

Recognizing Textual Entailment Using a Subsequence Kernel Method

Rui Wang & Günter Neumann

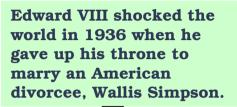
LT Lab at DFKI

Saarbrücken, Germany

German Research Center for Artificial Intelligence

LT-Lab Recognizing Textual Entailment (RTE)

- ☆ Motivation: textual variability of semantic expression
- \Rightarrow Idea: given two text expressions T & H:
 - Does text T justify an inference to hypothesis H?
 - Is H semantically entailed in T ?



King Edward VIII abdicated in 1936.

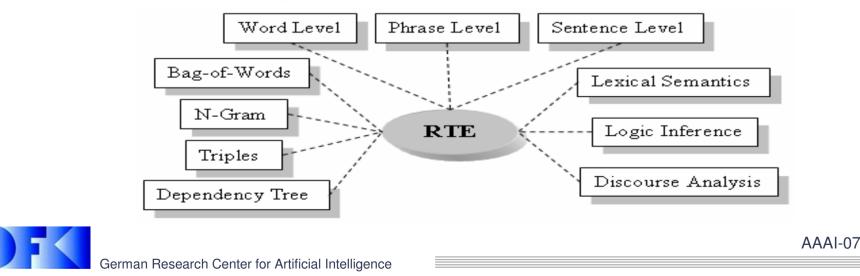
- ☆ PASCAL Recognising Textual Entailment Challenge
 - since 2005, cf. Dagan et al.
 - 2007: 3rd RTE challenge, 25 research groups participated
- \Rightarrow A core technology for text understanding applications:
 - Question Answering, Information Extraction, Semantic Search, Document Summarization, ...

Processing of real text documents

- ☆ Semantic under-specification
 - Imprecise expressed semantic relationships
 - Vagueness, ambiguity

- \Rightarrow Error tolerant methods needed
 - Noisy input data
 - Noisy intermediate component output

Different approaches consider/integrate features from different linguistics levels

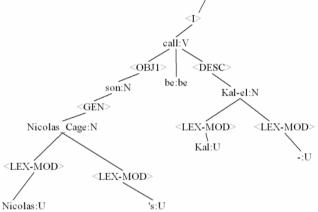


LT-Lab Our goal: How far can we get with syntax only ?

- ☆ Subtree alignment on syntactic level
 - Check similarity between tree of H and relevant subtree in T
- ☆ Tree compression (redundancy reduction)
 - Reduce noise from input/parsing
 - Yields compressed path-root-path sequences
- ☆ Subsequence kernel
 - Consider all possible subsequence of spine (path) difference pairs
 - SVM for classification

- A sentence is represented as a set of triples of general form <head relation modifier>
 - Ex: Nicolas Cage's son is called Kal'el

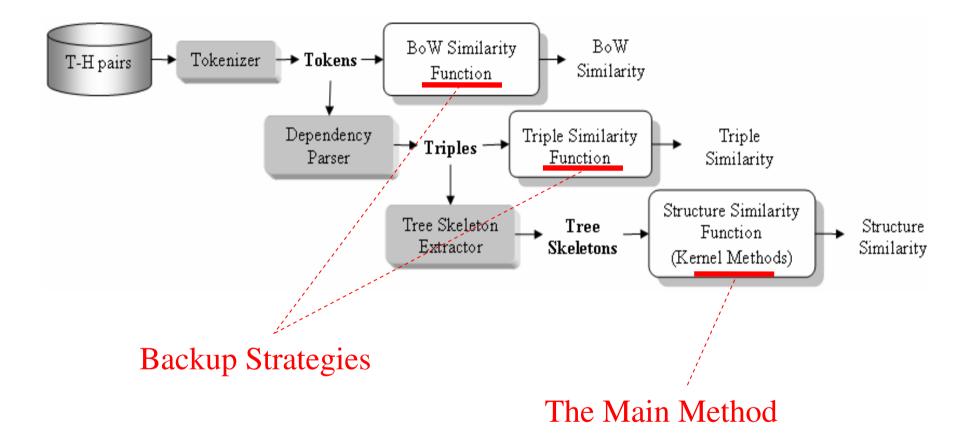
<triple left="E0" right="6">fin:C i call:V</triple> <triple left="2" right="1">Nicolas_Cage:N lex-mod Nicolas:U</triple> <triple left="2" right="3">Nicolas_Cage:N lex-mod Nicolas:U</triple> <triple left="4" right="2">Son:N gen Nicolas_Cage:N </triple> <triple left="6" right="4">Call:V s son:N</triple>

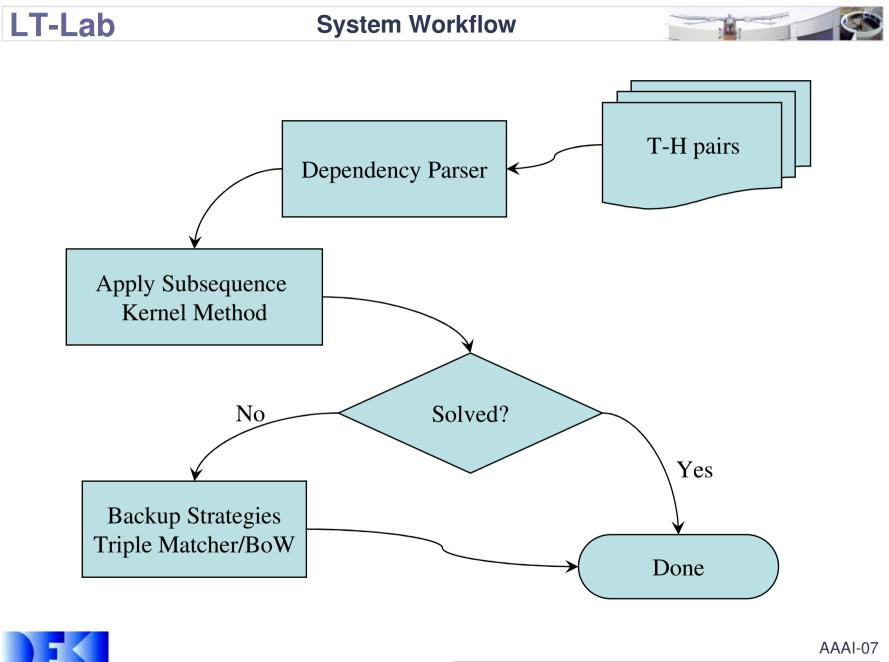


- ☆ Dependency Structure
 - A DAG where nodes represent words and edges represent directed grammatical functions
 - We consider this as a "shallow semantic representation"
 - We use Minipar (Lin, 1998) and StanfordParser (Klein and Manning, 2003) as current parsing engines

LT-Lab

LT-Lab System Overview: Feature Extraction

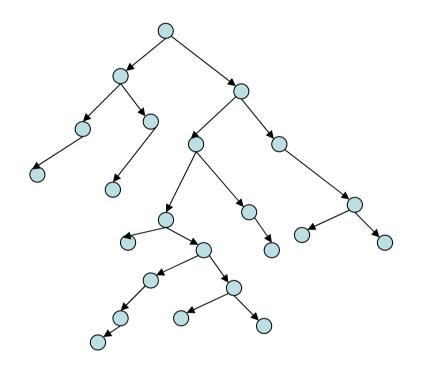


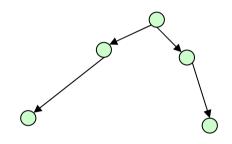


LT-Lab Basic idea, step 1: Dependency parsing

Dependency Tree for T

Dependency Tree for H



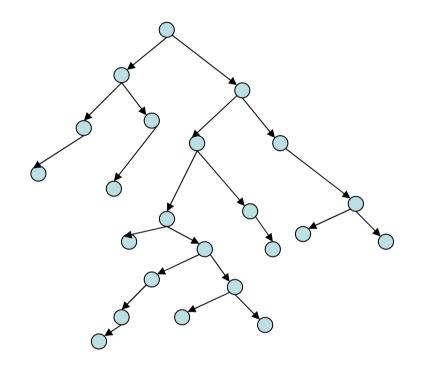


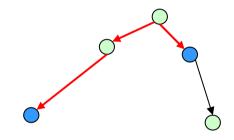
100

LT-Lab Basic idea, step 2: verb/noun subtree of H

Dependency Tree for T

Dependency Tree for H

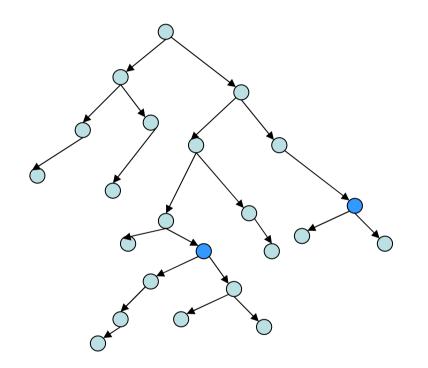


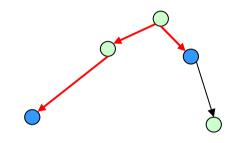


LT-Lab Basic idea, step 3: Foot node alignment

Dependency Tree for T

Dependency Tree for H



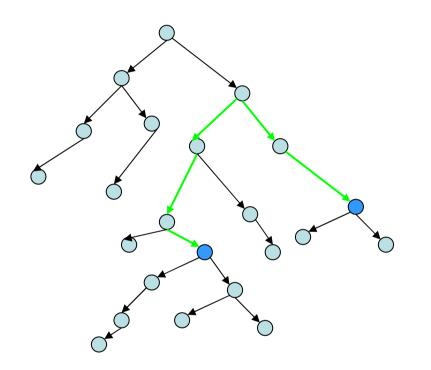


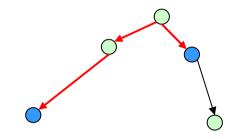
100

LT-Lab Basic idea, step 4: Root node identification in T

Dependency Tree for T

Dependency Tree for H

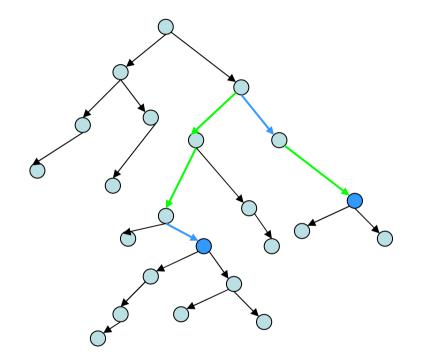


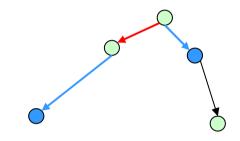


LT-Lab Basic idea, step 5: Spine Difference

Dependency Tree for T

Dependency Tree for H

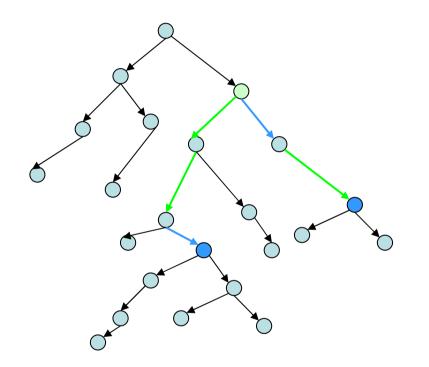


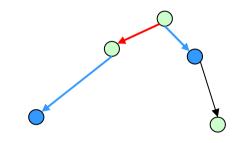


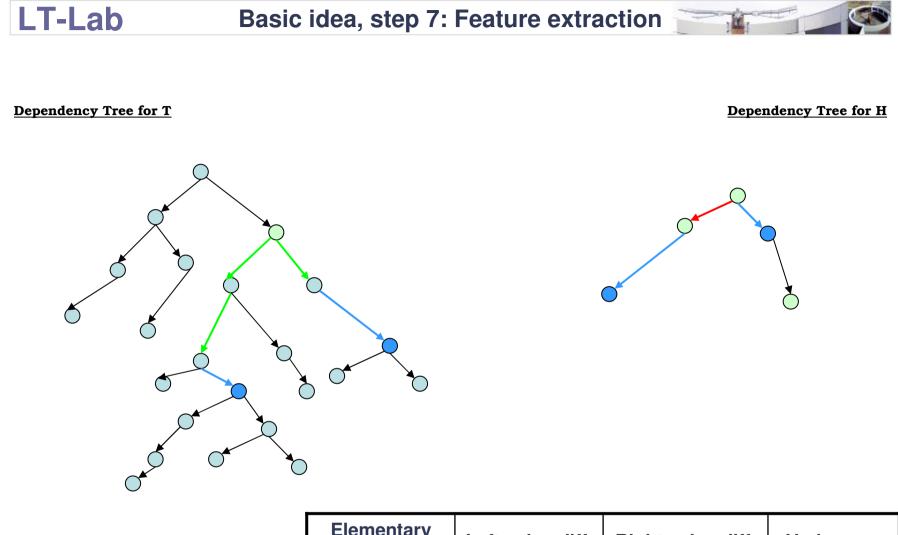
LT-Lab Basic idea, step 6: Root node alignment

Dependency Tree for T

Dependency Tree for H







Elementary Predicate	Left spine diff.	Right spine diff.	<u>Verb cons.</u>
<u><u>T:</u></u>			Ŧ
<u>H:</u>		3	I
			AAAI-07

LT-Lab A Natural Language Example

☆ Pair: id="61" entailment="YES" task="IE" source="RTE"

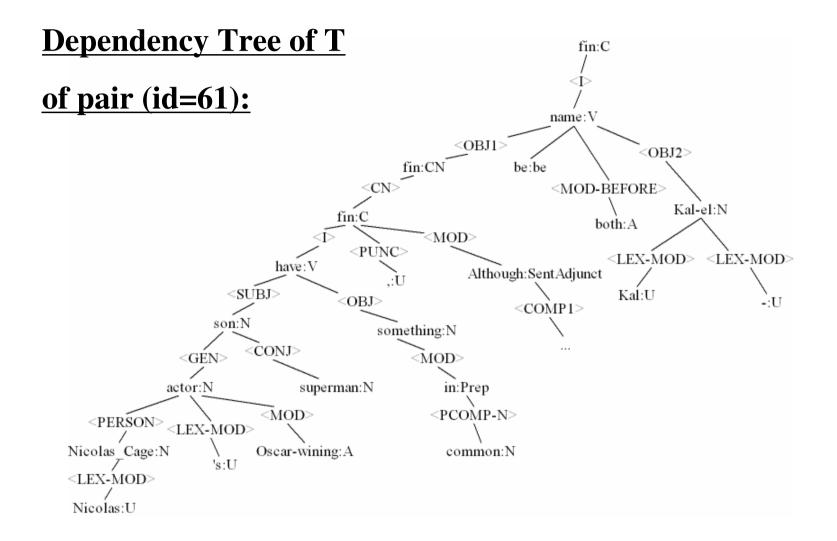
- Text:

Although they were born on different planets, Oscarwinning actor **Nicolas Cage**'s new **son** and Superman have something in common, both were named **Kal-el**.

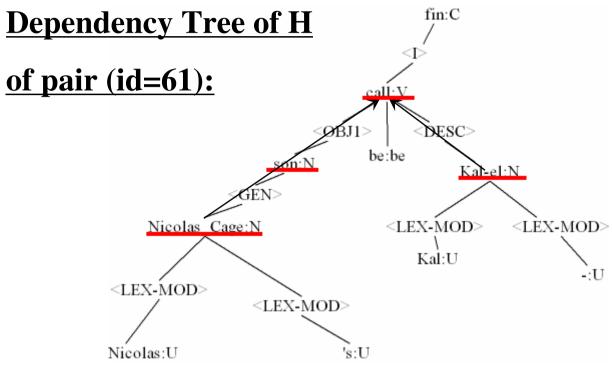
– Hypothesis:

Nicolas Cage's son is called Kal-el.

Dependency Graph



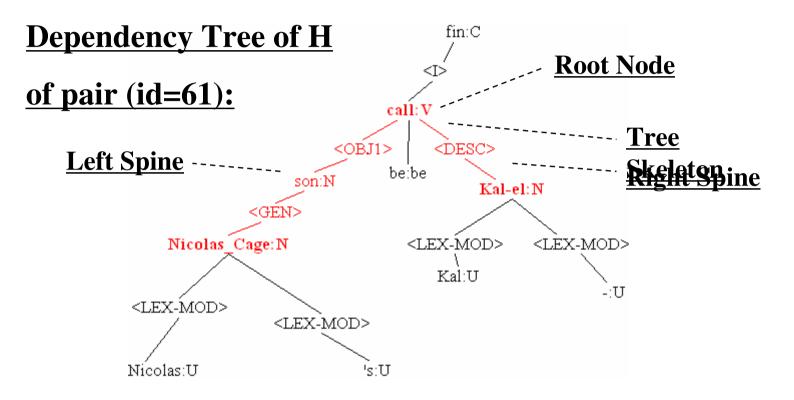
Dependency Graph (cont.)



• Observations Nicolassicage Sangon is called Kal-el.

• H can help us to identify the relevant parts in T

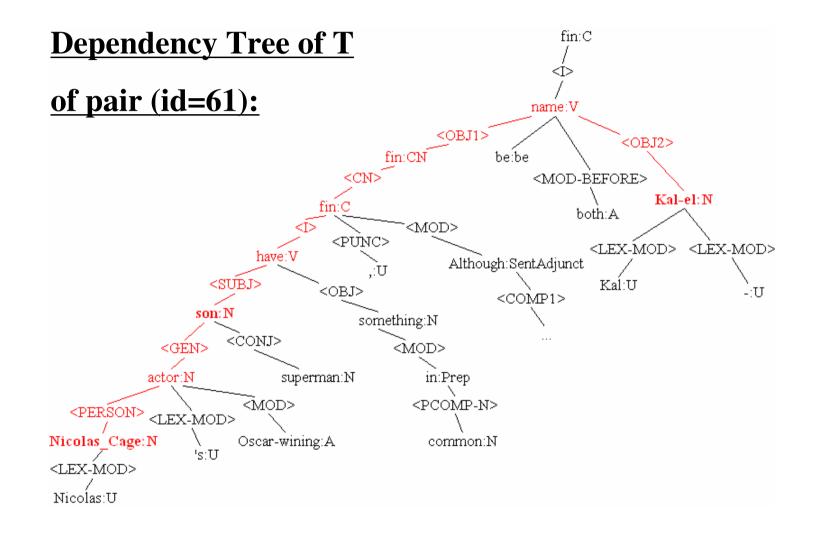
LT-Lab



Nicolas Cage's son is called Kal-el.

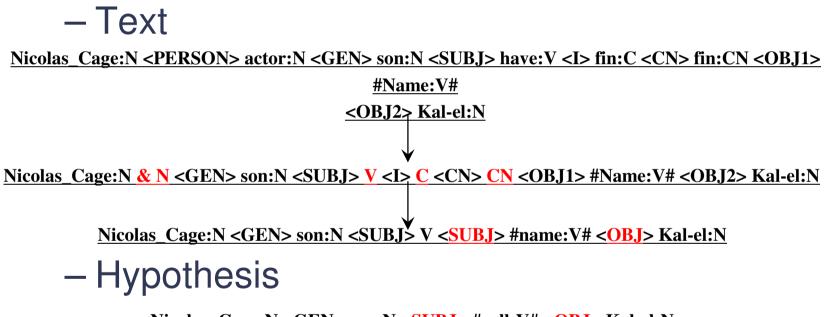
LT-Lab

LT-Lab



German Research Center for Artificial Intelligence

☆ Left Spine #Root Node# Right Spine



Nicolas_Cage:N <GEN> son:N <<mark>SUBJ</mark>> #call:V# <<mark>OBJ</mark>> Kal-el:N

LT-Lab

☆ Merging

LT-Lab

- Left Spines: exclude Longest Common Prefixes
- Right Spines: exclude Longest Common Suffixes
- ☆ RootNode Comparison
 - Verb Consistence (VC)
 - Verb Relation Consistence (VRC)
 Left Spine Difference (LSD)

Nicolas_Cage:N <GEN> son:N <<u>SUBJ></u> V <<u>SUBJ></u> #name:V# <OBJ> Kal-el:N

Nicolas_Cage:N <GEN> son:N <SUBJ> #call:V# <OBJ> Kal-el:N

☆ Pattern Format

- − <LSD, RSD, VC, VRC> \rightarrow Predication
- Example: <"SUBJ V", "", 1, 1> \rightarrow YES
- ☆ Closed-Class Symbol (CCS)

Types	Symbols
Dependency Relation Tags	SUBJ, OBJ, GEN,
POS Tags	N, V, Prep,

- LSD and RSD are either NULL or CCS sequences

☆ Pair: id="247" entailment="YES" task="IE" source="BinRel"

- Text:

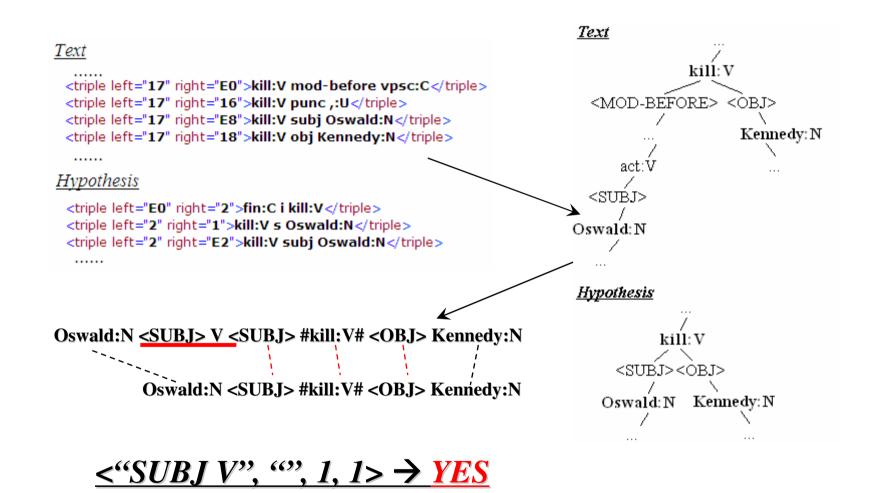
Author Jim Moore was invited to argue his viewpoint that Oswald , acting alone , killed Kennedy.

– Hypothesis:

Oswald killed Kennedy.

LT-Lab

Testing Phase (cont.)



German Research Center for Artificial Intelligence

☆ Entailment methods:

- Bag-of-Words (BoW)
- Triple Set Matcher (TSM)
- Minipar + Sequence Kernel + Backup Strategies (Mi+SK+BS)
- StanfordParser + Sequence Kernel + Backup Strategies (SP+SK+BS)

☆ <u>Classifier:</u>

- SVM (SMO) classifier from the WEKA ML toolkit

☆ From RTE challenges:

- RTE-2 Dev Set (800 T-H pairs) + Test Set (800 T-H pairs)
- RTE-3 Dev Set (800 **T**-**H** pairs) + Test Set (800 **T**-**H** pairs)

☆ Additional data for IE and QA tasks:

- Automatically collected from MUC6, BinRel (*Roth and Yih, 2004*), TREC-2003
- Manually classified into yes/no concerning entailment relation

Systems\Tasks	IE	IR	QA	SUM	ALL		
Exp A1: 10-Fold Cross-Validation on Dev+Test Set							
BoW	50%*	58.8%	58.8%	74%	60.4%		
TSM	50.8%	57%	62%	70.8%	60.2%		
Mi+SK+BS	61.2%	58.8%	63.8%	74%	64.5%		
Exp A	Exp A2: Train: Dev Set (50%); Test: Test Set (50%)						
BoW	50%	56%	60%	66.5%	58.1%		
TSM	50%	53%	64.5%	65%	58.1%		
Mi+SK+BS	62%	61.5%	64.5%	66.5%	63.6%		

* The accuracy is actually 47.6%. Since random guess will achieve 50%, we take this for comparison.

Systems\Tasks	IE	IR	QA	SUM	All		
Exp B1: 10-fold Cross Validation on RTE-3 Dev Data							
BoW	54.5%	70%	76.5%	68.5%	67.4%		
TSM	53.5%	60%	68%	62.5%	61.0%		
Mi+SK+BS	63%	74%	79%	68.5%	71.1%		
SP+SK+BS	60.5%	70%	81.5%	68.5%	70.1%		
Exp B2: Train: Dev Data; Test: Test Data							
Mi+SP+SK+BS	58.5%	70.5%	79.5%	59%	66.9%*		

* The 5th place of RTE-3 among 26 teams

LT-Lab Components of the 5th best systems

Systems	Acc. %	Lx*	Ng	Sy	Se	LI	С	ML	В
Hickl et al.	80,00	Х	X	X	X		X	X	Х
Tatu et al.	72,25	Х				Х			Х
Iftene	69,13	Х		Х					Х
Adams	67,00	Х	Х				X	X	
DFKI	66,87			Х				X	

- * Following the notation in (*Giampiccolo et al., 2007*):
 - Lx: Lexical Relation DB;
 - Ng: N-Gram / Subsequence overlap;
 - Sy: Syntactic Matching / Alignment;
 - Se: Semantic Role Labeling;
 - LI: Logical Inference;
 - C: Corpus/Web;
 - ML: ML Classification;
 - B: Entailment corpora/Background Knowledge;

\Rightarrow Puristic approach:

- We do not exploit any additional knowledge source beside the dependency trees nor have we extended the RTE training data
- \Rightarrow Relational method:
 - For the **IE** task, SK method gives highest improvements
 - Kernel method seem to be more appropriate if the underlying task reveals a more "relational nature"
- \Rightarrow Fallback strategies:
 - The "shallow" methods realized through BoW and TSM seem to work better for IR and SUM.

LT-Lab

LT-Lab

☆ IE: MUC6, BinRel Corpus

- T: relevant sentence(s)
- H: NE + Relation + NE

Dole had hoped to pull out a win in North Carolina, the home state of his wife, Elizabeth.

☆ **QA:** TREC2003 QA

- T: (ir)relevant sentence(s)

Vice-President Albert Gore described the book "critically important" and compared it with "Silent Spring," Rachel Carson's 1962 book that set off a movement to ban DDT and other pesticides.

- **H**: question + answer

T

What book did Rachel Carson write in 1962? Silent Spring

Only SK method on Extra data (460 out of 750)

Methods\ tasks	IE (MUC,BinRel)	QA (TREC2003)	Overall
BoW	62.9%	61.4%	62.3%
TSM	64.9%	62.3%	63.8%
SK	76.3%	65.7%	74.5%

Only SK method on RTE-2 data

Exps\Tasks	IE	IR	QA	SUM	ALL
ExpA1: coverage	63.3%	18.3%	36.3%	16.3%	536
ExpA1: acc. of matches	64%	67.1%	66.2%	73.9%	66.2%
ExpA2: coverage	63.5%	23.5%	44%	17%	296
ExpA2: acc. of matches	66.9%	70.2%	58.0%	64.7%	64.5%

☆ <u>Coverage:</u>

- For IE and QA pairs, SK+BS reveals a better coverage, more than a half
- For IR and SUM pairs, although it achieves good accuracies, the number of covered cases is low

☆ Task-based strategy selection:

- IE and QA: SK+TSM
- IR: SK+BoW
- SUM: BoW

LT-Lab

☆ RTE core method

- Increase coverage of SK method
 - Integrate IE technology, especially NE recognition
 - Lexical semantics of function words
 - Extend to n-ary hypothesis texts
- Adapt to German language (e.g., rich morphology, noun compounds)
- ☆ Applications
 - Entailment-based QA system on structured data (*QALL-ME*, project funded by European Commission)
 - Unsupervised Relation extraction (*IDEX*, project funded by Investionsbank Berlin)

