Hybrid Information Extraction

PD Dr. Günter Neumann DFKI GmbH

Hybrid

- Is a system, if consists of different technologies
 - can be combined
 - each one depicts a solution by its own
 - the integration constitute an innovative plus for the whole system

hybrid engine

hybrid engine

HumanMachine

hybrid engine

HumanMachine

Hybrid Language Processing

Information Extraction

- The aim of information extraction (IE) is the identification and structuring of domain specific information from free text by skipping irrelevant information at the same time.
- What counts as relevant is given to the system in form of pre-defined domain specific annotations, lexicon entries or rules.

turnover(Company, Year, Manner, Amount, Tendendcy, Differnce)

Unternehmen	Jahr	Größe	Betrag	Tendenz	Differenz
Compaq	1998	Umsatz	31 Mrd. USD	+	27%

turnover(Company, Year, Manner, Amount, Tendendcy, Differnce)

Unternehmen	Jahr	Größe	Betrag	Tendenz	Differenz
Compaq	1998	Umsatz	31 Mrd. USD	+	27%

Eine Mixtur aus wachsendem Dienstleistungsgeschäft, Kostensenkungen und erfolgreichen Akquisitionen brachte Wettbewerber IBM im zweiten Quartal deutlich verbesserte Ergebnisse. Zwischen April und Juni stiegen der Umsatz um 10% auf 21,6 Mrd.\$ und der Reingewinn auf 1,7 Mrd.\$. Sonderlasten in Höhe von 1,4 Mrd.\$ hatten den Vorjahresgewinn auf 56 Mill.\$ gedrückt.

turnover(Company, Year, Manner, Amount, Tendendcy, Differnce)

Unternehmen	Jahr	Größe	Betrag	Tendenz	Differenz
Compaq	1998	Umsatz	31 Mrd. USD	+	27%

Eine Mixtur aus wachsendem Dienstleistungsgeschäft, Kostensenkungen und erfolgreichen Akquisitionen brachte Wettbewerber IBM im zweiten Quartal deutlich verbesserte Ergebnisse. Zwischen April und Juni stiegen der Umsatz um 10% auf 21,6 Mrd.\$ und der Reingewinn auf 1,7 Mrd.\$. Sonderlasten in Höhe von 1,4 Mrd.\$ hatten den Vorjahresgewinn auf 56 Mill.\$ gedrückt.

Unternehmen	Jahr	Größe	Betrag	Tendenz	Differenz
IBM	2003	Umsatz	21,6 Mrd. \$	+	10 %

turnover(Company, Year, Manner, Amount, Tendendcy, Differnce)

Unternehmen	Jahr	Größe	Betrag	Tendenz	Differenz
Compaq	1998	Umsatz	31 Mrd. USD	+	27%

Eine Mixtur aus wachsendem Dienstleistungsgeschäft, Kostensenkungen und erfolgreichen Akquisitionen brachte Wettbewerber IBM im zweiten Quartal deutlich verbesserte Ergebnisse. Zwischen April und Juni stiegen der Umsatz um 10% auf 21,6 Mrd.\$ und der Reingewinn auf 1,7 Mrd.\$. Sonderlasten in Höhe von 1,4 Mrd.\$ hatten den Vorjahresgewinn auf 56 Mill.\$ gedrückt.

			And the second	Martine I also	
Unternehmen	Jahr	Größ	Betrag	Tendenz	Differenz
IBM	2003	Umsatz	21,6 Mrd. \$	+	10 %

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks
 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks
 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks

- Named-Entity Extraction (NER)
- Relation Entity Extraction (REE)
- Event Entity Extraction (EEE)
- Coreferential analysis

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks

- Named-Entity Extraction (NER)
- Relation Entity Extraction (REE)
- Event Entity Extraction (EEE)
- Coreferential analysis

Seattle is a Location

IE - History

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks

 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

Seattle is a Location

IE - History

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks
 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

Seattle is a Location

IE - History

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks
 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

- Early IE-systems were mainly rulebased (manual or learned) and the underlying methodology was specialized for specific applications, cf. MUC systems of the 90th.
- One result of the MUC challenges was a systematic division of labor into IE subtasks
 - Named-Entity Extraction (NER)
 - Relation Entity Extraction (REE)
 - Event Entity Extraction (EEE)
 - Coreferential analysis

IE - the Present

- There exists knowledge-based IE (KIE) and statistical IE (SIE)
- SIE is the State-of-the-Art in research, WIE in industry
- There exists a number of different strategies for the various IEsubtasks
 - from simple gazetteers to complex ontologies
 - from supervised, to minimal supervised to unsupervised
 Machine Learning algorithms
- Recently, the research focus is on NER, REE, Web-based IE, scalability, domain adaptivity, ...
- Open question: Which method is actually better suited for which text source, domain and application?

Hybrid IE

- Methods and strategies for the combination of different IE-components and the analysis of their plausibility.
- What are possible combinations?

Example: NER

Example: NER LOC 2 Wort2 Wort3 Wort4 Wort5 Wort1 LOC 3 ORG 4 LOC 5 Problem: Combiner - Ambiguities - Bracketing Ling Pipe Open BiQue Sprout NLP

Example: NER

recall and precision.

Dienstag, 8. Februar 2011

by: G Sigletos et al., J. Mach. Learn. Res., Vol. 6 (2005), pp. 1751-1782.

Example: NER

Example: Template Filling

Der Gewinn <Org>der Schweppes Gmbh & Co.</or> betrug <TIMEX>im ersten Ouartal 1997</TIMEX> weit ueber 20 Mio. DM. Iterative Tag Corpus: German press releases about Insertion turnover (Training: 4850 Tokens, Testing: 1000 Tokens) MEM - Maximum DOP - Data-**Entropy Modeling** Oriented Parsing

Neumann, G. (2006) A Hybrid Machine Learning Approach for Information Extraction from Free Texts. In Spiliopoulou at al. (Eds). From Data and Information Analysis to Knowledge Engineering, Springer series: Studies in Classification, Data Analysis, and Knowledge Organization, pages 390-397, Springer-Verlag Berlin, Heidelber, New-York.

Example: Template Filling

Der Gewinn <Org>der Schweppes Gmbh & Co.</or> betrug <TIMEX>im ersten Ouartal 1997</TIMEX> weit ueber 20 Mio. DM. Iterative Tag Corpus: German press releases about Insertion turnover (Training: 4850 Tokens, Testing: 1000 Tokens) MEM - Maximum DOP - Data-**Entropy Modeling** Oriented Parsing

Neumann, G. (2006) A Hybrid Machine Learning Approach for Information Extraction from Free Texts. In Spiliopoulou at al. (Eds). From Data and Information Analysis to Knowledge Engineering, Springer series: Studies in Classification, Data Analysis, and Knowledge Organization, pages 390-397, Springer-Verlag Berlin, Heidelber, New-York.

Example: Template Filling

Der Gewinn <Org>der Schweppes Gmbh & Co.</Org> KG betrug <TIMEX>im ersten Ouartal 1997</TIMEX> weit ueber 20 Mio. DM. Iterative Tag Corpus: German press releases about Insertion turnover (Training: 4850 Tokens, Testing: 1000 Tokens) MEM - Maximum DOP - Data-**Entropy Modeling** Oriented Parsing

Result:

- only MEM: 79.3 %

- only DOP: 51.9 %

- both: 85.2 %

Neumann, G. (2006) A Hybrid Machine Learning Approach for Information Extraction from Free Texts. In Spiliopoulou at al. (Eds). From Data and Information Analysis to Knowledge Engineering, Springer series: Studies in Classification, Data Analysis, and Knowledge Organization, pages 390-397, Springer-Verlag Berlin, Heidelber, New-York.

Feature based Strategies

Feature based Strategies

Dienstag, 8. Februar 2011

Feature based Strategies

Bootstrapper

Bootstrapper

Classifier I

Classifier 2

Bootstrapper

Classifier

Classifier

Classifier

2

Co-Training & Bootstrapping Note: These are manually specified, e.g., through Classifier reference to an ontology! Bootstrapper Classifier Initial data (seed)

Note:
These are
manually
specified, e.g.,
through
reference to an
ontology!

Bootstrapper

Classifier

Initial data (seed)

Co-training & IE

- NER, cf Singer & Collins, 1999 Interaction of spelling and context features
- REE, cf. Surdeanu et al. 2006 Interaction of text classifier and pattern acquisition

Note: These are manually specified, e.g.

Baseline	Co-training				
s(he) o(game)	v(win) o(title)				
v(miss) o(game)	s(I) v(play)				
v(play) o(game)	s(he) v(game)				
v(play) io(in LOC)	s(we) v(play)				
v(go) o(be)	v(miss) o(game)				
s(he) v(be)	s(he) v(coach)				
s(that) v(be)	v(lose) o(game)				
s(I) v(be)	s(I) o(play)				
s(it) v(go) o(be)	v(make) o(play)				
s(it) v(be)	v(play) io(in game)				
s(I) v(think)	v(want) o(play)				
s(I) v(know)	v(win) o(MISC)				
s(I) v(want)	s(he) o(player)				
s(there) v(be)	v(start) o(game)				
s(we) v(do)	s(PER) o(contract)				
v(do) o(1t)	s(we) o(play)				
s(it) o(be)	s(team) v(win)				
s(we) v(are)	v(rush) io(for yard)				
s(we) v(go)	s(we) o(team)				
s(PER) o(DATE)	v(win) o(Bowl)				

Table 4: Top 20 patterns acquired from the Sports domain by the baseline system (Riloff) and the co-training system for the AP collection. The correct patterns are in bold.

Ing & E

ing & IE

f Singer & Collins, 1999

Interaction of spelling and context features

- REE, cf. Surdeanu et al. 2006 Interaction of text classifier and pattern acquisition

 Observation: answer extraction is a kind of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

 Observation: answer extraction is a kind of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

Domain open answering of definition questions from the Web

 Observation: answer extraction is a kind of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

Domain open answering of definition questions from the Web

 Observation: answer extraction is a kind of question-driven IE (NER and REE)

Where does Bill Gates live? lives_in(Town:?, Pers:Bill Gates)

What is a CEO? is_a(Pos:CEO,Conc:?)

Domain open answering of definition questions from the Web

Problem:
How to find optimal ranking of answer candidates?

 Learn from Wikipedia, what a good verbalization of a definition looks like!

 Learn from Wikipedia, what a good verbalization of a definition looks like!

Solution:

Rank answer candidates according to similarity of Wikipedia?

 Learn from Wikipedia, what a good verbalization of a definition looks like!

Learn from Wikipedia, what a good verbalization

of a definition looks like!

Learn from Wikipedia, what a good verbalization

of a definition looks like!

Remark: Method is a step towards Web-scalable ontology learning.

TEG - Tree Extraction Grammars

Rosenfeld, Feldman & Freski "TEG - a hybrid approach to information extraction", Knowledge Information Systems (2006) 1-18.

```
Hand coded grammars

nonterm start Text;

concept Person;

ngram NGFirstName;

ngram NGLastName;

ngram NGNone;

termlist TLHonorific = Mr Mrs Miss Ms Dr;

(1) Person :- TLHonorific NGLastName;

(2) Person :- NGFirstName NGLastName;

(3) Text :- NGNone Text;

(4) Text :- Person Text;
```

```
Hand coded grammars

nonterm start Text;

concept Person;

ngram NGFirstName;

ngram NGLastName;

ngram NGNone;

termlist TLHonorific = Mr Mrs Miss Ms Dr;

(1) Person :- TLHonorific NGLastName;

(2) Person :- NGFirstName NGLastName;

(3) Text :- NGNone Text;

(4) Text :- Person Text;
```

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

```
Hand coded grammars
nonterm start Text;
concept Person;
ngram NGFirstName;
ngram NGLastName;
ngram NGNone;
termlist TLHonorific = Mr Mrs Miss Ms Dr;
(1) Person:-TLHonorific NGLastName;
(2) Person :- NGFirstName NGLastName;
(3) Text:- NGNone Text;
(4) Text :- Person Text;
(5) Text :-;
  Parse corpus
```

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

```
Hand coded grammars

nonterm start Text;

concept Person;

ngram NGFirstName;

ngram NGLastName;

ngram NGNone;

termlist TLHonorific = Mr Mrs Miss Ms Dr;

(1) Person :- TLHonorific NGLastName;

(2) Person :- NGFirstName NGLastName;

(3) Text :- NGNone Text;

(4) Text :- Person Text;
```

 $P(Dr \mid \mathbf{TLHonorific}) = 1/5$ (choice of one term among five equiprobable ones),

 $P(Dr \mid NGFirstName) \approx 1/N$, where N is the number of all known words (untrained ngram behaviour).

Collect statistics

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

(5) Text :-;

Parse corpus

```
Hand coded grammars
```

nonterm start Text; concept Person;

ngram NGFirstName;

ngram NGLastName;

ngram NGNone;

termlist TLHonorific = Mr Mrs Miss Ms Dr;

- (1) Person :- TLHonorific NGLastName;
- (2) Person :- NGFirstName NGLastName;
- (3) Text:- NGNone Text;
- (4) Text:- Person Text;
- (5) Text :-;

termlist TLHonorific = Mr Mrs Miss Ms <2>Dr;

Person :- <2>TLHonorific NGLastName;

Text:-<11>NGNone Text;

Text :- <2>Person Text;

Text :- <2>;

adapt rules

 $P(Dr \mid \mathbf{TLHonorific}) = 1./5$ (choice of one term among five equiprobable ones),

 $P(Dr \mid NGFirstName) \approx 1/N$, where N is the number of all known words (untrained ngram behaviour).

Collect statistics

Yesterday, <Person> Dr Simmons </Person>, the distinguished scientist presented the discovery.

TEG - Experiments

MUC-7 NER task

	HMM entity extractor		Emulation using TEG			DIAL Rules			Full TEG system			
	R	P	Fl	R	P	F1	R	P	Fl	R	P	F1
Person	86.91	85.13	86.01	86.31	86.83	86.57	81.32	93.75	87.53	93.75	90.78	92.24
Org				85.94								90.19
Location	86.12	87.2	86.66	83.93	90.12	86.91	91.46	89.53	90.49	87.05	94.42	90.58

ACE-2 relation extraction

\$0.	HMM entity extractor			Markovian SCFG			Full TEG system (with 7 ROLE rules)		
	Recall	Prec	F	Recall	Prec	F	Recall	Prec	F
Role				67.55	69.86	68.69	83,44	77.3	80.25
Person	85.54	83.22	84.37	89.19	80.19	84.45	89.82	81.68	85.56
Organization	52.62	64.735	58.05	53.57	67.46	59.71	59.49	71.06	64.76
GPE	85.54	83.22	84.37	86.74	84.96	85.84	88.83	84.94	86.84

INC relation extraction

	Partial	match	results	Exact match results			
	Recall	Prec	F	Recall	Prec	F	
PersonAffiliation	89.61	94.52	92.00	75.33	79.46	77.33	
OrgLocation	85.32	77.78	80.00	76.47	72.22	74.29	
Acquisition	76.00	86.36	80.85	68.00	77.27	72.34	

TEG - Potential

- Advantages
 - precise rules can be specified for arbitrary IE applications
 - external knowledge sources can be integrated via termlist
 - ngram-context for terminals via ngram (usable for disambiguation)
 - external systems can be integrated
 - "ngram ngOrgNoun featureset ExtPoS restriction Noun;"
- Possible innovations
 - Constraint based formalism as basis for grammar
 - Specialized parsing algorithms (e.g., supertagging)
 - Ontologies as basis for termlist
 - Extending grammars on basis of bootstrapping (human-controlled)
 - ...

Conclusion

- Hybrid IE as innovative plus for IE research and development.
- There exists already a number of promising and exciting approaches.
- High innovation potential to bring language technology, knowledge-based and statistical system under one umbrella.
- E.g., Multilingual Information Extraction
- E.g., Multi-Channel Information Extraction