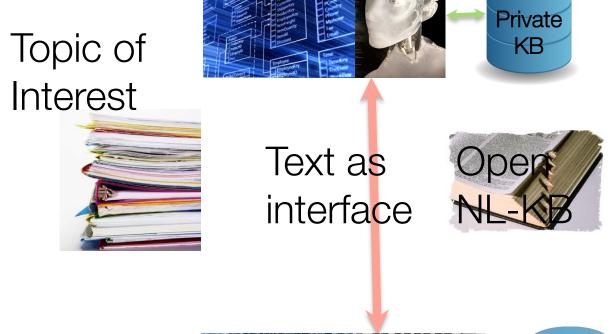


Interactive Text Exploration


Günter Neumann, DFKI, Saarbrücken, Germany Joined work with Sven Schmeier, DFKI, Berlin.

+ Overview of my talk

- Motivation and Background
- Interactive exploratory search
- Methods and technology
- Where we are, where we want to go

 The extraction, classification, and talking about information from large-scale unstructured noisy multi-lingual text sources.

"Reading text and talking about it"

+ Motivation

- Today's Web search is still dominated by one-shot-search:
 - Users basically have to know what they are looking for.
 - The documents serve as answers to user queries.
 - Each document in the ranked list is considered independently.
- Restricted assistance in contentoriented interaction

About 783,000 results (0.27 seconds)
Von Willebrand disease - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Von_Willebrand_disease ~
Von Willebrand disease (vWD) is the most common hereditary coagulation abnormality
described in humans, although it can also be acquired as a result of other ...
Signs and symptoms - Diagnosis - Classification and types
What Is von Willebrand Disease? - NHLBI, NIH
www.nhlbi.nih.gov > Health Information for the Public > Health Topics ~
Von Willebrand disease (VWD) is a bleeding disorder. It affects your blood's ability to
clot. If your blood doesn't clot, you can have heavy, hard-to-stop bleeding ...
Von Willebrand disease - Mayo Clinic

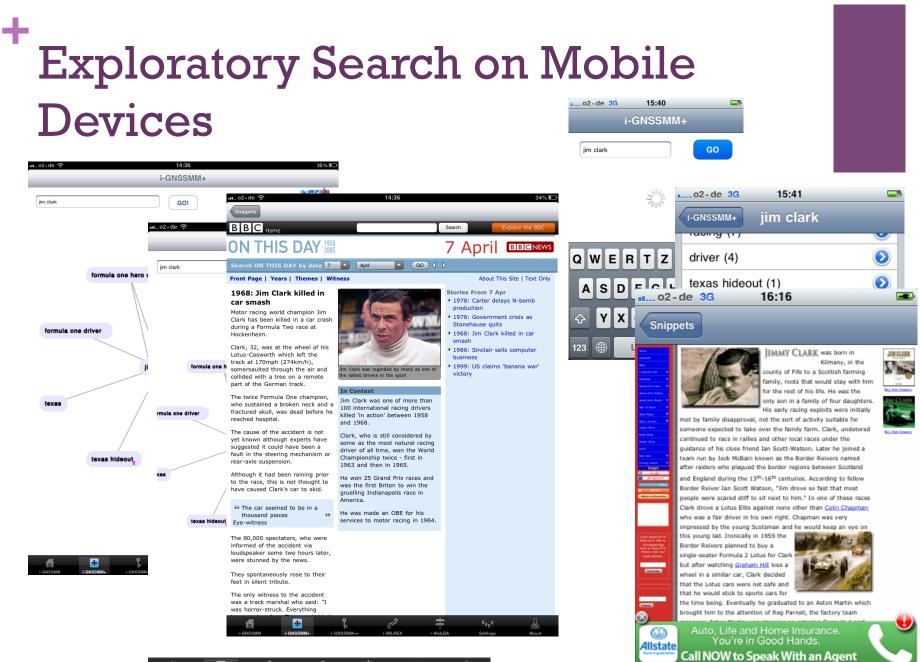
Search tools

von Willebrand disease - Mayo Cinne www.mayoclinic.org/diseases.../von-willebrand-disease/.../con-20030195 * Von Willebrand disease is a condition that can cause extended or excessive bleeding. The condition is most often inherited but in rare cases may develop later ...

OMIM Entry - # 193400 - VON WILLEBRAND DISEASE ... www.omim.org/entry/193400 -

The classification of **von Willebrand disease** has a long and complex history. The current classification is based on that described by Sadler (1994) and updated ...

Searches related to von willebrand disease

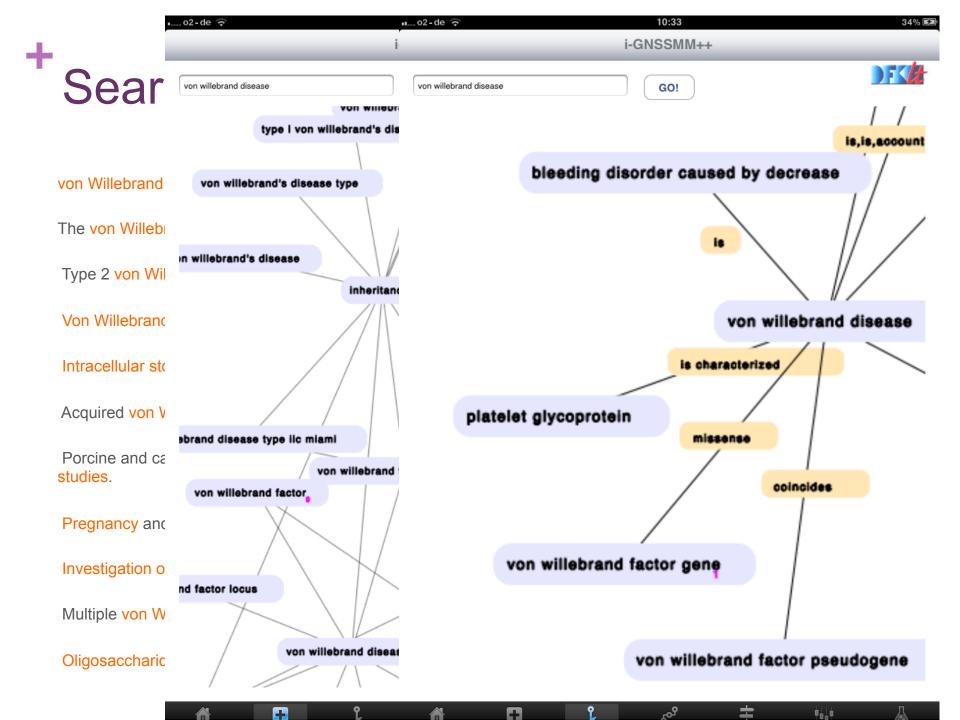

von willebrand disease

von willebrand **factor** von willebrand disease **diagnosis** von willebrand disease **symptoms** von willebrand disease **emedicine** von willebrand disease **treatment** von willebrand disease **genetics** <u>von willebrand disease **and pregnancy**</u> von willebrand disease **in dogs**

+ Exploratory Search

- We consider a user query as a specification of a topic that the user wants to know and learn more about. Hence, the search result is basically a graphical structure of the topic and associated topics that are found.
- The user can interactively explore this topic graph using a simple and intuitive (touchable) user interface in order to either learn more about the content of a topic or to interactively expand a topic with newly computed related topics.

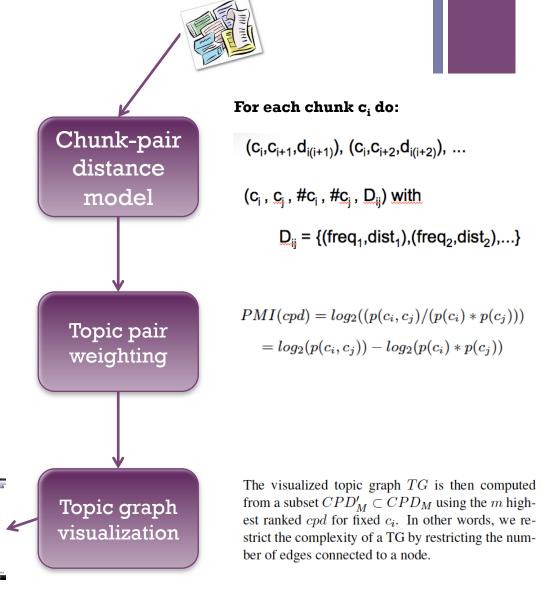
109


÷

...

Our Approach – On-demand Interactive Open Information Extraction

- Topic-driven Text Exploration
 - Search engines as API to text fragment extraction (snippets)
- Dynamic construction of topic graphs
 - Empirical distance-aware phrase collocation
 - Open relation extraction
- Interaction with topic graphs
 - Inspection of node content (snippets and documents)
 - Query expansion and eventually additional search
 - Guided exploratory search for handling topic ambiguity


+ Topic Graphs

Main data structure

- A graphical summary of relevant text fragments in form of a graph
- Nodes and edges are text fragments
 - Nodes: entities phrases
 - Edges: relation phrases
 - Content of a node: set of snippets it has been extracted from, and the documents retrievable via the snippets' web links.
- Properties
 - Open domain
 - Dynamic index structure
 - Weight-based filtering/construction

Construction of Topic graphs

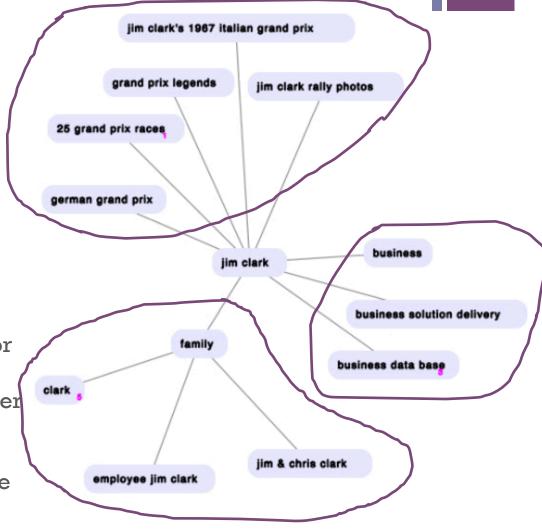
- Identification of relevant text fragments
 - A document consisting of topic-query related text fragments
- Identification of nodes and edges
 - Distance-aware collocation
 - Clustering-based labels for filtering
- Technology
 - Shallow Open relation Extraction (ORE) for snippets
 - Deeper ORE for more regular text

Evaluation of Mobile Touchable User Interface

20 testers

- 7 from our lab
- 13 "normal" people

10 topic queries


- Definitions: EEUU, NLF
- Person names: Bieber, David Beckham, Pete Best, Clark Kent, Wendy Carlos
- General: Brisbane, Balancity, Adidas.
- Average answer time for a query: ~0.5 seconds

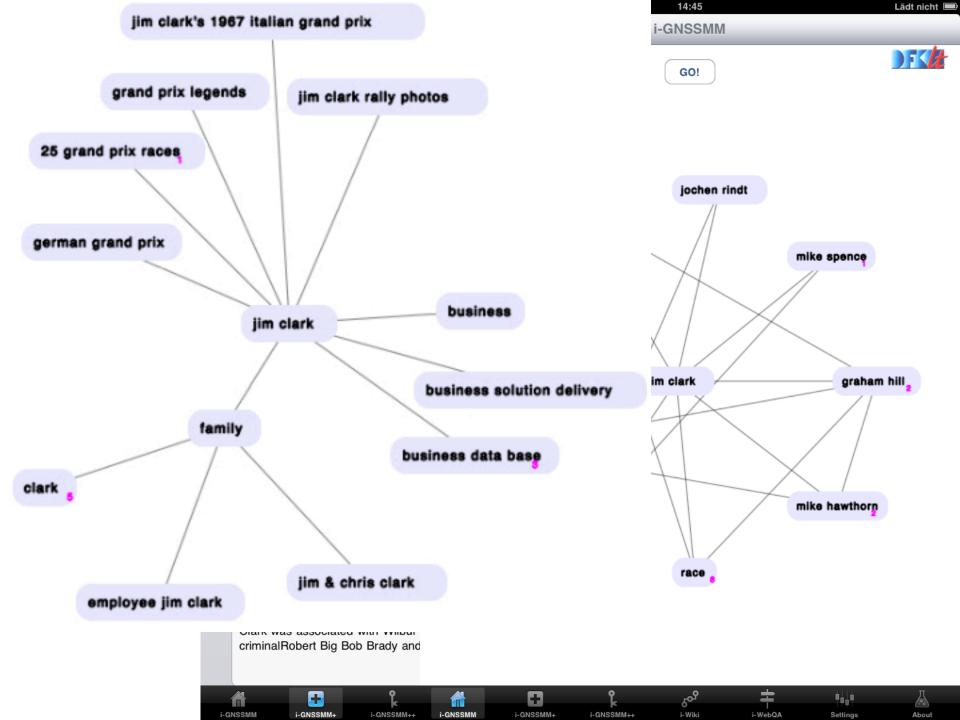

Table 1: Google					
#Question	v.good	good	avg.	poor	
results first sight	55%	40%	15%	-	
query answered	71%	29%	-	-	
interesting facts	33%	33%	33%	-	
suprising facts	33%	-	-	66%	
overall feeling	33%	50%	17%	4%	

Table 2: i-GNSSMM					
#Question	v.good	good	avg.	poor	
results first sight	43%	38%	20%	-	
query answered	65%	20%	15%	-	
interesting facts	62%	24%	10%	4%	
suprising facts	66%	15%	13%	6%	
overall feeling	54%	28%	14%	4%	

+ Guided Exploratory Search

- Problem: a topic graph might merge information from different topics/concepts
- Solution:
 - Guided exploratory search
 - Using an external KB (e.g., Wikipedia)
- Strategy
 - Compute topic graph TD_q for query q
 - Ask KB (Wikipedia or any other KB) if q is ambiguous
 - Let user select reading r, and use selected Wikipedia article for expanding q to q'
 - Compute new topic graph TD_q'

+ Evaluation

List of celebrity guest stars in Sesame Street:

209 different queries

List of film and television directors:

229 different queries

+ Evaluation

- We want to analyze whether our approach helps building topic graphs which express a preference for the selected reading.
- Automatic evaluation:
 - Method
 - For each reading article r, compute topic graph TD_r using expanded query
 - Compare TD_r with all readings and check whether best reading equals r
 - Advantage: No manual checking necessary
 - Disadvantage: Correctness of TD_R needs to be proven
- Manual evaluation:
 - Double-check the results of the automatic evaluation
 - Prove the results at least for the examples used in evaluation

set	#queries	good	bad	acc
Sesame + Colloc.	209	375	54	87.41 %
Sesame + Colloc.+ SemLabel	209	378	51	88.11 %
Hollywood + Colloc.+ SemLabel	229	472	28	94.40 %
Hollywood + Colloc.+ SemLabel	229	481	19	96.20 %

	1 st task	2 nd task			
set	guidance	associated topics	good	bad	accuracy
Sesame	ca. 95 %	167	132	35	79.04 %
Hollywood	ca. 95 %	145	129	16	89.00 %
Sesame	> 97 %	167	108	59	64.67 %
Hollywood	> 97 %	145	105	40	72.41 %

Automatic

- Colloc. empirical collocations for topic graph computation
- SemLabel Filtering of nodes using semantic labels computed via SVD (Carrot2)

Manual

- 2 test persons
- 20 randomly chosen celebrities and 20 randomly chosen directors
- 1st task: Exploratory search and personal judgments of the Guidance by the system
- 2nd task: Check all associated nodes after choosing a meaning in the list

+ Summary and Discussion

- Interactive topic graph exploration
 - Unsupervised open information extraction
 - On-demand computation of topic graphs
 - Strategies for guided exploratory search
 - Effective for Web snippet like text fragments
 - Implemented for EN and DE on mobile touchable device
- Drawback
 - Problems in processing text fragments from large-scale text directly
 - Especially Open Relation Extraction for German is challenging
- Solution:
 - Nemex A new multilingual Open Relation Extraction approach

Nemex – A Multilingual Open Relation Extraction Approach

- Uniform multilingual core ORE
 - N-ary extraction
 - Clause-level

Multi-lingual

- Very few language-specific constraints over dependency trees
- Current: English and German

Efficiency

- Complete pipeline (form sentence splitting, to POS-tagging, to NER, to dependency parsing, to relation extraction)
- About 800 sentences/sec
- Streaming based small memory footprint

German ORE is Challenging YES WE CAN!

- Challenging properties of German
 - Morphology/Compounding*
 - No strict word ordering (especially between phrases)
 - Discontinuous elements, e.g., verb groups
- Simple, pattern-based ORE approach difficult to realize
- Deep sentence analysis helpful
 - Current multilingual dependency parsers provide very good robustness!
 - DFKI's MDParser is very efficient: 1000sentences/second (but see also Chen&Manning, 2014)
- Challenge:
 - Can we design a core uniform ORE approach for English, German, ... ?

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz "the law concerning the delegation of duties for the supervision of cattle marking and the labelling of beef"

+ Multilingual ORE – Our Approach

Multi-lingual open relation extraction

- Only few Language-specific constraints necessary (constraints over direct dependency relations (head, label, modifier))
- Few language-independent constraints in case of uniform dependency annotations, e.g., McDonald et al., 2013

Processing strategy

- Head-Driven Phrase Extraction
- Top-down head-driven traversal of dependency tree

Mammalian NMD was mostly studied in cultured cells so far and there was no direct evidence yet that NMD could operate in the brain .

Dependency Tree (uniform tag and label set; Conll format): 1:Mammalian:NOUN:compmod:2 2:NMD:NOUN:nsubjpass:5 3:was:VERB:auxpass:5 4:mostly:ADV:advmod:5 5:studied:VERB:ROOT:0 6:in:ADP:adpmod:5 7:cultured:ADJ:amod:8 8:cells:NOUN:adpobj:6 9:so:ADV:advmod:10 10:far:ADV:advmod:5

11:and:CONJ:cc:5
12:there:DET:expl:13
13:was:VERB:conj:5
14:no:DET:det:16
15:direct:ADJ:amod:16
16:evidence:NOUN:nsubj:13
17:yet:ADV:advmod:13
18:that:ADP:mark:21
19:NMD:NOUN:nsubj:21
20:could:VERB:aux:21
21:operate:VERB:advcl:13
22:in:ADP:adpmod:21
23:the:DET:det:24
24:brain:NOUN:adpobj:22
25:..:p:5

(Mammalian NMD, was mostly studied so far, in cultured cells) (no direct evidence, was yet, there) (NMD, could operate, in the brain)

**Annotated sentence:

*

[[[Arg11 Mammalian NMD Arg11]]] --->Rel1 was mostly studied [[[Arg13 in cultured cells Arg13]]] so far Rel1<--- and [[[Arg23 there Arg23]]] --->Rel2 was [[[Arg21 no direct evidence Arg21]]] yet Rel2<--- that [[[Arg31 NMD Arg31]]] --->Rel3 could operate Rel3<----[[[Arg33 in the brain Arg33]]].

Zuvor hatte Asmussen mitgeteilt, dass er sein Amt als EZB-Direktor in Kürze aufgeben will:

*Earlier had Asmussen informed, that he his position as EZB-director in the_near_future quit will: Earlier Asmussen has informed that he will quit his position as EZB-director in the_near_future:

Dependency Tree (uniform tag and label set; Conll format): 1:Zuvor:ADV:advmod:2 2:**hatte**:VERB:ROOT:0 3:Asmussen:NOUN:nsubj:2 4:mitgeteilt:VERB:aux:2 5:,:.:p:2 6:dass:CONJ:mark:14 7:er:PRON:nsubj:14 8:sein:PRON:poss:9 9:Amt:NOUN:dobj:14 10:als:ADP:adpmod:14 11:EZB-Direktor:NOUN:adpobj:10 12:in:ADP:adpmod:14 13:Kürze:NOUN:adpobj:12 14:aufgeben:VERB:NMOD:2 15:will:VERB:aux:14 16:::::NMOD:2

(Asmussen, Zuvor hatte mitgeteilt) (er, aufgeben will, sein Amt, als EZB-Direktor, in Kürze)

Annotation:

--->Rell Zuvor hatte [[[Arg11 Asmussen Arg11]]] mitgeteilt Rel1<---, dass [[[Arg21 er Arg21]]] [[[Arg22 sein Amt Arg22]]] [[[Arg23 als EZB-Direktor Arg23]]] [[[Arg24 in Kürze Arg24]]] --->Rel2 aufgeben will Rel2<--- :

Nemex – Current Status

Properties

- Efficient text stream for EN and DE implemented
- Uniform POS and Dependency labels
- Small set of uniform constraints over dependency relations
- Very fast & Domain independent
 - About 800 sentences per second for complete pipeline
- Current /near future work
 - Improve cross-clausal resolution
 - Extensive evaluation, intrinsic and extrinsic
 - Adaptation to other languages
 - Conll based dependency treebanks (uniform and specific)

+ Future action points

Cross-sentence open information extraction

- Goal: co-reference resolution, integration of more finegrained information to dependency parsers (morphology), text inference
- Beyond isolated topic graphs
 - Goal: share topic graphs, compare topic graphs, monitor topic graphs
- Interactive text data mining and knowledge discovery
 - Goal: support abstract interactions, e.g., "more like this", "less like this", "what is this", ...

DONE

Thank you for Your Attention !