

Conditional Random Fields

Dietrich Klakow

Overview

- Sequence Labeling
- Bayesian Networks
- Markov Random Fields
- Conditional Random Fields
- Software example

Sequence Labeling Tasks

Sequence: a sentence

```
Pierre
Vinken
61
years
old
will
join
the
board
as
a
nonexecutive
director
Nov.
29
```


POS Labels

Pierre	 NNP
Vinken	 NNP
,	 ,
61	 CD
years	 NNS
old	 JJ
,	 ,
will	 MD
join	 VB
the	 DT
board	 NN
as	 IN
a	 DT
nonexecutive	 JJ
director	 NN
Nov.	 NNP
29	 CD
•	 •

Chunking

Task: find phrase boundaries:

```
[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only £ 1.8 billion] [PP in] [NP September].
```


Chunking

Pierre	 B-NP
Vinken	 I-NP
,	 O
61	 B-NP
years	 I-NP
old	 B-ADJP
,	 O
will	 B-VP
join	 I-VP
the	 B-NP
board	 I-NP
as	 B-PP
a	 B-NP
nonexecutive	 I-NP
director	 I-NP
Nov.	 B-NP
29	 I-NP
•	 O

Named Entity Tagging

Pierre ———	B-PERSON
Vinken ———	I-PERSON
,	0
61	B-DATE:AGE
years	I-DATE:AGE
old	I-DATE:AGE
,	O
will	O
join ———	0
the —	0
board ———	B-ORG_DESC:OTHER
as ———	O
a ———	O
nonexecutive —	O
director ———	B-PER_DESC
Nov.	B-DATE:DATE
29	I-DATE:DATE

Supertagging

Pierre	 N/N
Vinken	 N
•	 ,
61	 N/N
years	 N
old	 (S[adj]\NP)\NP
•	 ,
will	 $(S[dc1]\NP)/(S[b]\NP)$
join	 $((S[b]\NP)/PP)/NP$
the	 NP[nb]/N
board	 N
as	 PP/NP
a	 NP[nb]/N
nonexecutive	 N/N
director	 N
Nov.	 $((S\NP)\(S\NP))/N[num]$
29	 N[num]
•	

Hidden Markov Model

HMM: just an Application of a Bayes Classifier

$$(\hat{\pi}_1, \hat{\pi}_2...\hat{\pi}_N) = \underset{\pi_1, \pi_2...\pi_N}{\operatorname{arg\,max}} [P(x_1, x_2...x_N, \pi_1, \pi_2...\pi_N)]$$

Decomposition of Probabilities

$$P(x_1, x_2..x_N, \pi_1, \pi_2..\pi_N)$$

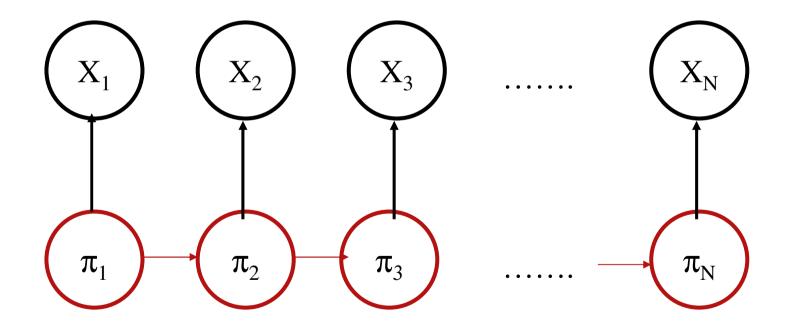
$$= \prod_{i=1}^{N} P(x_{i} \mid \pi_{i}) P(\pi_{i} \mid \pi_{i-1})$$

 $P(\pi_i \mid \pi_{i-1})$: transition probability

 $P(x_i \mid \pi_i)$: emission probability

Graphical view HMM

Observation sequence



Label sequence

Criticism

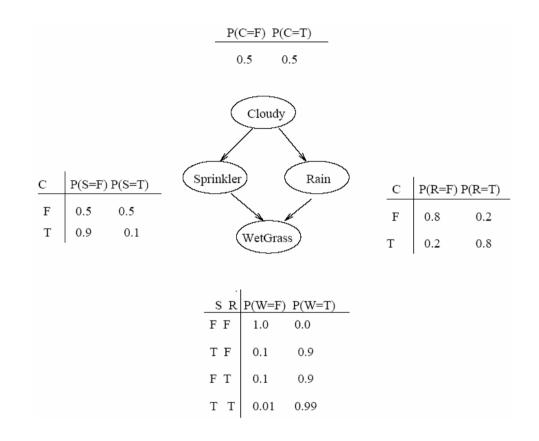
HMMs model only limiter dependencies

→ come up with more flexible models

→ come up with graphical description

Bayesian Networks

Example for Bayesian Network



From Russel and Norvig 95 AI: A Modern Approach

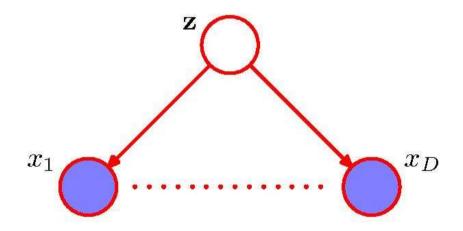
Corresponding joint P(C, S, R, W) = distribution $P(W \mid S, R)P(S)$

$$P(C, S, R, W) =$$

$$P(W \mid S, R)P(S \mid C)P(R \mid C)P(C)$$

Naïve Bayes

Observations x_1, \dots, x_D are assumed to be independent

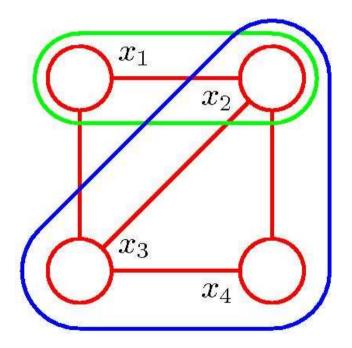


$$\prod_{i=1}^{D} P(x_i \mid z)$$

Markov Random Fields

- Undirected graphical model
- New term:
- clique in an undirected graph:
 - Set of nodes such that every node is connected to every other node
- maximal clique: there is no node that can be added without add without destroying the clique property

Example



cliques: green and blue

maximal clique: blue

Factorization

x: all nodes $x_1...x_N$

 $x_{\rm C}$: nodes in clique C

C_M: set of all maximal cliques

 $\Psi_{\rm C}(x_{\rm C})$: potential function $(\Psi_{\rm C}(x_{\rm C}) \ge 0)$

Joint distribution described by graph

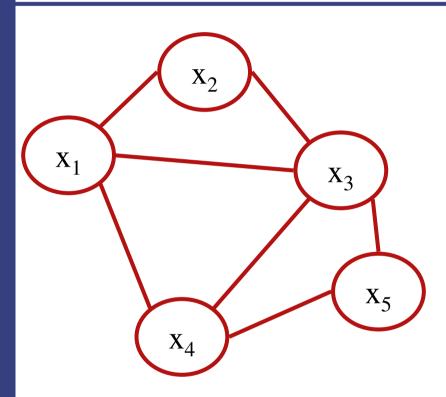
$$p(x) = \frac{1}{Z} \prod_{C \in C_M} \Psi_C(x_C)$$

Normalization

$$Z = \sum_{x} \prod_{C \in C_M} \Psi_C(x_C)$$

Z is sometimes call the *partition function*

Example



What are the maximum cliques? Write down joint probability described by this graph

→ white board

Energy Function

Define

$$\Psi_C(x_C) = e^{-E(x_C)}$$

Insert into joint distribution

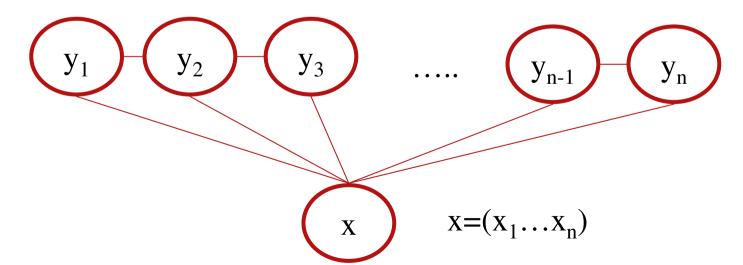
$$p(x) = \frac{1}{Z} e^{-\sum_{C \in C_M} E(x_C)}$$

Conditional Random Fields

Definition

Maximum random field were each random variable y_i is conditioned on the complete input sequence $x_1, ... x_n$

$$y=(y_1...y_n)$$



Distribution

Distribution

$$p(y \mid x) = \frac{1}{Z(x)} e^{-\sum_{i=1}^{n} \sum_{j=1}^{N} \lambda_{j} f_{j}(y_{i-1}, y_{i}, x, i)}$$

 λ_i : parameters to be trained

 $f_j(y_{i-1}, y_i, x, i)$: feature function (see maximum entropy models)

Example feature functions

Modeling transitions

$$f_1(y_{i-1}, y_i, x, i) = \begin{cases} 1 \text{ if } y_{i-1} = IN \text{ and } y_i = NNP \\ 0 \text{ else} \end{cases}$$

Modeling emissions

$$f_2(y_{i-1}, y_i, x, i) = \begin{cases} 1 \text{ if } y_i = NNP \text{ and } x_i = September \\ 0 \text{ else} \end{cases}$$

Training

- Like in maximum entropy models
 Generalized iterative scaling
- Convergence:
 p(y|x) is a convex function

 → unique maximum

Convergence is slow Improved algorithms exist

Decoding: Auxiliary Matrix

Define additional start symbol y_0 =START and stop symbol y_{n+1} =STOP

Define matrix $M^{i}(x)$

such that

$$\left[M^{i}(x) \right]_{y_{i-1}y_{i}} = M^{i}_{y_{i-1}y_{i}}(x) = e^{-\sum_{j=1}^{N} \lambda_{j} f_{j}(y_{i-1}, y_{i}, x, i)}$$

Reformulate Probability

With that definition we have

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{i=1}^{n+1} M_{y_{i-1}y_i}^{i}(x)$$

with

$$Z(x) = \sum_{y_1, y_2, y_3} \sum_{y_3} \dots \sum_{y_n} M_{y_0 y_1}^1(x) M_{y_1 y_2}^2(x) \dots M_{y_n y_{n+1}}^{n+1}(x)$$

Use Matrix Properties

Use matrix product

$$\left[M^{1}(x)M^{2}(x)\right]_{y_{0}y_{2}} = \sum_{y_{1}} M^{1}_{y_{0}y_{1}}(x)M^{2}_{y_{1}y_{2}}(x)$$

with

$$Z(x) = \left[M^{1}(x)M^{2}(x)...M^{n+1}(x) \right]_{y_{0} = START, y_{n+1} = STOP}$$

Software

CRF++

See http://crfpp.sourceforge.net/

Summary

- Sequence labeling problems
- CRFs are
 - flexible
 - Expensive to train
 - Fast to decode