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Hybrid

• Is a system, if consists of different 
technologies

• can be combined

• each one depicts a solution by its own

• the integration constitute an innovative 
plus for the whole system
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Information Extraction

• The aim of information extraction (IE) is the 
identification and structuring of domain 
specific information from free text by 
skipping irrelevant information at the same 
time.  

• What counts as relevant is given to the 
system in form of pre-defined domain 
specific annotations, lexicon entries or rules. 
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Eine Mixtur aus wachsendem Dienstleistungsgeschäft, Kostensenkungen und erfolgreichen 
Akquisitionen brachte Wettbewerber IBM im zweiten Quartal deutlich verbesserte Ergebnisse. 
Zwischen April und Juni stiegen der Umsatz um 10% auf 21,6 Mrd.$ und der Reingewinn auf 
1,7 Mrd.$. Sonderlasten in Höhe von 1,4 Mrd.$ hatten den Vorjahresgewinn auf 56 Mill.$ gedrückt.
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IE - History
• Early IE-systems were mainly rule-

based (manual or learned) and the 
underlying methodology was 
specialized for specific applications, cf. 
MUC systems of the 90th.

• One result of the MUC challenges was 
a systematic division of labor into IE 
subtasks

• Named-Entity Extraction (NER)

• Relation Entity Extraction (REE)

• Event Entity Extraction (EEE)

• Coreferential analysis
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IE - History
• Early IE-systems were mainly rule-

based (manual or learned) and the 
underlying methodology was 
specialized for specific applications, cf. 
MUC systems of the 90th.

• One result of the MUC challenges was 
a systematic division of labor into IE 
subtasks

• Named-Entity Extraction (NER)

• Relation Entity Extraction (REE)

• Event Entity Extraction (EEE)

• Coreferential analysis

Bill Gates 
is a Person

Microsoft
is a Company

founder_of

hq_located_in

lives_in

The founder of Microsoft, Bill Gates, lives in Seattle, Washington, which is also the place of 
the company‘s headquarter.

Seattle is a Location
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IE - the Present
• There exists knowledge-based IE (KIE) and statistical IE (SIE)

• SIE is the State-of-the-Art in research, WIE in industry

• There exists a number of different strategies for the various IE-
subtasks

• from simple gazetteers to complex ontologies

• from supervised, to minimal supervised to unsupervised 
Machine Learning algorithms

• Recently, the research focus is on NER, REE, Web-based IE, 
scalability, domain adaptivity, ...

• Open question: Which method is actually better suited for which 
text source, domain and application? 

Dienstag, 8. Februar 2011



Hybrid IE

• Methods and strategies for the combination 
of different IE-components and the analysis 
of their plausibility.

• What are possible combinations ?
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Wort1 Wort4Wort3Wort2 Wort5

LOC 2 PER 3

ORG 4 LOC 5LOC 3
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Example: NER

Ling
Pipe

Open
NLP

BiQue

Combiner

Sprout

Problem:
- Ambiguities
- Bracketing

Wort1 Wort4Wort3Wort2 Wort5

LOC 2 PER 3

ORG 4 LOC 5LOC 3

Solutions:
- meta-learning
- consider IEi as independent 
black-boxes
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Example: NER

Ling
Pipe

Open
NLP

BiQue

Combiner

Sprout

Good news:*
Hybrid NER are better 
than the single NER wrt. 
recall and precision.

Combining Information Extraction Systems Using Voting and Stacked Generalization
by: G Sigletos et al.,  J. Mach. Learn. Res., Vol. 6 (2005), pp. 1751-1782. 

Wort1 Wort4Wort3Wort2 Wort5

LOC 2 PER 3

ORG 4 LOC 5LOC 3

Problem:
- Ambiguities
- Bracketing
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Example: NER

Ling
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Open
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BiQue

Combiner

Sprout

Meta learning
- majority voting
- stacking

Strategies:
- maximum weights
- linear regression: PC=1-∏i(1-Pi)
- cross-validation

Good news:*
Hybrid NER are better 
than the single NER wrt. 
recall and precision.

Combining Information Extraction Systems Using Voting and Stacked Generalization
by: G Sigletos et al.,  J. Mach. Learn. Res., Vol. 6 (2005), pp. 1751-1782. 
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Example: Template Filling

MEM - Maximum 
Entropy Modeling

DOP - Data-
Oriented Parsing

Iterative Tag
Insertion

Corpus:
German press releases about 
turnover (Training: 4850 
Tokens, Testing: 1000 Tokens)

Der Gewinn <Org>der Schweppes 
Gmbh & Co.</Org> KG 

 betrug <TIMEX>im ersten 
Quartal 1997</TIMEX> weit 
ueber 20 Mio. DM.

Neumann, G. (2006) A Hybrid Machine Learning Approach for Information Extraction from Free Texts. In Spiliopoulou 
at al. (Eds). From Data and Information Analysis to Knowledge Engineering, Springer series: Studies in Classification, 
Data Analysis, and Knowledge Organization, pages 390-397, Springer-Verlag Berlin, Heidelber, New-York. 
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Insertion
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Tokens, Testing: 1000 Tokens)

Der Gewinn <Org>der Schweppes 
Gmbh & Co.</Org> KG 

 betrug <TIMEX>im ersten 
Quartal 1997</TIMEX> weit 
ueber 20 Mio. DM.

Result:
- only MEM:  79.3 %
- only DOP:  51.9 %
- both:        85.2 %

Neumann, G. (2006) A Hybrid Machine Learning Approach for Information Extraction from Free Texts. In Spiliopoulou 
at al. (Eds). From Data and Information Analysis to Knowledge Engineering, Springer series: Studies in Classification, 
Data Analysis, and Knowledge Organization, pages 390-397, Springer-Verlag Berlin, Heidelber, New-York. 
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Feature based Strategies

Feature
Extraktion

Feature
Extraktion

Feature
Extraktion

Machine
Learning

Feature
Extraktion

Idea:
- choose a ML algorithm
- choose manually and 
automatically determined feature 
templates
- combination of knowledge and 
statistics
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through 
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QA and Hybrid IE

• Observation: answer extraction is a kind 
of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

Figueroa, A., Neumann, G. and Atkinson, J. (2009) Searching for Definitional Answers 
on the Web using Surface Patterns. In journal IEEE Computer volume 42 number 4, 
Pages 68-76, IEEE, 4/2009.
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QA and Hybrid IE

• Observation: answer extraction is a kind 
of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

Domain open answering of definition questions from the Web
Problem:
How to find optimal 
ranking of answer 
candidates?

Was ist XYZ ? Web-QA XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a 

Figueroa, A., Neumann, G. and Atkinson, J. (2009) Searching for Definitional Answers 
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Pages 68-76, IEEE, 4/2009.
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Wikipedia as Blueprint!

• Learn from Wikipedia, what a good verbalization 
of a definition looks like!

What is XYZ ?
XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a 

Web-QA
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Wikipedia as Blueprint!

• Learn from Wikipedia, what a good verbalization 
of a definition looks like!

What is XYZ ?
XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a XYZ is a 

Web-QA
Solution:
Rank answer candidates 
according to similarity of 
Wikipedia?

Unsupervised
Learning of

Feature Model

Properties
- automatic computation of POS und NEG 
training examples
- lex-sem feature-templates via 
dependency analysis 
- Maximum Entropy Modeling

Remark: Method is a step towards Web-scalable ontology learning.
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Ontology based IE
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IE

Ontology based IE
The ontology defines the type of the 
information, which has to be 
extracted from texts: e.g., types of or 
institutions and their  inter 
relationship. It defines the structure 
of the data base, which has to be 
extracted automatically with the help 
of OBIE.
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IE

Ontology based IE

Ontology population
ontology learning

The ontology defines the type of the 
information, which has to be 
extracted from texts: e.g., types of or 
institutions and their  inter 
relationship. It defines the structure 
of the data base, which has to be 
extracted automatically with the help 
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IE

Ontology based IE

Ontology population
ontology learningProjekt TheseusOrdo 

TechWatch

The ontology defines the type of the 
information, which has to be 
extracted from texts: e.g., types of or 
institutions and their  inter 
relationship. It defines the structure 
of the data base, which has to be 
extracted automatically with the help 
of OBIE.
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TEG - Tree Extraction 
Grammars

Manually 
written 
extraction 
grammar
CFG

Annotated
Corpus

Trained
corpus-adapted
SCFG

HMM-inspired
Semantik Parser

Rosenfeld, Feldman & Freski „TEG - a hybrid approach to information extraction“, 
Knowledge Information Systems (2006) 1-18.
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TEG - Example

nonterm start Text;
concept Person;
ngram NGFirstName;
ngram NGLastName;
ngram NGNone;
termlist TLHonorific = Mr Mrs Miss Ms Dr;
(1) Person :- TLHonorific NGLastName;
(2) Person :- NGFirstName NGLastName;
(3) Text :- NGNone Text;
(4) Text :- Person Text;
(5) Text :- ;

Hand coded grammars
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(4) Text :- Person Text;
(5) Text :- ;

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

Hand coded grammars

Parse corpus

P(Dr | TLHonorific) = 1/5 (choice of one term among five equiprobable
ones),
P(Dr | NGFirstName) ≈ 1/N, where N is the number of all known words
(untrained ngram behaviour).

Collect statistics
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nonterm start Text;
concept Person;
ngram NGFirstName;
ngram NGLastName;
ngram NGNone;
termlist TLHonorific = Mr Mrs Miss Ms Dr;
(1) Person :- TLHonorific NGLastName;
(2) Person :- NGFirstName NGLastName;
(3) Text :- NGNone Text;
(4) Text :- Person Text;
(5) Text :- ;

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

Hand coded grammars
termlist TLHonorific = Mr Mrs Miss Ms <2>Dr;
Person :- <2>TLHonorific NGLastName;
Text :- <11>NGNone Text;
Text :- <2>Person Text;
Text :- <2>;

adapt rules

Parse corpus

P(Dr | TLHonorific) = 1/5 (choice of one term among five equiprobable
ones),
P(Dr | NGFirstName) ≈ 1/N, where N is the number of all known words
(untrained ngram behaviour).

Collect statistics
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TEG - Experiments
MUC-7 NER task

ACE-2 relation extraction

INC relation extraction
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TEG - Potential
• Advantages

• precise rules can be specified for arbitrary IE applications

• external knowledge sources can be integrated via termlist

• ngram-context for terminals via ngram (usable for disambiguation)

• external systems can be integrated

• „ngram ngOrgNoun featureset ExtPoS restriction Noun;“

• Possible innovations

• Constraint based formalism as basis for grammar

• Specialized parsing algorithms (e.g.,  supertagging)

• Ontologies as basis for termlist

• Extending grammars on basis of bootstrapping (human-controlled)

• ...
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Conclusion
• Hybrid IE as innovative plus for IE research and 

development.

• There exists already a number of promising and exciting 
approaches.

• High innovation potential to bring language technology, 
knowledge-based and statistical system under one 
umbrella.

• E.g., Multilingual Information Extraction

• E.g., Multi-Channel Information Extraction
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