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Two Topics

● Exploring HPSG-treebanks for Probabilistic 
Parsing: HPSG2LTIG

● completed work

● Exploring Multilingual Dependency Grammars 
for LTIG parsing

● work in progress



Exploring HPSG-treebanks for Probabilistic 
Parsing: HPSG2LTIG

● joined work with Berthold Crysmann (currently 
at Uni. Bonn)

● to appear as 
● Günter Neumann and Berthold Crysmann 

Extracting Supertags from HPSG-based Tree 
Banks. S. Bangalore and A. Joshi (eds): 
Complexity of Lexical Descriptions and its 
Relevance to Natural Language Processing: A 
Supertagging Approach, MIT press, in preparation 
(prob. Autum, 2009)



Motivation

● Grammar compilation or approximation well-
established technique for improving 
performance of Unification-based Grammars, 
such as HPSG
– Kasper et al. (1995) propose compilation of 

HPSG into Tree-adjoining grammar
– Kiefer & Krieger (2000) have derived CFG from 

the LinGO ERG via fixpoint computation
– Currently no successful compilation of German 

HPSG into CFG



Motivation

● Corpus-based specialisation of a general 
grammar, 
– efficiency
– domain adaptation
– e.g., Samuelsson, 1994; Rayner & Carter, 1996; 

Neumann, 1994; Krieger, 2005; Neumann & 
Flickinger, 2002



Stochastic Lexicalised Tree 
Grammars

● Neumann & Flickinger (2002) derive a 
Lexicalised Tree Substitution Grammar from 
the LinGO English Resource Grammar
– Data-driven method 
– Parse trees from original grammar are 

decomposed into subtrees
– Decomposition guided by HPSG's head feature 

principle 
– Result is Stochastic Lexicalised Tree 

Substitution Grammar (no recursive adjunction)
– Speed-up: factor 3 (including replay of 

unifications)  



Factorisation of modification

● proposed in context of TAG induction from 
treebanks, e.g., Hwa (1998); Neumann 
(1998); Xia (1999); Chen & Shanker (2000); 
Chiang (2000);
– task: reconstruct TAG derivation from CF tree
– treebank are heuristically and manually 

extended with the notions of head, argument, 
and adjunct



Lexicalised Tree Insertion 
Grammars (LTIG)

● LTIG Schabes & Waters, (1995) is a 
restricted form of LTAG, where
– auxiliary trees are only left- or right-adjoining, no 

wrapping
– no right-adjunction to nodes created by left-

adjunction is allowed, and, vice versa
– Generative power of LTIG is context-free



Stochastic LTIG

● Initial trees with root α
– sum(α): P

i
(α) = 1

● Substitution
– sum(α): P

s
(αǀη) = 1

● Adjunction of left/right auxtrees witgh root β
– sum(β): P

a
(βǀη) + P

a
(NONEǀη)= 1



DFKI German HPSG Treebank

● Large-scale competence grammar of 
German
– Initially developed in Verbmobil by Müller & 

Kasper (2000)
– Ported to LKB (Copestake, 2001) and PET 

(Callmeier, 2000) platforms by Müller
– Since 2002, major improvements by Crysmann 

(2003, 2005)
● Initial HPSG-treebanking effort Eiche

– based on Redwoods-technology (Oepen et al. 
2002)

– treebank based on a subset of German 
Verbmobil corpus



Challenges for German: 
Scrambling

● Almost free permutation of arguments in 
clausal syntax

● Interspersal of modifiers anywhere between 
arguments



Challenges for German:
Complex predicates

● Complex predicate formation in verb cluster
● Permutation of arguments from different 

verbs



Challenges for German:
Verb „movement“

● Variable position of finite verb
– V1/V2 in matrix clauses
– V-final in embedded clauses

● initial verb related to final cluster by verb 
movement



Challenges for German:
Discontinuous complex 

predicates
● Complex predicates may be discontinuous
● Argument structure only partially known 

during parsing
– Number of upstairs arguments
– Position of upstairs arguments (shuffle)



German HPSG: Overview

● German HPSG highly lexicalised
– Information about combinatorial potential mainly 

encoded at lexical level
– Syntactic composition performed by general rule 

schemata
● Grammar version Aug 2004

– 87 phrase structure rules (unary & binary)
– 56 lexical rules + 213 inflectional rules
– over 280 parameterised lexical leaf types 

● parameters for verbs include selection for 
complement case, form of preposition, verb particles, 
auxiliary type etc.

● nominal parameters include inherent gender
– over 35.000 lexical entries



Rule backbone
● Rule schemata define CF-backbone
● Rule labels represent composition principles 

– (encoded as TFS), e.g., h-comp, h-subj, h-adjunct
● No segregation of dominance and precedence: 

– grammar defines both head-initial and head-final variant 
of basic schemata, e.g., h-comp and comp-h

● Argument composition & scrambling
– lexical permutation of subcat lists
– shuffle  of upstairs and  downstairs complements, e.g., 

vcomp-h-0 ... vcomp-h-4
● Movement

– Fronting implemented as slash percolation
– Verb movement



Eiche treebank

● Automatic annotation of in-coverage 
sentences by  HPSG-parser

● Manual selection of best parse with 
Redwoods-tools

● Treebank built on subset of Verbmobil corpus
– average sentence length (in coverage): 7.9
– distinct trees: 16.1 
– only unique sentence strings included

● minimise annotation effort
● low redundancy



Eiche treebank
● Rule backbone constitutes primary treebank data

Full HPSG-analysis can be reconstructed deterministically
● Secondary tree representation with conventional node labels

– encodes salient information represented in AVM associated with 
each node (e.g., category, slash, case, number)

– isomorphic to derivation tree



Extraction method
● Experiment based on David Chiang's TIG parser, 

Chiang (2000)
● Classification of rules and rule daughters according to 

head, argument, or modifier status (cf. Magerman, 
1995)

●  HPSG2LTIG Conversion (following, Chiang):
– Adjunct daughters (adjunction)

excise tree below adjunct to form a initial adjoined 
tree 

– Argument daughters (substitution) excise tree below 
argument daughter to form initial tree, leaving behind 
a substitution node

– Auxiliary trees



Extraction method

● Classification according to head, argument, or modifier 
status straightforward and transparent
– treebank rooted in a rich declarative grammar
– close correspondence of relevant distinctions to 

HPSG composition principles
– no heuristics (or „recovery“ of linguistic theory)

● Specification based on rule-backbone
● Automatic expansion with secondary labels

– derivation trees 
fold isomorphic trees into one

– head rules and argument rules 
expand conversion rules defined on backbone by 
secondary labels found in treebank



Experiment 1
● 10-fold cross-validation over 3528 sentences from Verbmobil 

corpus
● Anchors of extracted trees (LEX) are highly specific preterminals

including POS information, morphosyntax (case, number, gender, 
person, tense, mood), valency etc.

● Precision and recall satisfactory for lexically covered sentences
● No parses for out-of-vocabulary items

owing to corpus size and specificity of preterminals, derived 
grammar not robust w.r.t. lexical coverage  



Experiment 2

● 10-fold cross-validation over 3528 sentences from Verbmobil 
corpus

● Anchors of extracted trees (POS) only encode POS information
● Recall and precision satisfactory
● Valency and morphosyntactic information still encoded by way of 

tree derivation, including inflectional rules



Discussion
● Parseval measures achieved by derived LTIG comparable to 

performance of treebank-induced PCFG parsers:
– Dubey & Keller, 2003 have trained a PCFG on subset of  

German NEGRA corpus, reporting 70.93% LP & 71.32% 
labelled recall (coverage: 95.9% )

– Similar results obtained by Müller et al. (2003) on the 
same corpus (LP: 72.8%; LR: 71%)

● Current probabilistic parsing results for German in general 
less satisfactory than for English (cf. Dubey & Keller, 2003; 
Levy & Manning, 2003)
differences most probably related to typological difference 
between languages



Summary

● First successful subgrammar extraction for 
German HPSG

● Method based on Chiang (2000) TAG 
extraction from Penn treebank
– Definition of head-percolation and argument 

rules driven by HPSG principles, not heuristics
– No treebank transformation necessary

● Performance of initial experiments promising: 
> 77% LP & LR



Future work

● Experiment with generalised/specialised 
node labels

● Multiply-anchored elementary trees
● Different parsing schemas

● Points to my current work



Using Dependency Treebanks 
as a source for extracting LTIGs
● There exists a number of dependency 

treebanks for different languages.
● They explicitly represent head/mod 

relationships.
● There is a natural relationship between 

dependency trees and derivation trees in 
TAG formalism.

● Might provide a tree decomposition operation 
for free.

● Try avoding any language specific properties.



Starting point

● Dependency treebanks encoded in the so 
called CoNLL tree format.

● Transformation of CoNLL format into a 
PennTB like CF tree format.



Example CoNLL tree

1 Expression     _ NN NN _ 16 SBJ _ _
2 of             _   IN IN _ 1 NMOD _ _
3 the             _ DT DT _ 5 NMOD _ _
4 detoxication _ NN NN _ 5 NMOD _ _
5 enzyme         _ NN NN _ 2 PMOD _ _
6 glutathione     _ NN NN _ 7 NMOD _ _
7 transferase     _ NN NN _ 8 NMOD _ _
8 P1-1         _ NN NN _ 5 NMOD _ _
9 (             _ ( ( _ 11 P _ _
10 GST             _ NN NN _ 11 NMOD _ _
11 P1-1         _ NN NN _ 8 NMOD _ _
12 )             _ ) ) _ 11 P _ _
13 at             _ IN IN _ 1 NMOD _ _
14 elevated     _ VB VBN _ 15 NMOD _ _
15 levels         _ NN NNS _ 13 PMOD _ _
16 has             _ VB VBZ _ 0 ROOT _ _
17 been         _ VB VBN _ 16 VC _ _
18 noted         _ VB VBN _ 17 VC _ _
19 in             _ IN IN _ 18 ADV _ _
20 many         _ JJ JJ _ 21 NMOD _ _
21 types         _ NN NNS _ 19 PMOD _ _
22 of             _ IN IN _ 21 NMOD _ _
23 human         _ JJ JJ _ 24 NMOD _ _
24 tumors         _ NN NNS _ 22 PMOD _ _
25 ,             _ , , _ 24 P _ _
26 including     _ VB VBG _ 24 NMOD _ _
27 melanomas     _ NN NNS _ 26 PMOD _ _
28 .             _ . . _ 16 P _ _



Expression of the detoxication enzyme glutathione transferase P1-1 ( GST P1-1 ) at elevated levels has been noted in many types of human tumors , includingmelanomas .

NN IN DT NN NN NN NN NN ( NN NN ) INVBN NNS VBZ VBN VBN IN JJ IN JJ
; VBG

NNNNS .
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lH\NMOD

NMOD/rH
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More formally: CoNLL trees

● A CoNLL dependency tree is a sequence S 
of connected nodes s

i
, (1 ≤ i ≤ len(S)) each of 

form:
– <M,H,Dep>

● „encoding the most relevant information“
● where M and H are indices of elements s

M
, s

H
  S∈

● Dep is the dependency relation between s
M
, s

H
● if H < M, we say that the head element is in left 

direction (denoted as LH); analogous for right head 
we use RH

– <0,ε,ε> for hidden root node



More formally: CF trees
● I call a target CF tree „linear dependency tree“ (LDT) , 
● and define it as a binary tree over a ranked alphabet Σ :

– x, where x  ∑∈
0
 (terminal elements)

– x(t
1
,t

2
), where x  ∑∈

2
 (nonterminal elements)

– t
1
, t

2
 are trees over Σ

● For the node labelling
– x  ∑∈

2
 are further divided into disjoint sets

● x
LH_Dep

, x
RH_Dep

– x(t
1
,t

2
) into x

RH_Dep
(t

M
,t

H
) and x

LH_Dep
(t

H
,t

M
)



The Transformation Algorithm
● Core idea:

– Traverse a CoNLL sequence from left to right and 
construct a LDT incrementally bottom-up from the 
modifier elements to its heads.

● Note:
– In general the head element of a modifier is not the 

adjacent right/left element, but might be a long-distant 
right/left element.

● Because LDT is constructed bottom-up
– it migth be that a tree must be adjoined into a larger 

tree.



Example

a b c d e f
2

a b c d

RH_1

3

1

a b c d

RH_1

LH_2

a b c d

RH_1

LH_2

LH_3



Ensuring proper spans

● It might happen that for a newly created 
nonterminal node the yield is not proper
– if the right pos of node i, which stands left to 

another node j is greater than the left pos. of j
● Then: 

– create a new node with a trace  element in order 
to ensure reversible mapping from LTD2CoNLL

– copy and move corresponding subtrees



Extraction of LTIG from LTD

● Straightforward
– cut of non-head subtrees
– then define aux-trees as those which have a 

left/right yield node with same label as root

● Example LTIG-trees from Tiger TB:
((RH_CVC (:SUBST . LH_NK) (RH_PM (PTKZU "zu") (VVINF "bringen"))) 4
 . 0.26666668)
((LH_NK (:RFOOT . LH_NK) (NN "Kurs")) 3 . 7.433102e-4)



Parsing: Efficient Early-style 
LTIG parser

● Based on Schabes & Waters, 1995
● Extensions:

– supports (disconnected) multi word lexical anchors
● recursive trie traversal for lexical tree lookup

– supports simultaneous adjunction at a single node
– supports sharing nodes between trees

● computes very compact forest of readings
– two step unfolding of forest

● extract all possible LTIG derivations (only 
anchors+tree indices) 

● expand indices to trees taking into account the LTIG 
operations that have been used



External format of LTIG 
grammars

(setq *start-symbols* '(s np))
(setq *ltig* '(
((s (:subst . np) (vp (v saw) (:subst . np))) 1 . 0.75)
((s (:subst . np) (vp (v saw)) (:subst . np)) 1 . 0.25)
((np (:subst . det) (n boy)) 1 . 0.5)
((det a) 1 . 0.5)
((n a) 1 . 0.5)
((np (:subst . det) (n woman)) 1 . 0.5)
((np (:subst . n) (n woman)) 1 . 0.5)
((vp (v seems) (:lfoot . vp)) 1 . 0.5)
((vp (:rfoot . vp) (adv smoothly)) 1 . 0.5)
((vp (:rfoot . vp)  (adv above) (:subst . np) ) 1 . 0.5)
((vp (:rfoot . vp) (adv above)) 1 . 0.5)
((vp (XP (:rfoot . vp) (TO to)) (YP (adv slowly))) 1 . 0.5)
((n  (adj nice) (:lfoot . n)) 1 . 0.25)
((n  (adj tall) (:lfoot . n)) 1 . 0.5)
((n  (adj pretty) (:lfoot . n)) 1 . 0.25)((vp (XP (:rfoot . vp)) (adv slowly)) 1 . 0.5)
))

Example trees from S&W, 95;
Same format for hand-crafted 
grammars & TB-based grammars;
When reading in, a lot of efficient 
indices are created;

Show 
Negra 
trees



Examples of parsing

● Extracting LTIG from first 1000 Tiger 
dependency trees
– show LTIG grammar
– do parsing
– display trees

● Parsing time:
– ~0,0372 sec/sentence computing & expanding 

all readings
– ~17 words/sentence (ranging from 2 - 58) 



Length of each sentence

(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6  6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 
11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 
12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 
13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 
18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 
19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 
21  21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22 
22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 
26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28  28 28 28 28 28 28 28 28 28 28 28 28 29 
29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 32 32 32 
32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 34 34 34 34 34 35 35 36 36 36 36 36 37 37 37 37 
38 38 38 38 38 39 39 39 39 39 40 42 42 42 42 43 45 45 47 50 51 52 57 58)



Next steps

● Transformation
– Check, whether for works for arbitrary non-

projective cases (formally)
● Experiments with as many languages as 

possible
● Parsing

– Improve tree filtering
– Almost parsing ala Bangalore
– Use of global statistical model ala Finkel et al. 

2008 (they're using CRF)


