ofrelative expressiveness, the extent to which the functionality of
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wrappers in one class can be mimicked by those in another. For example, we have already
seen that both LR and HLRT wrappers exist for the country/code resource in Fig. 1, while
LR can not handle the variant in Fig. 5.

To formalize this investigation, letΠ = {. . . , 〈P,L〉, . . .} ⊂ Σ∗ × L be theresource
space, the set of all page/label pairs〈P,L〉. 11 Conceptually,Π includes pages from all
information resources, whether regularly structured or unstructured, tabular or nested, and
so forth. For each such information resource,Π contains all of the resource’s pages, and
each pageP included inΠ is paired with its labelL.

Note that a wrapper class can be identified with a subset ofΠ : a class corresponds to
those page/label pairs for which a consistent wrapper exists in the class. For a wrapper
classW , the notationΠ(W) indicates the subset ofΠ thatW can handle:

Π(W)= {〈P,L〉 ∈Π | ∃W∈W W(P)= L}.
TheΠ(W) formalism provides a natural way to compare the relative expressiveness of

wrapper classes. IfΠ(W1)⊂Π(W2), thenW2 is more expressive thanW1, in the sense
that any page that can be wrapped byW1 can also be wrapped byW2.

With six wrapper classes, there are potentially 26 distinct regions in a Venn diagram of
theΠ(·) sets. To simplify this analysis, we provide relative expressiveness results for two
groups of wrapper classes: (a) LR, HLRT, OCLR and HOCLRT; and (b) LR, HLRT, N-
LR, and N-HLRT. Our results are captured by Theorem 1 and Fig. 17, which graphically
depicts the overlap between theΠ(·) regions.

Theorem 1. The relationships betweenΠ(LR),Π(HLRT),Π(OCLR) andΠ(HOCLRT),
and betweenΠ(LR),Π(HLRT),Π(N-LR) andΠ(N-HLRT), are as depicted in Fig.17.

Proof (Sketch). To see that these relationships hold, it suffices to show that:
(1) there exists at least one page/label pair〈P,L〉 ∈Π in each the regions in Fig. 17;
(2) OCLR subsumes LR:Π(LR)⊂Π(OCLR);
(3) HOCLRT subsumes HLRT:Π(HLRT)⊂Π(HOCLRT);
(4) every pair in N-LR and HLRT is also in LR:(Π(N-LR) ∩Π(HLRT)) ⊂Π(LR);

and
(5) every pair in N-HLRT and LR is also in HLRT:(Π(N-HLRT) ∩ Π(LR)) ⊂

Π(HLRT).
Note that these five conditions jointly imply Theorem 1. To establish (1), we demon-
strate a synthetic document that satisfies the required conditions. For example, there
exists LR, OCLR and HOCLRT wrappers, but not an HLRT wrapper, that extracts
〈〈A11,A12〉, 〈A21,A22〉, 〈A31,A32〉〉 from the synthetic document ‘ho[A11](A12)
cox[A21](A22)co[A31](A32)c ’. For each region, we create such a synthetic ex-
ample. Then, for each wrapper class, we either demonstrate a wrapper that handles the
example, or exhaustively enumerate the set of wrappers to show that none exists. To estab-
lish (2)–(5) we analyze the relevantexecW procedures to show how to construct a wrap-
per in one class from a wrapper in another. For example, to establish (2), we show that
for every pair〈P,L〉 ∈ Π , if LR wrapperW = 〈`1, r1, . . . , `K, rK 〉 satisfiesW(P) = L,

11 Recall from Section 2 thatΣ is the alphabet from which pages are composed, andL is the set of all labels.
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(a)

(b)

Fig. 17. The relative expressiveness of (a) LR, HLRT, OCLR and HOCLRT; and (b) LR, HLRT, N-LR and
N-HLRT. Regions labeledΠ(W) indicate the subset of the resource spaceΠ that can be wrapped by classW ,
and integers indicate the location inΠ of the surveyed sites listed in Fig. 14.

then OCLR wrapperW ′ = 〈`1, φ, `1, r1, . . . , `K, rK 〉 satisfiesW ′(P )= L (whereφ is the
empty string), thereby establishing thatΠ(LR) ⊂Π(OCLR). To see this, note that if an
OCLR wrapper haso ≡ `1 andc ≡ φ, thenexecOCLR reduces toexecLR. (End of Theo-
rem 1 proof sketch; see [50] for details.)2

One possibly counterintuitive implication of Theorem 1 is that the LR class is not
subsumed by the HLRT class. For example, site 28 can be handled by LR but not HLRT.
One might expect that an HLRT wrapper can always be constructed to mimic the behavior
of any given LR wrapper. To do so, the head delimiter can simply be set to the empty string.
However, the tail delimiter must be set some non-empty page fragment, and in general such
a delimiter might not exist. For similar reasons, the OCLR wrapper class is not subsumed
by the HOCLRT class. One could simplify these results by defining wrapper classes that
allow an “artificial” end-of-file value for the tail delimitert .

Note that Theorem 1 is a formal rather than an empirical assertion. In practice, some
of the expressiveness differences are more significant than others. For example, according
to Theorem 1, there exists sites that can only be wrapped by HOCLRT, but our survey
did not reveal any. To shed light on the empirical relevance of Theorem 1, Fig. 17
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indicates the location inΠ of each surveyed site. For example, site 28 is a member of
Π(LR) \Π(HOCLRT) in (a), and(Π(LR)∩Π(N-LR)) \Π(HLRT) in (b), because it can
be handled by LR, OCLR and N-LR, but none of the other three classes (see line 28 of
Fig. 15).

As described earlier, one major gap is that the surveyed sites do not illustrate the
expressiveness differences between LR and OCLR, or between HLRT and HOCLRT. We
conclude that, while interesting from a theoretical perspective, the “OC” functionality has
modest practical significance. For the nested classes (N-LR and N-HLRT), the surveyed
sites are distributed in most of the regions in Fig. 17.

6. Efficiency

In the previous section, we discussed the expressiveness of our six wrapper classes. Our
main empirical result is that, while some fare better than others, most of the classes can
handle numerous actual Internet sites. We now discuss efficiency: can wrapper induction
be performed quickly? We divide our evaluation into two parts.

First (Section 6.1), we analyze the number of examples required for effective learning.
If our system were to require thousands of examples before it could identify the correct
wrapper, then it would be useless in practice. To summarize our results, we find that, on
the contrary, a handful of examples usually suffice.

Second (Section 6.2), we analyze the computation required to learn from these examples.
If our system were to require days of CPU time to process the examples, then it would be
impractical, even if relatively few examples are needed for correct generalization. Looking
ahead to our results, we find that in most cases our implementation requires a fraction of a
CPU second per example.

6.1. Sample cost

The input to the learning algorithmslearnW is a setE of examples. Each example
〈Pn,Ln〉 ∈ E consumes various resources: pagePn must be fetched over the network and
stored locally, and labelLn must be generated, which might require substantial processing
time and consultation with a person.12 Thus network bandwidth, processor time, memory,
and human intervention are all consumed byE . For simplicity, we ignore these details,
and simply count|E |, the number of training examples. Intuitively, as|E | increases, the
wrapper output bylearnW (E) should be increasingly likely to be correct. We have used a
combination of empirical and analytical techniques to determine how large|E |must be for
satisfactory performance.

6.1.1. Empirical results: Number of examples required
We have implemented thelearnW algorithm for all six wrapper classes.13 Our goal is

to determine the minimum sample size|E | needed for effective generalization. We ran

12 We have also investigated techniques for automatically labeled pages [50, Chapter 6].
13 We implemented our system in Common Lisp on a 233 MHz Pentium II, with relatively little attention paid

to optimizations.
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our learning algorithm on the 30 sites in Fig. 14. For each site, we gathered a set of
examples, and then split the examples into training and test sets. 65% of the collected
examples were (potentially) used for training and the remaining 35% were used for testing;
the samples were re-split randomly for each trial. We gave our learning algorithms one
example from the training set, then two examples, then three, and so on, stopping when the
learned wrapper performed perfectly on the test set. This process was repeated 30 times
per site/class pair.

Our results are listed in Fig. 18. As with Fig. 15, “×” indicates that the given class can
not wrap the given site. For the remaining site/class combinations, we list the number of
examples needed to learn a wrapper that performed perfectly on the test pages. We find
that 2–3 examples suffice in most cases.

Some cells not marked “×” contain only “
√

” instead of a page count—two sites for
HOCLRT, and all sites for N-LR and N-HLRT. As with Fig. 15, “

√
” indicates that the class

can handle the site. However, our implementation oflearnW requires more than 15 minutes
of CPU time, making it infeasible to run the full experiment. We discuss the complexity of
our learning algorithms in Section 6.2.

6.1.2. Formal results: PAC model
Our experimental results demonstrate that in practice relatively few examples are needed

to learn a high-quality wrapper. These experiments can be thought of as an empirical
investigation of our task’ssample complexity, the number of examples needed to perform a
particular learning task to some specified criterion. We have also pursued a more theoretical
investigation of our task’s sample complexity. In this section we describe aprobably
approximately correctmodel of our wrapper induction problem; see [7] for a survey of
the relevant literature. The PAC model gives a bound on the number of examples required
to ensure (with probability exceeding a user-specified threshold) that the learned wrapper
is wrong only rarely (with probability bounded by a second user-specified threshold).

The PAC model is based on the assumption that the pages—both the training and test
pages—are drawn from a stationary though arbitrary and unknown probability distribution
D. The wrapper induction task for classW is to identify thetarget wrapperWT ∈W ,
given a setE = {. . . , 〈Pn,Ln〉, . . .} of examples. Conceptually,E is generated by repeatedly
drawing a pagePn according to distributionD, and obtaining the labelLn thatWT would
generate forPn. As is standard in supervised learning, we assume that the learner can
accessWT only indirectly, via anoraclefrom which the labels are obtained.

To learn a wrapper in classW , we provideE to our learnW procedure, obtaining
wrapperW ∈W as output, and we wantW to approximateWT . How should we compare
W andWT ? Ideally,W = WT , though in general we can not guarantee this. The PAC
model comparesW andWT based onW ’s error. The errorerror(W) of W is defined
as the probability of observing an example pageP drawn from distributionD such that
W(P) 6=WT (P):

error(W)≡ PrP∈D
[
W(P) 6=WT (P)

]
.

Notice that (as expected)error(WT )= 0. Also, whileerror(W) is implicitly a function of
D andWT , to simplify the notation we do not indicate this dependence explicitly.
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site LR HLRT OCLR HOCLRT N-LR N-HLRT

1 2.0 2.0 2.0 2.0 × ×
2 × × × × × ×
3 2.0 2.0 2.0 2.0 × ×
4 2.0 2.0 2.0 2.0

√ √
5 2.0 2.2 2.0 2.1 × √
6 × × × × × ×
7 × × × × × √
8 2.0 4.4 2.0 4.6 × √
9 × × × × × ×
10 4.4 5.7 3.9 4.1 × ×
11 × × × × × ×
12 × 2.0 × 2.0 × √
13 2.0 2.0 2.0 2.0 × ×
14 × 7.0 × 9.0 × √
15 2.0 2.0 2.0 2.0 × √
16 × × × × × ×
17 × × × × × √
18 × × × × × √
19 2.0 2.0 2.0

√ √ √
20 2.0 2.0 2.0 2.0

√ √
21 × × × × × ×
22 2.0 2.0 2.0 2.0 × √
23 2.0 2.0 3.1

√ × √
24 × × × × × ×
25 2.0 2.0 2.0 2.0 × √
26 × × × × × ×
27 2.0 2.0 2.0 2.0 × √
28 2.0 × 2.0 × √ ×
29 × × × × × ×
30 6.6 6.4 5.3 6.2 × ×
mean 2.4 2.9 2.4 3.1 mean of means:2.7

median 2.0 2.0 2.0 2.0 mean of medians:2.0

Fig. 18. The number of examples required to learn a wrapper that performs perfectly on the test pages.

The PAC model treatsW as a good approximation toWT to the extent thaterror(W)
approaches zero. Specifically, we assume a user-suppliedaccuracyparameter 0< ε < 1,
and we want to ensure thaterror(W) < ε, no matter how closeε is to zero.

In general we can not guarantee that this relationship will hold, because the examplesE
might be misleading. The best we can do is to make the probability that the error is small be
as close to one as requested. A secondreliability parameter 0< δ < 1 serves this purpose.
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The PAC model demands that, for any values ofε andδ, the learner will (with probability
at least 1− δ) output a wrapperW satisfyingerror(W) < ε.

How will the learner satisfy this criterion? The idea is that the learner can request a
sample of a given size—i.e., it has control over|E |. Presumably, the learner would request
more examples asε andδ approach zero. Naturally, the learner has no access toWT orD
when deciding how many examples to request.

The PAC model for a particular wrapper classesW thus boils down to the following
analysis: determine the number|E | such that, for any distributionD, any target wrapper
WT ∈W , and any 0< ε, δ < 1, if our learnW algorithm is provided with|E | examples and
returns a wrapperW , then we have thaterror(W) < ε with probability at least 1− δ—in
short,W is probably approximately correct.

To develop a PAC model of our wrapper induction task, we begin with the well-known
PAC bound for the case in which there are a finite number of possible targets. It is
straightforward to show that ifW has finite cardinality, and wrapperW ∈W agrees with
the target wrapper on|E | examples (i.e.,W(Pn) = Ln = WT (Pn) for all 〈Pn,Ln〉 ∈ E),
then the chance thaterror(W) > ε is at most|W|(1− ε)|E |. The learning algorithm can
thus satisfy the PAC criterion by ensuring that|W|(1− ε)|E | < δ, which is easily shown to
be satisfied for

|E |> 1

ε

(
ln |W| − ln δ

)
. (3)

What is |W|, for each of our six classes? Since a wrapper is just a vector of arbitrary
strings, there are an infinite number of wrappers in each class. However, after observing
just a single example, the number of “feasible” wrappers becomes finite; for example, at
the very least every delimiter must be a substring of this first example.

Consider first the LR class. We can bound|LR| as follows. The set of wrappers
considered bylearnLR (Fig. 4) is the cross product of each delimiter’s candidate set. The
candidates for̀k are generated by thecands` subroutine, andrk ’s candidates are generated
by candsr . We can bound|cands`(k,E)| and |candsr (k,E)| in terms ofR = minn |Pn|,
the length of the shortest example.R is an upper bound on both|cands`(k,E)| and
|candsr (k,E)|, for each value ofk. To see this, note that the candidates for`k are the
suffixes of the shortest string occurring immediately prior to an instance of thekth attribute
(see line [iii ] in Fig. 4), and since this shortest string has length at mostR, there can be at
mostR such candidates. A similar argument applies to eachrk . Therefore we have that:

|LR| =
K∏
k=1

∣∣cands`(k,E)
∣∣× K∏

k=1

∣∣candsr (k,E)
∣∣6 K∏

k=1

R×
K∏
k=1

R = R2K.

Substituting this bound on|LR| for |W| in Eq. (3), we arrive at the PAC model for the
LR class. To satisfy the PAC criterion,learnLR must examine at least|E | examples, where:

|E |> 1

ε

(
ln |LR| − ln δ

)
6 1

ε

(
lnR2K − ln δ

)= 1

ε

(
2K lnR− ln δ

)
.

It is straightforward to extend these ideas to the other six wrapper classes. The number of
wrappers in each class can be calculated by multiplying together the number of candidates
for each of the class’s delimiters. We have seen that the number of candidates for each`k
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andrk is simplyR. There areR(R−1)/2 substrings of a string of lengthR. Therefore there
areR(R − 1)/2 candidates for each ofh, t , o andc, since can be an arbitrary substring of
the shortest page. Thus we have that

|LR|, |N-LR|6R2K,

|HLRT|, |OCLR|, |N-HLRT|6R2K
(
R(R − 1)

2

)2

= R
2K+2

4

(
R2− 2R+ 1

)
,

|HOCLRT|6R2K
(
R(R − 1)

2

)4

= R
2K+4

16

(
R4− 4R3+ 6R2− 4R+ 1

)
.

To conclude the development of our PAC model for the six classes, we can substitute each
of these bounds on|W| into Eq. (3), thereby proving the following theorem.

Theorem 2. Suppose we give the learning algorithmlearnW (for any of our six wrapper
classesW) a setE = {. . . , 〈Pn,Ln〉, . . .} of examples, and it returns a wrapperW ∈W .
For any distributionD, for any values of0< ε, δ < 1, and for any targetWT ∈W , if |E |
satisfies the following condition:

Wrapper class(es) Sample complexity

LR, N-LR |E | > 1
ε (2K lnR− ln δ)

HLRT, OCLR, N-HLRT |E | > 1
ε ((2K + 2) lnR+ ln(R2− 2R+ 1)− ln(4δ))

HOCLRT |E | > 1
ε ((2K + 4) lnR+ ln(R4− 4R3+ 6R2− 4R+ 1)− ln(16δ))

(whereR =minn |Pn|), then the probability thaterror(W) < ε is at least1− δ.

For example, if there areK = 4 attributes per tuple, the shortest example page has length
R = 10,000, andε = δ = 1/20, then thelearnW algorithms must examine at least the
following number of examples to satisfy the PAC criterion:

Wrapper class(es) Predicted minimum sample size

LR, N-LR |E | > 1534

HLRT, OCLR, N-HLRT |E | > 2243

HOCLRT |E | > 2952

Compared to our empirical results in the previous section, our PAC bounds appear to
be too loose by about two orders of magnitude. We have investigated a variety of ways to
tighten these bounds [50]. For example, we have shown that an HLRT, OCLR or N-HLRT
wrapper is PAC if:

(4K − 2)

(
1− ε

4K − 2

)M
+ R

3(R− 1)2

4

(
1− ε

2

)|E |
< δ,

whereM =∑n |Ln| is the total number of tuples across the examples inE . Using the
above parameters, and assuming an average of 5 tuples per example (so thatM = 5|E |),
the model predicts that 898 examples are required, a 60% savings. This bound is still very
loose, and we leave the problem of tightening it further to future work.
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6.2. Induction cost

Our evaluation of the sample cost of wrapper induction reveals that relatively few
examples are needed in practice for effective learning. But a learning system that processes
examples slowly will still perform poorly, even if few examples are required. Thus are we
also analyze the cost of processing the examples.

In this section, we begin with empirical evidence that our system usually runs quite
quickly, and then provide complexity analyses of our learning algorithms.

6.2.1. Empirical results: Per-example processing time
We used the experimental approach described in Sections 5.1 and 6.1.1 to measure the

per-example processing cost. To review, for each of the thirty Internet sites that can be
handled by each wrapper class, we give our system one example, then two, etc., until it
generates a wrapper that performs perfectly on a suite of test pages.

Fig. 19 lists the number of CPU seconds per example required to learn a wrapper in
this experiment. As in Fig. 18, our system sometimes runs very slowly (more than 15
CPU minutes); these cases are listed as “>900”. We also listed the means and medians
for each class. Across all sites and wrapper classes, the median time per example is 0.58
CPU seconds, though the mean figure of 40.8 more accurately reflects the fact that the
learning algorithms occasionally run very slowly. Our complexity results in Section 6.2.2
describe the parameters on which the algorithms’ running times depend. (When calculating
the means for HOCLRT, we use the value 900 seconds for sites 19 and 23, so the “true”
mean is actually greater than the reported values. Also, these statistics are not calculated
for N-LR and N-HLRT since they would be meaningless.)

We have reported the CPU timeper examplebecause the number of examples required
depends on the site. The total CPU time can be obtained by simply multiplying the
corresponding cells in Figs. 18 and 19. The results are as follows (times are in CPU
seconds):
• minimum total time: 0.04,
• maximum total time: 2779,
• mean total time: 144.5,
• median total time: 0.74.

6.2.2. Formal results: Complexity analysis
Our empirical results suggest that our wrapper induction algorithms usually run quite

quickly, often consuming just a fraction of a CPU second per example. To get a
deeper understanding of these results—and particularly to understand why the algorithms
occasionally run very slowly—we have also investigated the computational complexity the
learnW algorithms.

Let E = {. . . , 〈Pn,Ln〉, . . .} be a set of examples. We are interested in a bound on the
time to executelearnW (E). Our analysis is stated in terms of the following parameters:|E |
(the number of examples),K (the number of attributes per tuple),M =∑n |Ln| (the total
number of tuples in the examples), andV =maxn |Pn| (the length of the longest example).
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site LR HLRT OCLR HOCLRT N-LR N-HLRT

1 0.10 0.26 0.11 0.25 × ×
2 × × × × × ×
3 0.14 3.00 0.19 2.72 × ×
4 0.02 3.63 0.04 107 >900 >900

5 0.03 1.94 0.05 2.09 × >900

6 × × × × × ×
7 × × × × × >900

8 0.10 113 0.32 26.7 × >900

9 × × × × × ×
10 0.14 0.98 0.20 1.07 × ×
11 × × × × × ×
12 × 0.33 × 0.36 × >900

13 0.13 1.23 0.19 1.19 × ×
14 × 397 × 277 × >900

15 0.02 0.04 0.03 0.04 × >900

16 × × × × × ×
17 × × × × × >900

18 × × × × × >900

19 0.04 0.91 0.06 >900 >900 >900

20 0.05 0.08 0.08 0.09 >900 >900

21 × × × × × ×
22 0.10 0.60 0.26 0.66 × >900

23 0.13 0.37 0.18 >900 × >900

24 × × × × × ×
25 0.02 0.09 0.3 0.9 × >900

26 × × × × × ×
27 0.05 11.8 0.23 11.4 × >900

28 0.26 × 0.28 × >900 ×
29 × × × × × ×
30 0.01 0.01 0.01 0.01 × ×
mean 0.08 31.5 0.14 131.3 mean of means:40.8

median 0.08 0.91 0.12 1.19 mean of medians:0.58

Fig. 19. The number of CPU seconds per example required for learning, for each class that can handle each site.

Consider first the LR class. We will derive the complexity oflearnLR in a bottom-up
fashion, reasoning about the complexity of the algorithm’s subroutines and then composing
these results to obtain thelearnLR’s overall complexity.

We begin with the lowest-level subroutines:attribs, seps, heads, tails andneighborsx .
attribs andseps both run in time O(M), since they involve iterating over every example
tuple.heads andtails both run in time O(|E |), since there is one head and tail per example.
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Theneighborsx subroutines invokeseps, tails andheads in turn, and therefore runs in time
O(M + |E |).

The candsx subroutines enumerate the suffixes (or prefixes) of the shortest of the
O(M + |E|) strings returned byneighborsx . Since each candidate has length O(V ), we
have thatcandsx runs in time O(M + |E | + V ).

The validx subroutines search for delimiter candidates in the strings returned bytails,
attribs, andneighborsx . Since the candidates and strings being searched all have length
bounded byV , each such search can be performed in time O(V ) using efficient techniques
[47]. Therefore the overall complexity of thevalidx subroutines is O(V (M + |E |)).

Finally, we are in a position to evaluate the overall complexity oflearnLR. This learning
algorithm first learns the left-hand delimiters and then the right-hand delimiters. To
learn each of theK delimiters of each kind,learnLR tests the candidates generated by
candsx usingvalidx . Since there are O(M + |E | + V ) candidates for each delimiter, and
since each call tovalidx takes time O(V (M + |E |)), we have thatlearnLR takes time
O(K(M + |E | + V )V (M + |E |))=O(KM2|E |2V 2).

The results of such an analysis for the other three tabular classes (HLRT, OCLR and
HOCLRT) are similar. Learning these classes is harder, since their learning algorithms use
nested loops to search for a satisfactory combination of candidates for`1, h, t , o andc.
The nested classes (N-LR and N-HLRT) have the worst complexity, since their learning
algorithms have a deeply nested loop structure.

Theorem 3. The invocationlearnW (E) takes time that grows as follows:

Wrapper class Complexity

LR O(KM2|E |2V 2)

HLRT O(KM2|E |4V 6)

OCLR O(KM4|E |2V 6)

HOCLRT O(KM4|E |4V 10)

N-LR O(M2K |E |2K+1V 2K+2)

N-HLRT O(M2K+2|E |2K+3V 2K+4)

whereV =maxn |Pn|,M =∑n |Ln|, and each tuple containsK attributes.

These results are mildly encouraging: the tabular classes can all be learned in polynomial
time. Moreover,K is usually relatively small. Thus the exponential results for the nested
classes are somewhat attenuated.

Nevertheless, the degrees of the polynomials are fairly ominous: a degree-ten polyno-
mial is unlikely to be useful in practice, even if the parameters are fairly small. Moreover,
the parameters arenot normally small; e.g., in our experiments,V ranges from 899 to
57,116 characters. It is therefore not surprising that in some cases (two sites for HOCLRT,
and all sites for N-LR and N-HLRT) our algorithm runs so slowly.

Perhaps a more pressing question is why our systemever runs quickly. The answer
is that there are usually many satisfactory wrappers for a given site: the search space
is large, but densely filled with goal states. For example, for site 4,learnLR explores
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a space containing 63,680,400 potential wrappers, of which 9,192,960 (14%) are valid.
An interesting direction of future work would be to develop search heuristics for this
space.

7. Corroboration

The learning algorithms described in Sections 3 and 4 are steps toward our goal of
automatic wrapper construction, but thelabeling problem[27] remains: our learning
algorithms require not just the example pages (e.g., Fig. 1(c)) but also a description of
the information to be extracted (Fig. 1(d)).

So far, we have assumed that a person labels the examples. This approach reduces the
task of hand-coding a wrapper to the task of hand-labeling a set of examples. This reduction
might make the person’s job much easier, as he can focus on the attributes to be extracted
rather than low-level HTML-specific details. Nevertheless, since our goal is to automate the
wrapper construction task, we have also explored ways to automatically label the examples.

To address this issue, we have developed a technique for automatically labeling
example documents [50, Chapter 6]. Ourcorroborationalgorithm takes as input as set
of recognizers, domain-specific heuristics for identifying instances of the attributes to be
extracted. In the country/code example, our system would take as input procedures for
recognizing the instances of countries (‘Congo’, ‘ Egypt ’, etc.) and the codes (‘242 ’,
‘20 ’, etc.).

The required recognition heuristics might be very primitive—e.g., using the regular
expression ‘[1-9][0-9]+ ’ to identify country codes. At the other extreme, recogni-
tion might require natural language processing, or the querying of other information
resources—e.g., asking an already-wrapped resource to determine whether a particular text
fragment is a person’s name.

Once the instances of each attribute have been identified, corroboration involves
combining the results for the entire page. If the recognition heuristics are perfect, then
this integration step is trivial. Note, though, that perfect recognizers do not obviate the
need for wrapper induction, because while the recognizers might be perfect, they might
also be very slow and thus be unable to deliver the fast performance required for an on-line
information-integration system.

An important feature of our corroboration system is that it can handle recognized
mistakes. For example, the country recognizer might find some text fragments that are
not in fact countries (i.e., it might exhibit false positives), or it might ignore some countries
(false negatives). Our corroboration algorithm can make use of recognizers even when they
make such mistakes. Specifically, the algorithm requires at least one correct recognizer, and
also that each recognizer exhibits false positives or false negatives, but not both.

To handle noisy recognizers, our corroboration algorithm computes a set of labels that
are consistent with the recognized instances. The algorithm uses the required perfect
recognizer as an “anchor” to detect false positives. For example, suppose the country
recognizer is correct, but the country-code recognizer makes false positives. If the country
recognizer reports that there are two countries at indices 10–20 and 30–40, while the
country-code recognizer reports three codes at indices 5–8, 25–28 and 45–48, then the
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corroboration algorithm can discard the code at 5–8: it must be a false positive because it
implies a country before 5, but the country recognizer does not make mistakes.

While in this example the correct label can be recovered, in other situations the
recognized instances are inherently ambiguous. For example, if the code recognizer
reported codes at 25–28, 45–48 and 50–55, then the corroboration algorithm concludes
that 25–28, andeither45–48or 50–55, are correct. When faced with such ambiguity, the
corroboration algorithm generates a set of labels, one for each way to select one instance
from each ambiguous set.

While false positives lead to multiple consistent labels, false negatives result in “holes”
in a label. If the code recognizer produced false negatives, then it might report just a single
code 25–28. In this case, the corroboration algorithm determines that code 25–28 must
correspond to country 10–20 (since 20< 25< 28< 40). However, the algorithm can find
no code corresponding to country 30–40, and so simply leaves the corresponding label
cell empty. Such empty cells result in fewer training examples during learning, but our
experiments demonstrate that the number of additional training documents required scales
well the the rate of false negatives.

Finally, our corroboration algorithm is not given as input the order in which the attributes
occur; the algorithm repeats the above process for all attribute orderings.

The output of the corroboration algorithm is a set of labels, each consistent with the
recognized instances, but only one of which is correct. To learn a wrapper from a set of
examples, the corroboration algorithm is invoked one each example, resulting in a set of
candidate labels for each example. The next step is to select one label for each example. To
do so we exploit an additional heuristic: the correct labels must not only be consistent with
the recognized instances, but also there must exist a wrapper that can correctly extracted
the given labels. For example, if one of the candidate labels involves (incorrectly) marking
both ‘Congo</ ’ and ‘Ireland ’ as countries, then the learning algorithm will be unable
to find a validr1 delimiter, becauser1 must be a prefix of both ‘B>· · ·’ (the text after
‘Congo</ ’) and ‘</B> · · ·’ (the text after ‘Ireland ’), but these strings have no common
prefix. In principle it is possible that a label is incorrect and yet there exists a wrapper that
can extract this invalid content, but in our experiments this rarely happens.

In [50, Chapter 6] we describe our corroboration algorithm in detail, and demonstrate
empirically that our wrapper induction approach scales well, even when all but one of the
recognizers make up to 40% errors. In some domain-specific it can be difficult to develop
recognizer heuristics that make only one-sided errors. Nevertheless, we conclude that our
corroboration algorithm represents interesting progress toward the goal of fully-automatic
wrapper induction.

8. Related work

Our approach to automatic wrapper construction draws on ideas from numerous research
areas. After briefly discussing systems that use wrappers, and work on learning models of
information sources, we discuss research on trainable information extraction systems, of
which our wrapper induction technique is an instance.
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Systems that use wrappers.Our concern with wrappers is motivated by the diverse
research on software agents (e.g., [14,29]) and information integration (e.g., [38,44,54,
75]). We were strongly influenced by the University of Washington “Softbot” project
[23,26,30,66,67]; related projects includeARIADNE [46], CARNOT [21], DISCO [32],
GARLIC [18], HERMES [2], the Information Manifold [55],TSIMMIS [19], FUSION [68],
BargainFinder [49], and the Knowledge Broker [4]. The details vary widely, but these
systems all need a library of wrappers for accessing the information sources they exploit.

There has been substantial research on specialized programming languages and
graphical user interfaces to assist in manually writing such wrappers [3,25,37,39,42,63,
69]. These projects rely on humans rather than learning techniques to generate wrappers.
We see wrapper induction as a complementary effort: current wrapper induction algorithms
generate wrappers expressible in subsets of these languages, and an important direction for
future work is to learn more expressive subsets.

Emerging standards such as XML will simplify the extraction of structured information
from heterogeneous sources. However, few sites currently use such standards, and legacy
data will be with us for years. Moreover, XML forces information consumers to accept the
ontological decisions of the data exporters. For example, integration is difficult if one site
splits people’s names into first and last names, while another combines them. We conclude
that the thorny problem of wrapper construction and maintenance will remain for some
time. On the other hand, XML is an ideal mechanism for standardizing wrapper outputs.
Furthermore, as Knoblock and Minton observed [54], wrapper induction algorithms may
be able to use XML as a source of supervised training data.

Learning models of information sources.Wrapper induction is one aspect of the larger
problem of learning models of information sources; examples includeSHOPBOTandILA .
SHOPBOT [23] uses HTML-specific heuristics to learn how to pose queries to on-line
product catalogs.SHOPBOTalso uses heuristics to extract particular pieces of information,
such as product prices. ILA [61] learns an information source’s schema in terms of
its background knowledge. Suppose ILA knows thatemail(Jane ) = jane@z.com ,
email(Fred ) = fred@z.com , secretary(Jane ) = Fred , office(Fred ) = Rm29, and
phone(Rm29) = 567-9876 . ILA can learn about a site by querying withJane ; if it
observes〈Jane , fred@z.com , 567-9876 〉, ILA hypothesizes that the site returns
tuples of the form〈person, email(secretary(person)), phone(office(person))〉.

Trainable information extraction systems.Information extraction (IE) is the task of
identifying fragments in a document that constitute its core semantic content; see [22,40]
for surveys. The key challenge to IE is scalability, the capacity to rapidly reconfigure an
IE system as new information sources become available, or existing sources change their
format or disappear. Current work in scalable IE systems has focused on the use of machine
learning techniques to automatically acquire and maintain domain-specific extraction
knowledge. A wrapper is thus a special-purpose IE system designed for documents from
a particular Internet site, and wrapper induction is a machine learning technique for
maintaining wrapper libraries in a scalable fashion.

There has been substantial work on trainable IE systems in recent years. This research
has tended to be split between two communities: the natural language processing
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community has focused on free text [16,43,62,72], while the information integration and
software agent communities have focused on structured Internet documents [9,11,41,52,
60]. This distinction has started to blur, as researchers have started to evaluate their systems
on both structured and natural text [33,70,71]. We now discuss these systems in more detail,
roughly in order from Internet-specific to free-text systems.

Ashish and Knoblock [9] describe a semi-automatic technique for wrapper induction
that uses HTML-specific heuristics to generate plausible segmentations of a document,
and plausible items for extraction within a segment. After a human corrects the choices
if necessary, they are compiled into N-HLRT-like wrappers, where the delimiters can be
regular expressions instead of constants; these regular expressions imported from the hand-
coded heuristics rather than learned.

Hsu and Dung [41] present SOFTMEALY. Their wrapper language is more expressive
than HOCLRT, allowing

(1) disjunction (attribute edges can be delimited by more than one delimiter, whereas
we assume exactly one delimiter per attribute edge);

(2) multiple attribute orders within tuples;
(3) missing attributes; and
(4) extraction to be driven by features of the candidate for extraction (e.g., “extract

starting at the next ‘<B>’ if the next word is capitalized”).
Hsu and Dung report that SOFTMEALY can wrap the 30% of the sites surveyed in Section
5.1 that our six classes can not handle [41].

Muslea et al. [60] describeSTALKER, an algorithm for learning a wrapper language
that, like SOFTMEALY, allows disjunction and reordered or missing attributes. The main
contribution of Muslea et al. is that their language permits an arbitrary sequence of
“landmarks” (e.g., “extract at the first ‘<B>’ following the next ‘<HR>’ ”). This feature
can be thought of as a generalization of the “OC” and “HL” functionality we describe. In
an empirical comparison, Muslea et al. report thatSTALKER is 4-fold slowerlearnHLRT for
one domain, 12-fold faster in a second, and our six classes are not expressive enough to
handle several other domains [60].

The previous systems all take advantage of HTML annotations by, for example, using
HTML tags as delimiters or landmarks. However, our system and several others do not
depend on HTML; they will learn a non-HTML delimiter as long as it reliably identifies
the items to be extracted. In contrast, Bauer and Dengler [11] describe TRIA S, a wrapper
induction system that relies more heavily on HTML. Wrappers in their language operate
directly on a document’s HTML parse tree. The advantage of TRIA S is that it can be less
sensitive to changes in document formatting outside the relevant fragments of the parse
tree; the disadvantage is that the techniques are inapplicable to non-HTML documents.
For example, TRIA S can not handle the document in Fig. 11, since it does not contain
HTML tags.

The systems discussed so far create wrappers in specialized wrapper languages. The LR
wrapper class, for example, corresponds to all ways to instantiate theexecLR “template”.
An alternative is to encode documents in a first-order relational representation, and use
inductive logic programming to learn wrappers corresponding to arbitrary first-order
theories over the representation. These techniques have arisen mainly in the natural
language processing community, because wrappers for free-text documents often must rely
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on complex chains of relationships between tokens. In practice, a completely general ILP
approach is infeasible, so researchers have investigated a variety of special cases.
• Freitag [33,34] describes theSRV system. SRV’s representation “simulates” a

document’s token sequence—i.e., rules can be triggered by the token that occurs
before or after a given token, and these conditions can be chained arbitrarily.SRV

also encodes “low-level” features (e.g., whether a token is capitalized or contains
numbers), and a set of domain-specific features for handling HTML text.SRV

searches for rules in a top-down fashion, gradually adding constraints to rules that
are maximally general. Freitag has also shown that performance improves whenSRV

is combined with other learning algorithms in a “multistrategy learning” approach
[35].
• Soderland [72] describesCRYSTAL, which learns information extraction rules trig-

gered by part-of-speech and lexical information.CRYSTAL uses a bottom-up search,
gradually relaxing rules that are maximally specific. Soderland later developedWEB-
FOOT [70], an extension toCRYSTAL for structured HTML documents.WEBFOOT

that uses hand-coded heuristics to partition HTML documents into sentence-like seg-
ments.
• Califf and Mooney [16,17] describeRAPIER. Like CRYSTAL, RAPIER uses part-of-

speech and lexical information, thoughRAPIER searches for extraction rules in a bi-
directional fashion.

Soderland [71] describesWHISK, which learns to extract from documents with varying
degrees of structure—grammatical text, telegraphic or ungrammatical text (e.g., weather
reports or apartment listings), and highly structured text with HTML annotations (e.g., the
sort of documents we used to evaluate our system).WHISK’s learned rules correspond to a
restricted class of regular expressions; such rules are more expressive than the six wrapper
classes we have described, and less expressive than the relational rules learned bySRV,
CRYSTAL andRAPIER. The main weakness ofWHISK is that it operates only on a single
sentence or segment at a time, and so its extraction decisions are based on a limited context.
Soderland demonstratesWHISK handling a site that HLRT can wrap, but notes thatWHISK

runs slower thanlearnHLRT on this problem because its search space is much larger [71].
WEBFOOT, SRV and WHISK suggest that a trainable information extraction systems

need not be confined to one sort of document, such as grammatical text or rigidly
structured HTML text. Rather, trainable IE systems can gain leverage from the regularities
that happen to correctly indicate the fragments to be extracted in a particular domain,
whether these regularities arise from “low-level” features (e.g., constant delimiters or
landmarks, or capitalization information) or “linguistic” features (e.g., part-of-speech or
lexical information).

Finally, our work is related to the literature on grammar induction (e.g., [6]). For
each wrapper classW , the execW procedure uses a finite amount of state for parsing,
augmented with additional book-keeping state for storing the extracted information.
Though unbounded, this book-keeping state is distinct from the state used for parsing,
and thus our wrappers are formally equivalent to regular grammars. However, we can not
use existing grammar induction algorithms, because our wrappers are used for parsing, not
just classification. They can not simply examine a query response and confirm that it came
from a particular site. Rather, a specific sort of examination must occur; namely, one that
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involves scanning the page so as to identify the fragments to be extracted. We therefore
require that the learned grammar have a particular structure. Learning algorithms have
been developed for several classes of regular grammars (e.g., reversible grammars [5]), but
we do not know of algorithms that deliver the particular state topology we require.

9. Discussion and future work

In this article, we have introduced wrapper induction, a technique for automatically con-
structing the information-extraction procedures required by many kinds of information-
manipulation systems. Our work can be summarized in terms of our two main contribu-
tions.
• First, we posed the task of automatic wrapper construction as one of inductive learn-

ing, where instances correspond to pages, labels correspond to the pages’ content,
and hypotheses correspond to wrappers. A learning approach is crucial to maintain-
ing large wrapper libraries for the Internet, since new sources continually appear, and
existing sources disappear or regularly change their formatting conventions. We have
identified several wrapper classes that are reasonably useful, but that can usually be
learned relatively quickly.
• Second, using a combination of empirical and analytic techniques, we explored

the computational tradeoffs between the classes. Our evaluation revealed several
subtleties regarding the expressiveness and efficiency of our classes.

While the six wrapper classes we identified (particularly HLRT) are interesting in their
own right, our main motivation has been not to propose a definitive wrapper language, but
rather to develop a framework within which to investigate the wrapper induction problem.

From our experience with the six wrapper classes, we can make two general conclusions
about families of related wrapper classes. First, one should not underestimate the
effectiveness of very simple classes. LR, for example, can be learned quickly from few
examples, and yet can handle some sites (e.g., site 28 in Fig. 15) that defeat more
sophisticated classes such as HLRT, HOCLRT and N-HOCLRT. A second conclusion is
that even simple extensions can have dramatic computational results. For example, LR can
be learned in timeindependentof the number of attributesK, while our N-LR learning
algorithms runs in timeexponentialin K.

We are currently investigating several extensions to the techniques described in this
article. Our results for the LR, HLRT, OCLR and HOCLRT classes are fairly satisfying,
but N-LR and N-HLRT fare less well. While they represent an interesting first step, these
classes do not provide the functionality needed to handle some kinds of nested documents,
and they are very hard to learn. We are investigating further variants of the LR class in
order to further explore the tradeoffs between expressiveness and efficiency.

We are also examining ways to speed up the six learning algorithms. While our
empirical results are satisfactory for LR and OCLR, our HLRT and HOCLRT algorithms
occasionally run very slowly. One possibility is to develop heuristics to speed search in
the enormous space of potential wrappers. The constraint satisfaction literature may well
provide useful ideas for eliminating large portions of this space.
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Our PAC models are clearly too loose, and tightening the models would be an interesting
direction for future work. Note that the models makes worst-case assumptions about the
learning task. Specifically, they assume that the distributionD over examples is arbitrary.
A standard technique for tightening a PAC model is to assume thatD has certain properties
[10,12]. Shuurmans and Greiner [64] suggest another strategy: by replacing the “batch”
model on inductive learning with a “sequential” model in which the PAC-theoretic analysis
is repeated as each example is observed, many fewer examples are predicted. It would be
interesting to apply these approaches to our task.

Finally, we have focused exclusively on extraction, but “industrial-strength” wrappers
must deal with a host of complications, such as caching, parallel network access, transient
network faults, and incremental extraction as documents arrive over the network. From
a research perspective, one of the most interesting challenges is that existing wrapper
induction systems ignores the fact that the formatting conventions on which wrappers rely
can change unexpectedly. The implicit strategy is to learn a new wrapper from scratch,
rather than repair the broken wrapper. As a preliminary step to addressing this wrapper
maintenance task, we have investigated the problem of verifying whether a wrapper is
correct [51].
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