

A Multilingual Framework for Searching Definitions in Web Snippets

Alejandro Figueroa & Günter Neumann

Language Technology Lab at DFKI

Saarbrücken, Germany

☆ Our interest:

- Developing ML-based strategies for complete end-to-end question answering for different type of questions
 - Exact answers
 - Open-domain
 - Multilingual

☆ Our vision:

 Complex QA system existing of a community of collaborative basic ML-based QA-agents.

- ☆ QA at Trec and Clef evaluation forums have created reasonable amount of freely available corpora
 - Question-Answer pairs
 - Multilingual and different types of questions
 - Contextual information: sentences (mainly news articles)

☆ Enables

- Training, evaluating ML algorithms and
- Comparisons with other approaches.

Machine Learning for Web-QA

☆ Our initial goals:

- Extract exact answers for different types of questions only from web snippets
- Use strong data-driven strategies

☆ Our current results:

- ML-based strategies for factoid, list and definition questions
- Mainly unsupervised statistical-based methods
- Language poor: Stop-word lists and simplistic patterns as main language specific resources
- Promising performance on Trec/Clef data (~ 0.55 MRR)

LT-Lab ML for Definition Questions – MDef-WQA

☆ Questions such as:

- What is a prism ?
- Who is Ben Hur?
- What is the BMZ?

☆ Answering:

- Extract and collect useful descriptive information (nuggets) for a question's specific topic (definiendum)
- Provide clusters for different potential senses, e.g., "Jim Clark" → car racer or Netscape founder or ...

LT-Lab ML for Definition Questions – MDef-WQA

☆ Current SOA approaches:

- Large corpora of full text documents (fetching problem)
- Recognition of definition utterances by aligning surface patterns with sentences within full documents (selection problem)
- Exploitation of additional external concept resources such as encyclopedias, dictionaries (wrapping problem)
- Do not provide clusters of potential senses (disambiguation problem)

☆ Our idea:

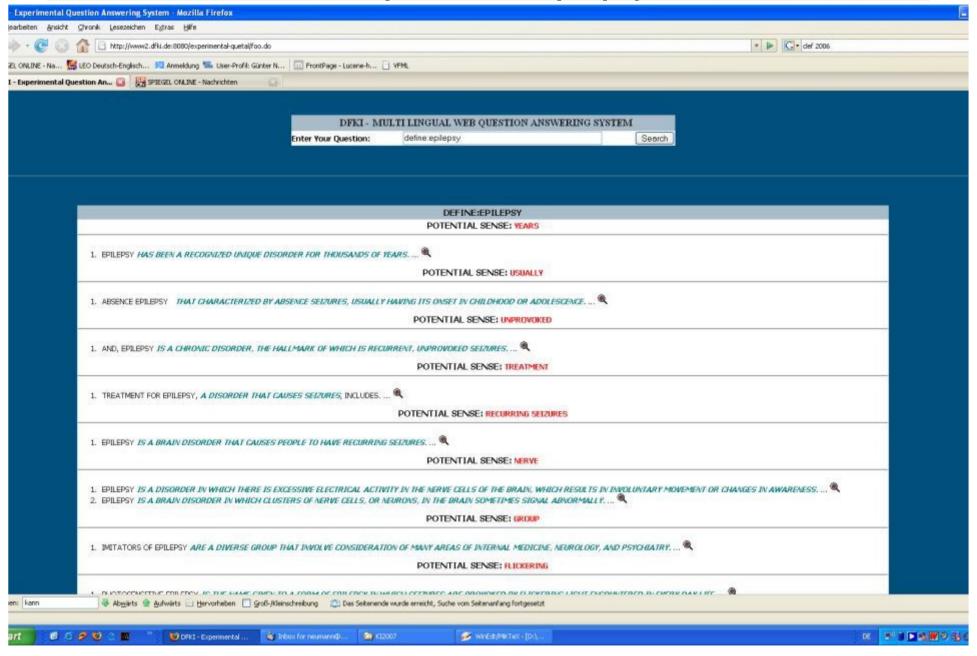
- Extract from Web Snippets only (avoid first three problems)
- Unsupervised sense disambiguation for clustering (handle fourth problem)
- Language independent

Why Snippets only?

- ☆ Avoid fetching & processing of full documents
- ☆ Snippets are automatically "anchored" around questions terms → Q-A proximity
- ☆ Considering N-best snippets → redundancy via implicit multi-document approach
- ☆ Via IR query formulation, search engines can be biased to favor snippets from specialized data providers (e.g., Wikipedia) → no specialized wrappers needed
 - Extend the coverage by boosting the number of sources through simple surface patterns
 - Due to the massive redundancy of web, chances of discriminating a paraphrase increase markedly.

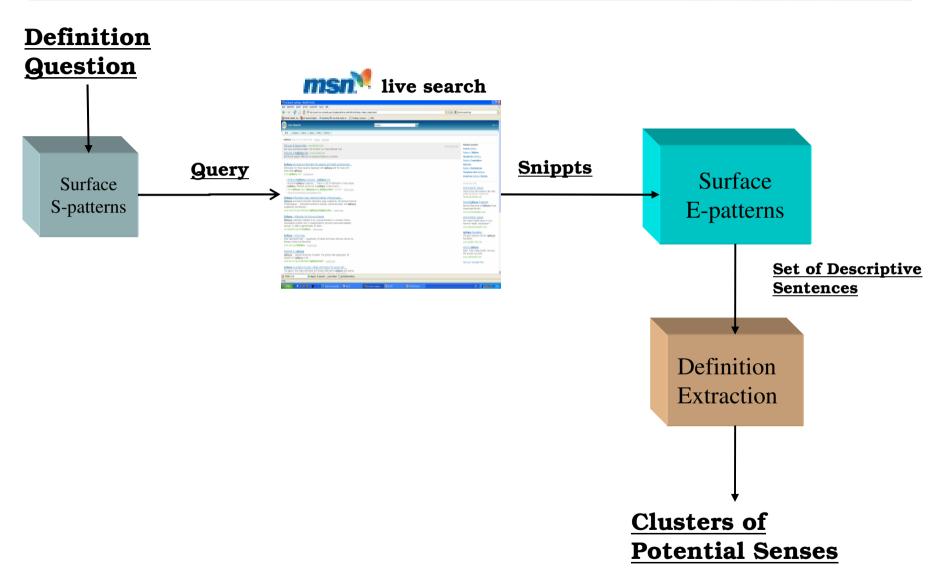
LT-Lab Example Output: What is epilepsy?

☆ Our system's answer in terms of clustered senses:

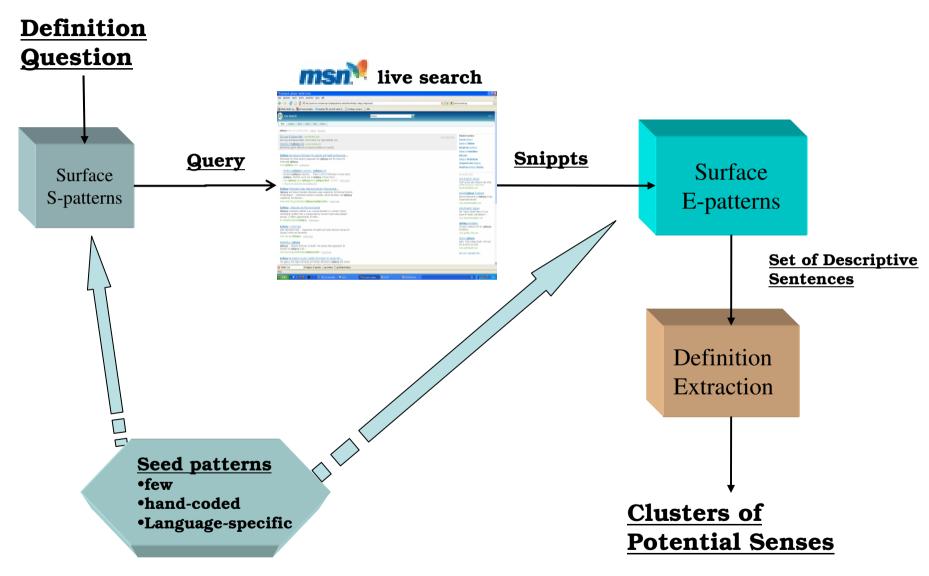

----- Cluster STRANGE -----0<->In epilepsy, the normal pattern of neuronal activity becomes disturbed, causing strange... ----- Cluster SEIZURES -----0<->Epilepsy, which is found in the Alaskan malamute, is the occurrence of repeated seizures. 1<->Epilepsy is a disorder characterized by recurring seizures, which are caused by electrical disturbances in the nerve cells in a section of the brain. 2<->Temporal lobe epilepsy is a form of epilepsy, a chronic neurological condition characterized by recurrent seizures. ----- Cluster ORGANIZATION -----0<->The Epilepsy Foundation is a national, charitable organization, founded in 1968 as the Epilepsy Foundation of America. ----- Cluster NERVOUS -----0<->Epilepsy is an ongoing disorder of the nervous system that

produces sudden, intense bursts of electrical activity in the brain.

•••


Example: What is epilepsy?

Language Independent Architecture



Language Independent Architecture

Seed Patterns

- ☆ Are used to automatically create
 - Search patterns
 - → for retrieving candidate snippets
 - Extraction patterns
 - → for extracting candidate descriptive sentences from the snippets
- ☆ They are manually encoded surface oriented regular expressions defined for each language
- ☆ Only a few are needed
 - 8 for English, 5 for Spanish

Seed Patterns for English

"X [is|are|has been|have been|was|were] [a|the|an] Y"

"Noam Chomsky is a writer and critical ... "

"[X|Y], [a|an|the] [Y|X] [,|.]"

"The new iPoD, an MP3-Player ,... "

"X [become|became|becomes] Y"

"In 1957, Althea Gibson became the ... "

"X [which|that|who] Y"

"Joe Satriani who was inspired to play ... "

"X [was born] Y"

"Alger Hiss was born in 1904 in USA ... "

"[X|Y], or [Y|X]"

"Sting, or Gordon Matthew Sumner, ... "

"[X|Y][|,][|also|is|are] [called|named|nicknamed|known as] [Y|X]"

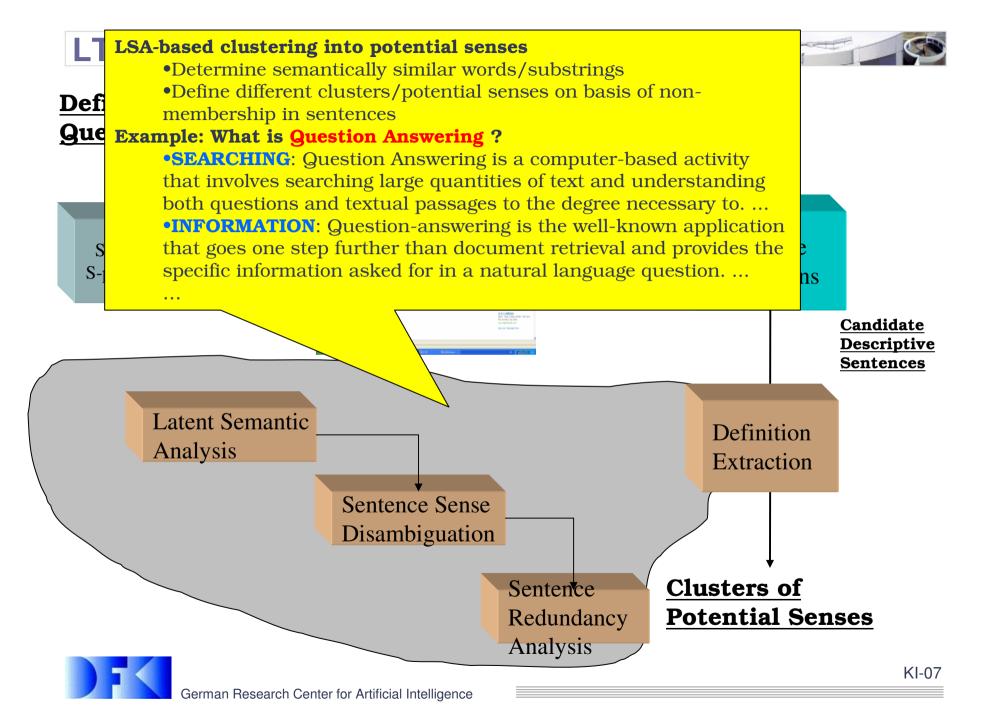
"Eric Clapton, nicknamed 'Slowhand'..."

"[X|Y] ([Y|X])"

"The United Nations (UN) ... "

Application of Seed Patterns

- ☆ Some S-patterns for "What is DFKI?":
 - "DFKI is a" OR "DFKI is an" OR "DFKI is the" OR "DFKI are a"...
 - "DFKI, or ".
 - "(DFKI)"
 - "DFKI becomes" OR "DFKI become" OR "DFKI became"
- ☆ Some extracted sentences from snippets:
 - "DFKI is the German Research Center for Artificial Intelligence".
 - "The **DFKI** is a young and dynamic research consortium"
 - "Our partner **DFKI** is an example of excellence in this field."
 - "the **DFKI**, or Deutsches Forschungszentrum für Künstliche ... "
 - "German Research Center for Artificial Intelligence (<u>DFKI GmbH</u>)"

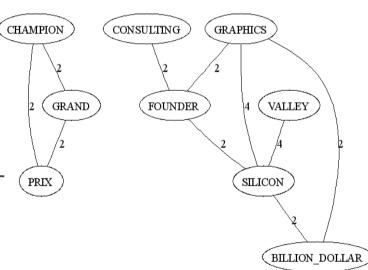


LT-Lab Extraction of Definition Candidates

- Approximate string matching for identifying possible paraphrases/ mentioning of question topic in snippets
- ☆ Jaccard measure (cf. W. Cohen, 2003)
 - computes the ratio of common different words to all different words
 - J("The **DFKI"**,"**DFKI"**) = 0.5
 - J("Our partner **DFKI**","**DFKI**") = 0.333
 - J("**DFKI** GmbH","**DFKI**") = 0.5
 - J("His main field of work at DFKI", "DFKI") = 0.1428
- Avoids the need for additional specific syntax oriented patterns or chunk parsers

Latent Semantic Analysis

- ☆ Goal: Identify the most relevant terms that semantically discriminate the candidate descriptive sentences.
- ☆ Idea: Use LSA Latent Semantic Analysis
- ☆ Term-Document matrix construction
 - Document = each candidate sentence + question topic as pseudo sentence ("What is DFKI?" → "DFKI" as pseudo sentence; to dampen possible drawbacks from Jaccard measure)
 - Terms = all possible different N-grams (reduced, e.g., if abc:5 & ab:5 then delete ab:5)
- ☆ Via LSA: select the M (= 40) highest closely related terms to question topic



Clustering

- ☆ Idea: Since words that indicate the same sense co-occur, construct a
 partition of the descriptive sentences based on the recognition of terms
 that signal different senses
- ☆ Construct term-term correlation matrix for the M-terms
- \Rightarrow Identify the λ different terms that signal a new sense. Such a sense term:
 - Does not co-occur at sentence level with any already selected sense term
 - Has maximum correlation with the yet nonselected terms
- Construct λ clusters for the descriptive sentences

Who is Jim Clark?

Example

- S₁=John Kennedy was the 35th President of the United States.
- S₂=John F. Kennedy was the most anti-communist US President.
- S₂=John Kennedy was a Congregational minister born in Scotland.
- $\stackrel{\leftrightarrow}{\propto}$ w₁=35th, w₂=President, w₃=Scotland

term-sentence correlation matrix

$$\Theta = \begin{pmatrix} S_1 & S_2 & S_3 \\ w_1 & 0 & 0 & 1 \\ w_2 & 1 & 1 & 0 \\ w_3 & 1 & 0 & 0 \end{pmatrix}$$

term-term correlation matrix

$$\mathbf{atrix} \quad \hat{\Theta} = \Theta \, \bar{\Theta}$$

$$\hat{\Theta} = \begin{pmatrix} w_1 & w_2 & w_3 \\ w_1 & 1 & 0 & 0 \\ w_2 & 0 & 2 & 1 \\ w_3 & 0 & 1 & 1 \end{pmatrix}$$

 λ different sense terms: $\{w_3, w_1\} \rightarrow$

Initializing process with randomly selected term, here w₃

Clusters: $C_1 = \{S_3\}$ $C_2 = \{S_1\}$ $C_0 = \{S_2\}$

Sentences which do not have a sense term are collected in C₀

NE-readjusted Clusters: $C_1 = \{S_3, S_2\}$ $C_2 = \{S_1\}$ $C_0 = \emptyset$

Sentences in C₀ with a high NE correlation are reassigned into a corresponding cluster

Removal of Redundancies in Cluster

- ☆ Goal: From each cluster incrementally remove sentences that do not contribute any new information
- ☆ Idea: In each iteration select the sentence for which

 $\max_{S_s \in S_{\lambda} - \Theta_{\lambda}} coverage(s_s) + content(s_s)$

Coverage:

Sum of probabilities of those words in S_S which are not already found in previous sentences Θ_{λ} \rightarrow syntactic novelty

Content:

Sum of the weights of those words in S_S which have a correlation with the question topic (via LSA)

→ semantic bonding

Experiments

- ☆ Two languages: English (EN), Spanish (ES)
- ☆ Baseline algorithm:
 - Query topic using S/E pattern (pattern threshold set to 1 for all)
 - Retrieved snippets S mapped to stream of sentences using JavaRap ("..." as EoS)
 - Remove sentences which have X % word overlap (pair wise check)
 or which are substrings of other already selected sentences
- ☆ Three different baselines:
 - EN-I: S=300, X=60
 - ES-I: S=420, X=90, patterns from Montes-y-Gomez (Clef 2005)
 - ES-II: S=420, X=90, our patterns

Def-WQA: Results for English

Accuracy of Baseline and MDef-QA for all corpora

Corpus	# Questions	# Answered MDef- WQA/Baseline	# sentences containing nuggets MDef-WQA/Baseline	Accuracy
Trec 2001	133	133/81	18.98/7.35	0.94/0.87
Trec 2003	50	50/38	14.14/7.7	0.78/0.74
Clef 2004	86	78/67	13.91/5.47	0.85/0.83
Clef 2005	185	173/160	13.86/11.08	0.89/0.84
Clef 2006	152	136/102	13.13/5.43	0.86/0.85

A set of nuggets as answer of a question

A single nugget as answer of a question

Gold standard

Corpus	F-score (β=5)
Trec 2003	0.52

Trec 2003 best systems (advanced manually developed QA systems on newspaper articles): 0.5 – 0.56

LT-Lab Def-WQA: Results for Spanish

Note that Clef corpora only contain a single nugget (a person or an abbreviation/organization) for a question

Official Clef 2005 systems:

1. 40, 2. 40, 3. 26

Official Clef 2006 systems:

1.35

Gold standard

Corpora	TQ	ES-I	ES-II	MDef- QA
Clef 2005	50	11	33	32
Clef 2006	42	9	12	22

☆ Problem: Clef corpora consist of news articles from 1994/1995, so data is often outdated in particular for persons

> Manual evaluation: Three human assessors manually checked each descriptive sentence

Manual evaluation

Corpora	TQ	ES-I (AQ/ACCur)	ES-II	MDef-QA
Clef 2005	50	26/0.85	39/0.67	47/0.63
Clef 2006	42	10/0.61	15/0.65	42/0.67

Summary of experiments

- ☆ We achieved competitive results compared to the best Trec and Clef systems
 - We need no predefined window size for nuggets, e.g., Trec uses ~ 125 chars; Clef only person names or abbreviations/organizations
 - MDef-QA computes longer (< 250 chars) but less redundant sentences than the baselines
 - We prefer sentences instead of nuggets for better readability
 - Decrease of accuracy for Spanish prob. due to smaller web space and hence smaller degree of redundancies
- ☆ Problem with a gold standard evaluation:
 - "it is not on my list" → restricted view on recall
 - Inappropriate for Web QA because of "unrestricted" search space

Future work

- ☆ No evaluation of the definition sense desambiguation component so far
 - It seems that it can compute reasonable results, e.g., a good look-and-feel performance
 - But often some senses are distributed across several senses
 - e.g., morphological variations, e.g., for "Akbar the Great" we get senses "emperor" and "empire" because no correlation between the terms

☆ Current working focus:

- Recognition/merging of such distributed senses
- Explore click behavior of users to adapt clustering (Live QA)
- Adapting approach to other languages, e.g., German
- Exploring textual entailment, e.g., for recognizing paraphrases,
 cf. Wang & Neumann, AAAI-07

