
Data-oriented Parsing with
Lexicalized Tree Insertion

Grammars

Günter Neumann
LT-lab, DFKI Saarbrücken

Two Topics

● Exploring HPSG-treebanks for Probabilistic
Parsing: HPSG2LTIG

● completed work

● Exploring Multilingual Dependency Grammars
for LTIG parsing

● work in progress

Exploring HPSG-treebanks for Probabilistic
Parsing: HPSG2LTIG

● joined work with Berthold Crysmann (currently
at Uni. Bonn)

● to appear as
● Günter Neumann and Berthold Crysmann

Extracting Supertags from HPSG-based Tree
Banks. S. Bangalore and A. Joshi (eds):
Complexity of Lexical Descriptions and its
Relevance to Natural Language Processing: A
Supertagging Approach, MIT press, in preparation
(prob. Autum, 2009)

Motivation

● Grammar compilation or approximation well-
established technique for improving
performance of Unification-based Grammars,
such as HPSG
– Kasper et al. (1995) propose compilation of

HPSG into Tree-adjoining grammar
– Kiefer & Krieger (2000) have derived CFG from

the LinGO ERG via fixpoint computation
– Currently no successful compilation of German

HPSG into CFG

Motivation

● Corpus-based specialisation of a general
grammar,
– efficiency
– domain adaptation
– e.g., Samuelsson, 1994; Rayner & Carter, 1996;

Neumann, 1994; Krieger, 2005; Neumann &
Flickinger, 2002

Stochastic Lexicalised Tree
Grammars

● Neumann & Flickinger (2002) derive a
Lexicalised Tree Substitution Grammar from
the LinGO English Resource Grammar
– Data-driven method
– Parse trees from original grammar are

decomposed into subtrees
– Decomposition guided by HPSG's head feature

principle
– Result is Stochastic Lexicalised Tree

Substitution Grammar (no recursive adjunction)
– Speed-up: factor 3 (including replay of

unifications)

Factorisation of modification

● proposed in context of TAG induction from
treebanks, e.g., Hwa (1998); Neumann
(1998); Xia (1999); Chen & Shanker (2000);
Chiang (2000);
– task: reconstruct TAG derivation from CF tree
– treebank are heuristically and manually

extended with the notions of head, argument,
and adjunct

Lexicalised Tree Insertion
Grammars (LTIG)

● LTIG Schabes & Waters, (1995) is a
restricted form of LTAG, where
– auxiliary trees are only left- or right-adjoining, no

wrapping
– no right-adjunction to nodes created by left-

adjunction is allowed, and, vice versa
– Generative power of LTIG is context-free

Stochastic LTIG

● Initial trees with root α
– sum(α): P

i
(α) = 1

● Substitution
– sum(α): P

s
(αǀη) = 1

● Adjunction of left/right auxtrees witgh root β
– sum(β): P

a
(βǀη) + P

a
(NONEǀη)= 1

DFKI German HPSG Treebank

● Large-scale competence grammar of
German
– Initially developed in Verbmobil by Müller &

Kasper (2000)
– Ported to LKB (Copestake, 2001) and PET

(Callmeier, 2000) platforms by Müller
– Since 2002, major improvements by Crysmann

(2003, 2005)
● Initial HPSG-treebanking effort Eiche

– based on Redwoods-technology (Oepen et al.
2002)

– treebank based on a subset of German
Verbmobil corpus

Challenges for German:
Scrambling

● Almost free permutation of arguments in
clausal syntax

● Interspersal of modifiers anywhere between
arguments

Challenges for German:
Complex predicates

● Complex predicate formation in verb cluster
● Permutation of arguments from different

verbs

Challenges for German:
Verb „movement“

● Variable position of finite verb
– V1/V2 in matrix clauses
– V-final in embedded clauses

● initial verb related to final cluster by verb
movement

Challenges for German:
Discontinuous complex

predicates
● Complex predicates may be discontinuous
● Argument structure only partially known

during parsing
– Number of upstairs arguments
– Position of upstairs arguments (shuffle)

German HPSG: Overview

● German HPSG highly lexicalised
– Information about combinatorial potential mainly

encoded at lexical level
– Syntactic composition performed by general rule

schemata
● Grammar version Aug 2004

– 87 phrase structure rules (unary & binary)
– 56 lexical rules + 213 inflectional rules
– over 280 parameterised lexical leaf types

● parameters for verbs include selection for
complement case, form of preposition, verb particles,
auxiliary type etc.

● nominal parameters include inherent gender
– over 35.000 lexical entries

Rule backbone
● Rule schemata define CF-backbone
● Rule labels represent composition principles

– (encoded as TFS), e.g., h-comp, h-subj, h-adjunct
● No segregation of dominance and precedence:

– grammar defines both head-initial and head-final variant
of basic schemata, e.g., h-comp and comp-h

● Argument composition & scrambling
– lexical permutation of subcat lists
– shuffle of upstairs and downstairs complements, e.g.,

vcomp-h-0 ... vcomp-h-4
● Movement

– Fronting implemented as slash percolation
– Verb movement

Eiche treebank

● Automatic annotation of in-coverage
sentences by HPSG-parser

● Manual selection of best parse with
Redwoods-tools

● Treebank built on subset of Verbmobil corpus
– average sentence length (in coverage): 7.9
– distinct trees: 16.1
– only unique sentence strings included

● minimise annotation effort
● low redundancy

Eiche treebank
● Rule backbone constitutes primary treebank data

Full HPSG-analysis can be reconstructed deterministically
● Secondary tree representation with conventional node labels

– encodes salient information represented in AVM associated with
each node (e.g., category, slash, case, number)

– isomorphic to derivation tree

Extraction method
● Experiment based on David Chiang's TIG parser,

Chiang (2000)
● Classification of rules and rule daughters according to

head, argument, or modifier status (cf. Magerman,
1995)

● HPSG2LTIG Conversion (following, Chiang):
– Adjunct daughters (adjunction)

excise tree below adjunct to form a initial adjoined
tree

– Argument daughters (substitution) excise tree below
argument daughter to form initial tree, leaving behind
a substitution node

– Auxiliary trees

Extraction method

● Classification according to head, argument, or modifier
status straightforward and transparent
– treebank rooted in a rich declarative grammar
– close correspondence of relevant distinctions to

HPSG composition principles
– no heuristics (or „recovery“ of linguistic theory)

● Specification based on rule-backbone
● Automatic expansion with secondary labels

– derivation trees
fold isomorphic trees into one

– head rules and argument rules
expand conversion rules defined on backbone by
secondary labels found in treebank

Experiment 1
● 10-fold cross-validation over 3528 sentences from Verbmobil

corpus
● Anchors of extracted trees (LEX) are highly specific preterminals

including POS information, morphosyntax (case, number, gender,
person, tense, mood), valency etc.

● Precision and recall satisfactory for lexically covered sentences
● No parses for out-of-vocabulary items

owing to corpus size and specificity of preterminals, derived
grammar not robust w.r.t. lexical coverage

Experiment 2

● 10-fold cross-validation over 3528 sentences from Verbmobil
corpus

● Anchors of extracted trees (POS) only encode POS information
● Recall and precision satisfactory
● Valency and morphosyntactic information still encoded by way of

tree derivation, including inflectional rules

Discussion
● Parseval measures achieved by derived LTIG comparable to

performance of treebank-induced PCFG parsers:
– Dubey & Keller, 2003 have trained a PCFG on subset of

German NEGRA corpus, reporting 70.93% LP & 71.32%
labelled recall (coverage: 95.9%)

– Similar results obtained by Müller et al. (2003) on the
same corpus (LP: 72.8%; LR: 71%)

● Current probabilistic parsing results for German in general
less satisfactory than for English (cf. Dubey & Keller, 2003;
Levy & Manning, 2003)
differences most probably related to typological difference
between languages

Summary

● First successful subgrammar extraction for
German HPSG

● Method based on Chiang (2000) TAG
extraction from Penn treebank
– Definition of head-percolation and argument

rules driven by HPSG principles, not heuristics
– No treebank transformation necessary

● Performance of initial experiments promising:
> 77% LP & LR

Future work

● Experiment with generalised/specialised
node labels

● Multiply-anchored elementary trees
● Different parsing schemas

● Points to my current work

Using Dependency Treebanks
as a source for extracting LTIGs
● There exists a number of dependency

treebanks for different languages.
● They explicitly represent head/mod

relationships.
● There is a natural relationship between

dependency trees and derivation trees in
TAG formalism.

● Might provide a tree decomposition operation
for free.

● Try avoding any language specific properties.

Starting point

● Dependency treebanks encoded in the so
called CoNLL tree format.

● Transformation of CoNLL format into a
PennTB like CF tree format.

Example CoNLL tree

1 Expression _ NN NN _ 16 SBJ _ _
2 of _ IN IN _ 1 NMOD _ _
3 the _ DT DT _ 5 NMOD _ _
4 detoxication _ NN NN _ 5 NMOD _ _
5 enzyme _ NN NN _ 2 PMOD _ _
6 glutathione _ NN NN _ 7 NMOD _ _
7 transferase _ NN NN _ 8 NMOD _ _
8 P1-1 _ NN NN _ 5 NMOD _ _
9 (_ ((_ 11 P _ _
10 GST _ NN NN _ 11 NMOD _ _
11 P1-1 _ NN NN _ 8 NMOD _ _
12) _)) _ 11 P _ _
13 at _ IN IN _ 1 NMOD _ _
14 elevated _ VB VBN _ 15 NMOD _ _
15 levels _ NN NNS _ 13 PMOD _ _
16 has _ VB VBZ _ 0 ROOT _ _
17 been _ VB VBN _ 16 VC _ _
18 noted _ VB VBN _ 17 VC _ _
19 in _ IN IN _ 18 ADV _ _
20 many _ JJ JJ _ 21 NMOD _ _
21 types _ NN NNS _ 19 PMOD _ _
22 of _ IN IN _ 21 NMOD _ _
23 human _ JJ JJ _ 24 NMOD _ _
24 tumors _ NN NNS _ 22 PMOD _ _
25 , _ , , _ 24 P _ _
26 including _ VB VBG _ 24 NMOD _ _
27 melanomas _ NN NNS _ 26 PMOD _ _
28 . _ . . _ 16 P _ _

Expression of the detoxication enzyme glutathione transferase P1-1 (GST P1-1) at elevated levels has been noted in many types of human tumors , includingmelanomas .

NN IN DT NN NN NN NN NN (NN NN) INVBN NNS VBZ VBN VBN IN JJ IN JJ
; VBG

NNNNS .

Subh/rH

lH\NMOD

NMOD/rH

NMOD/rH

lH\PMOD

NMOD/rH

NMOD/rH

lH\NMOD

P/rH

NMOD/rH

lH\NMOD

lH\P

lH\NMOD

NMOD/rH

lH\NMOD

lH\Root

RootDummy lH\VC

lH\VC

lH\ADV

NMOD/rH

lH\PMOD

lH\NMOD

NMOD/rH

NN

lH\PMOD

lH\P

lH\PMOD

lH\PMOD

lH\P

More formally: CoNLL trees

● A CoNLL dependency tree is a sequence S
of connected nodes s

i
, (1 ≤ i ≤ len(S)) each of

form:
– <M,H,Dep>

● „encoding the most relevant information“
● where M and H are indices of elements s

M
, s

H
 S∈

● Dep is the dependency relation between s
M
, s

H
● if H < M, we say that the head element is in left

direction (denoted as LH); analogous for right head
we use RH

– <0,ε,ε> for hidden root node

More formally: CF trees
● I call a target CF tree „linear dependency tree“ (LDT) ,
● and define it as a binary tree over a ranked alphabet Σ :

– x, where x ∑∈
0
 (terminal elements)

– x(t
1
,t

2
), where x ∑∈

2
 (nonterminal elements)

– t
1
, t

2
 are trees over Σ

● For the node labelling
– x ∑∈

2
 are further divided into disjoint sets

● x
LH_Dep

, x
RH_Dep

– x(t
1
,t

2
) into x

RH_Dep
(t

M
,t

H
) and x

LH_Dep
(t

H
,t

M
)

The Transformation Algorithm
● Core idea:

– Traverse a CoNLL sequence from left to right and
construct a LDT incrementally bottom-up from the
modifier elements to its heads.

● Note:
– In general the head element of a modifier is not the

adjacent right/left element, but might be a long-distant
right/left element.

● Because LDT is constructed bottom-up
– it migth be that a tree must be adjoined into a larger

tree.

Example

a b c d e f
2

a b c d

RH_1

3

1

a b c d

RH_1

LH_2

a b c d

RH_1

LH_2

LH_3

Ensuring proper spans

● It might happen that for a newly created
nonterminal node the yield is not proper
– if the right pos of node i, which stands left to

another node j is greater than the left pos. of j
● Then:

– create a new node with a trace element in order
to ensure reversible mapping from LTD2CoNLL

– copy and move corresponding subtrees

Extraction of LTIG from LTD

● Straightforward
– cut of non-head subtrees
– then define aux-trees as those which have a

left/right yield node with same label as root

● Example LTIG-trees from Tiger TB:
((RH_CVC (:SUBST . LH_NK) (RH_PM (PTKZU "zu") (VVINF "bringen"))) 4
 . 0.26666668)
((LH_NK (:RFOOT . LH_NK) (NN "Kurs")) 3 . 7.433102e-4)

Parsing: Efficient Early-style
LTIG parser

● Based on Schabes & Waters, 1995
● Extensions:

– supports (disconnected) multi word lexical anchors
● recursive trie traversal for lexical tree lookup

– supports simultaneous adjunction at a single node
– supports sharing nodes between trees

● computes very compact forest of readings
– two step unfolding of forest

● extract all possible LTIG derivations (only
anchors+tree indices)

● expand indices to trees taking into account the LTIG
operations that have been used

External format of LTIG
grammars

(setq *start-symbols* '(s np))
(setq *ltig* '(
((s (:subst . np) (vp (v saw) (:subst . np))) 1 . 0.75)
((s (:subst . np) (vp (v saw)) (:subst . np)) 1 . 0.25)
((np (:subst . det) (n boy)) 1 . 0.5)
((det a) 1 . 0.5)
((n a) 1 . 0.5)
((np (:subst . det) (n woman)) 1 . 0.5)
((np (:subst . n) (n woman)) 1 . 0.5)
((vp (v seems) (:lfoot . vp)) 1 . 0.5)
((vp (:rfoot . vp) (adv smoothly)) 1 . 0.5)
((vp (:rfoot . vp) (adv above) (:subst . np)) 1 . 0.5)
((vp (:rfoot . vp) (adv above)) 1 . 0.5)
((vp (XP (:rfoot . vp) (TO to)) (YP (adv slowly))) 1 . 0.5)
((n (adj nice) (:lfoot . n)) 1 . 0.25)
((n (adj tall) (:lfoot . n)) 1 . 0.5)
((n (adj pretty) (:lfoot . n)) 1 . 0.25)((vp (XP (:rfoot . vp)) (adv slowly)) 1 . 0.5)
))

Example trees from S&W, 95;
Same format for hand-crafted
grammars & TB-based grammars;
When reading in, a lot of efficient
indices are created;

Show
Negra
trees

Examples of parsing

● Extracting LTIG from first 1000 Tiger
dependency trees
– show LTIG grammar
– do parsing
– display trees

● Parsing time:
– ~0,0372 sec/sentence computing & expanding

all readings
– ~17 words/sentence (ranging from 2 - 58)

Length of each sentence

(2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7 7
7 8 9 9 9 9 9 9 9 9 9 9
9 10
11
11 11 11 11 11 11 11 11 11 11 12
12 12 12 12 12 12 12 12 12 13
13 13 13 13 13 13 13 13 13 13 13 13 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 17 17 17 17 17 17 17 17 17 17 17 17 17 17
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 19
19 19 19 19 19 19 19 19 20 21
21 21 22 22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22 22 22 23
23 23 24 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29
29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 32 32 32
32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 34 34 34 34 34 35 35 36 36 36 36 36 37 37 37 37
38 38 38 38 38 39 39 39 39 39 40 42 42 42 42 43 45 45 47 50 51 52 57 58)

Next steps

● Transformation
– Check, whether for works for arbitrary non-

projective cases (formally)
● Experiments with as many languages as

possible
● Parsing

– Improve tree filtering
– Almost parsing ala Bangalore
– Use of global statistical model ala Finkel et al.

2008 (they're using CRF)

