

Finite-State Automata and Algorithms

Bernd Kiefer, kiefer@dfki.de

Many thanks to Anette Frank for the slides

MSc. Computational Linguistics Course, SS 2009

Overview

 Finite-state automata (FSA) – What for?
– Recap: Chomsky hierarchy of grammars and languages
– FSA, regular languages and regular expressions
– Appropriate problem classes and applications

 Finite-state automata and algorithms
– Regular expressions and FSA
– Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state

automata
– Determinization: from NFSA to DFSA
– Minimization of DFSA

 Extensions: finite-state transducers and FST operations

Finite-state automata: What for?

Chomsky Hierarchy of
Languages

 Regular languages
(Type-3)

 Context-free languages
(Type-2)

 Context-sensitive languages
(Type-1)

 Type-0 languages

Hierarchy of Grammars and
Automata

 Regular PS grammar
Finite-state automata

 Context-free PS grammar
Push-down automata

 Tree adjoining grammars
Linear bounded automata

 General PS grammars
Turing machine

computationally more complex
less efficient

Finite-state automata model regular languages

Finite
automata

Regular
languages

Regular
expressions

de
sc

rib
e/

sp
ec

ify
describe/specify

recognize

describe/specify

Finite-state
MACHINE

executable!

Finite-state
MACHINE

Finite-state automata model regular languages

Finite
automata

Regular
languages

Regular
expressions

de
sc

rib
e/

sp
ec

ify
describe/specify

recognize/generate

describe/specify

executable!

Regular
grammars

executable!
• properties of regular languages
• appropriate problem classes
• algorithms for FSA

Languages, formal languages and grammars

 Alphabet Σ : finite set of symbols
 String : sequence x1 ... xn of symbols xi from the alphabet Σ

– Special case: empty string ε
 Language over Σ : the set of strings that can be generated from Σ

– Sigma star Σ* : set of all possible strings over the alphabet Σ
 Σ = {a, b} Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}

– Sigma plus Σ+ : Σ+ = Σ* -{ε}
– Special languages: ∅ = {} (empty language) ≠ {ε} (language of empty string)

 A formal language : a subset of Σ*
 Basic operation on strings: concatenation •

– If a = xi … xm and b = xm+1 … xn then a⋅ b = ab = xi … xmxm+1 … xn

– Concatenation is associative but not commutative
– ε is identity element : aε = ε a = a

 A grammar of a particular type generates a language of a corresponding type

S
tr

in
gs

Recap on Formal Grammars and Languages

 A formal grammar is a tuple G = < Σ , Φ , S, R>
– Σ alphabet of terminal symbols
– Φ alphabet of non-terminal symbols (Σ ∩ Φ =∅)
– S the start symbol
– R finite set of rules R ⊆ Γ * × Γ * of the form α → β

where Γ = Σ ∪ Φ and α ≠ ε and α ∉ Σ*
 The language L(G) generated by a grammar G

– set of strings w ⊆ Σ* that can be derived from S according to G=<Σ ,Φ, S, R>
 Derivation: given G=<Σ, Φ, S, R> and u,v ∈ Γ* = (Σ ∪ Φ)*

– a direct derivation (1 step) w ⇒G v holds iff
u1, u2 ∈ Γ* exist such that w = u1α u2 and v = u1β u2, and α → β ∈ R exists

– a derivation w ⇒G* v holds iff either w = v
 or z ∈ Γ* exists such that w ⇒G* z and z ⇒G v

 A language generated by a grammar G: L(G) = {w : S ⇒G* w & w ∈ Σ*}
I.e., L(G) strongly depends on R !

Chomsky Hierarchy of Grammars

 Classification of languages generated by formal grammars
– A language is of type i (i = 0,1,2,3) iff it is generated by a type-i grammar
– Classification according to increasingly restricted types of production rules

L-type-0 ⊃ L-type-1 ⊃ L-type-2 ⊃ L-type-3
– Every grammar generates a unique language, but a language can be generated

by several different grammars.
– Two grammars are

 (Weakly) equivalent if they generate the same string language
 Strongly equivalent if they generate both the same string language

 and the same tree language

Chomsky Hierarchy of Grammars

Type-0 languages: general phrase structure grammars
 no restrictions on the form of production rules:

arbitrary strings on LHS and RHS of rules
 A grammar G = <Σ, Φ, S, R> generates a language L-type-0 iff

– all rules R are of the form α → β, where α ∈ Γ+ and β ∈ Γ* (with Γ = Σ ∪ Φ)
– I.e., LHS a nonempty sequence of NT or T symbols with at least one NT

symbol and RHS a possibly empty sequence of NT or T symbols
 Example:

G = <{S,A,B,C,D,E},{a},S,R>, L(G) = {a2n | n≥1}
S → ACaB. CB → E. aE → Ea.
Ca → aaC. aD → Da. AE → ε.
CB → DB. AD → AC.
 a22 = aaaa ∈ L(G) iff S ⇒* aaaa

Chomsky Hierarchy of Grammars

Type-1 languages: context-sensitive grammars
 A grammar G = <Σ, Φ, S, R> generates a language L-type-1 iff

– all rules R are of the form αAγ → αβγ , or S → ε (with no S symbol on RHS)
where A ∈ Φ and α, β, γ ∈ Γ* (Γ = Σ ∪ Φ), β ≠ ε

– I.e., LHS: non-empty sequence of NT or T symbols with at least one NT
symbol
and RHS a nonempty sequence of NT or T symbols (exception: S → ε)

– For all rules LHS → RHS : |LHS| ≤ |RHS|
 Example:

L = { an bn cn | n≥1}
 R = { S → a S B C, a B → a b,

 S → a B C, b B → b b,
 C B → B C, b C → b c, c C → c c }
 a3b3c3 = aaabbbccc ∈ L(G) iff S ⇒* aaabbbccc

Chomsky Hierarchy of Grammars

Type-2 languages: context-free grammars
 A grammar G = <Σ, Φ, S, R> generates a language L-type-2 iff

– all rules R are of the form A → α,
where A ∈ Φ and α ∈ Γ* (Γ = Σ ∪ Φ)

– I.e., LHS: a single NT symbol; RHS a (possibly empty) sequence of NT or T
symbols

 Example:
L = { an b an | n ≥1}
R = { S → A S A, S → b, A → a }

Chomsky Hierarchy of Grammars

Type-3 languages: regular or finite-state grammar
 A grammar G = <Σ, Φ, S, R> is called right (left) linear (or regular) iff

– all rules R are of the form
 Α → w or A → wB (or A → Bw), where A,B ∈ Φ and w ∈ Σ∗

– i.e., LHS: a single NT symbol; RHS: a (possibly empty) sequence of T symbols,
optionally followed (preceded) by a NT symbol

 Example:
 Σ = { a, b }
 Φ = { S, A, B}
 R = { S → a A, B → b B,
 A → a A, B → b
 A → b b B }

S ⇒ a A ⇒ a a A ⇒ a a b b B ⇒ a a b b b B ⇒ a a b b b b

S

Aa

b A

b B

Bb

b

b

Operations on languages

 Typical set-theoretic operations on languages
– Union: L1 ∪ L2 = { w : w∈L1 or w∈L2 }

– Intersection: L1 ∩ L2 = { w : w∈L1 and w∈L2 }

– Difference: L1 - L2 = { w : w∈L1 and w∉ L2 }

– Complement of L ⊆ Σ* wrt. Σ*: L– = Σ* - L
 Language-theoretic operations on languages

– Concatenation: L1L2 = {w1w2 : w1∈L1 and w2∈L2}

– Iteration: L0={ε}, L1=L, L2=LL, ... L*= ∪i≥0 Li, L+ = ∪i>0 Li

– Mirror image: L-1 = {w-1 : w∈L}
 Union, concatenation and Kleene star are called regular operations
 Regular sets/languages: languages that are defined by the regular

operations: concatenation (⋅) , union (∪) and kleene star (*)
 Regular languages are closed under concatenation, union, kleene star,

intersection and complementation

Regular languages, regular expressions and FSA

Finite-state
MACHINE

Finite
automata

Regular
languages

Regular
expressions

de
sc

rib
e/

sp
ec

ify
describe/specify

recognize/generate

describe/specify

executable!

Regular
grammars

executable!

Regular languages and regular expressions

 Regular sets/languages can be specified/defined by regular expressions
Given a set of terminal symbols Σ, the following are regular expressions
– ε is a regular expression
– For every a ∈ Σ, a is a regular expression
– If R is a regular expression, then R* is a regular expression
– If Q,R are regular expressions, then QR (Q ⋅ R) and Q ∪ R are regular

expressions
 Every regular expression denotes a regular language

– L(ε) = {ε}
– L(a) = {a} for all a ∈ Σ
– L(αβ) = L(α)L(β)
– L(α ∪β) = L(α) ∪ L(β)
– L(α*) = L(α)*

 Grammars: generate (or recognize) languages
Automata: recognize (or generate) languages

 Finite-state automata recognize regular languages
 A finite automaton (FA) is a tuple A = <Φ,Σ, δ, q0,F>

– Φ a finite non-empty set of states
– Σ a finite alphabet of input letters
– δ a transition function Φ × Σ → Φ
– q0 ∈ Φ the initial state

– F ⊆ Φ the set of final (accepting) states
 Transition graphs (diagrams):

– states: circles p∈ Φ

– transitions: directed arcs between circles δ(p, a) = q

– initial state p = q0

– final state r ⊆ F

p

Finite-state automata (FSA)

p qa

p

r

FSA transition graphs and traversal

 Transition graph

 Traversal of an FSA
= Computation with an FSA

q9

q3
q0 q1 q2 q4 q5

q6 q7 q8

c

e

l e a r

v

e
l

t t
e

c l e v e r

q9

q3
q0 q1 q2 q4 q5

q6 q7 q8

c

e

l e a r

v

e
l

t t
e

S = q0 F = {q5, q8 }

Transition function δ: Φ × Σ → Φ
δ(q0,c)=q1

δ(q0,e)=q3

δ(q0,l)=q6

δ(q1,l)=q2

δ(q2,e)=q3

δ(q3,a)=q4

δ(q3,v)=q9

δ(q4,r)=q5

δ(q6,e)=q7

δ(q7,t)=q8

δ(q8,t)=q9

δ(q9,e)=q4

FSA transition graphs and traversal

 Transition graph State diagram

 Traversal of an FSA
= Computation with an FSA

q9

q3
q0 q1 q2 q4 q5

q6 q7 q8

c

e

l e a r

v

e
l

t t
e

0
0
0
0
0
0
q9

0
0
0
vtrlecaδ

0
q9

q8

0
0
0
0
0
0
0

0
0
0
0
0
q5

0
0
0
0

0
0
0
0
0
0
0
0
q2

q6

q4

0
0
q7

0
0
0
q3

0
q3

00q9

00q8

00q7

00q6

0 0q2

00q1

00q5

00q4

0q4q3

q10q0

c l e v e r

q9

q3
q0 q1 q2 q4 q5

q6 q7 q8

c

e

l e a r

v

e
l

t t
e

FSA can be used for
• acceptance (recognition)
• generation

FSA traversal and acceptance of an input string

 Traversal of a (deterministic) FSA
– FSA traversal is defined by states and transitions of A,

relative to an input string w∈Σ*
– A configuration of A is defined by the current state and the unread part of the

input string: (q, wi,), with q∈Φ, wi suffix of w

– A transition: a binary relation between configurations
(q,wi) |–A (q’,wi+1) iff wi = zwi+1 for z∈Σ and δ(q,z)= q’
(q,wi) yields (q’,wi+1) in a single transition step

– Reflexive, transitive closure of |–A: (q, wi) |–*A (q’, wj)
(q, wi) yields (q’, wj) in zero or a finite number of steps

 Acceptance
– Decide whether an input string w is in the language L(A) defined by FSA A
– An FSA A accepts a string w iff (q0,w) |–*A (qf, ε), with q0 initial state, qf ⊆ F

– The language L(A) accepted by FSA A is the set of all strings accepted by A
I.e., w ∈ L(A) iff there is some qf ⊆ FA such that (q0,w) |–*A (qf, ε)

Regular grammars and Finite-state automata

 A grammar G = <Σ, Φ, S, R> is called right linear (or regular) iff
all rules R are of the form A → w or A → wB, where A,B ∈ Φ and w ∈ Σ*
– Σ={a, b}, Φ={S,A,B}, R={S → aA, A → aA, A → bbB, B → bB, B → b}

S ⇒ aA ⇒ aaA ⇒ aabbB ⇒ aabbbB ⇒ aabbbb
– The NT symbol corresponds to a state in an FSA: the future of the derivation only

depends on the identity of this state or symbol and the remaining production
rules.

– Correspondence of type-3 grammar rules
with transitions in a (non-deterministic) FSA:

 Α → w B ≡ δ(Α,w)=Β
 Α → w ≡ δ(Α,w)=q, q ∈Φ

– Conversely, we can construct an FSA
from the rules of a type-3 language

 Regular grammars and FSA can be shown to be equivalent
 Regular grammars generate regular languages
 Regular languages are defined by concatenation, union, kleene star

S

Aa

b A

b B

Bb

b

b

Deterministic finite-state automata

 Deterministic finite-state automata (DFSA)
– at each state, there is at most one transition that can be taken to read the

next input symbol
– the next state (transition) is fully determined by current configuration
– δ is functional (and there are no ε-transitions)

 Determinism is a useful property for an FSA to have!
– Acceptance or rejection of an input can be computed in linear time 0(n) for

inputs of length n
– Especially important for processing of LARGE documents

 Appropriate problem classes for FSA
– Recognition and acceptance of regular languages,

in particular string manipulation, regular phonological and morphological
processes

– Approximations of non-regular languages in morphology, shallow finite-
state parsing, …

Multiple equivalent FSA

 FSA for the language Llehr = { lehrbar, lehrbarkeit, belehrbar,
belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }

 DFSA for Llehr

 Regular expression and FSA for Llehr : (un | ε) (be lehr | lehr) bar (keit | ε)
(non-deterministic)

 Equivalent FSA
(non-deterministic)

un

lehr keit

be

ε ε
bar

un keitbe

ε lehr

bar

ε

lehr

un be lehr bar keit

be

lehr

lehr

Defining FSA through regular expressions

 FSA for even mildly complex regular languages are best constructed
from regular expressions!

 Every regular expression denotes a regular language
– L(ε) = {ε}

– L(a) = {a} for all a ∈ Σ

 Every regular expression translates to a FSA (Closure properties)
– An FSA for a (with L(a) = {a}), a ∈ Σ:

– An FSA for ε (with L(ε) = {ε }), ε ∈ Σ:

– Concatenation of two FSA FA and FB:

 ΣΑΒ = ΣΑ (Σ initial state)

 ΦΑΒ = ΦΒ (Φ set of final states)

∀ δΑΒ = δΑ ∪ δΒ ∪ {δ(<qi,ε>,qj) | qi ∈ ΦΑ, qj = ΣΒ }

a

● L(αβ) = L(α)L(β)
● L(α ∪β) = L(α) ∪ L(β)
● L(α*) = L(α)*

ε

FA FB

FAB
ε

Defining FSA through regular expressions

– union of two FSA FA and FB:
 SAB = s0 (new state)
 FAB = { sj } (new state)

∀ δAB = δA ∪ δB

 ∪ {δ(<q0,ε>,qz) | q0 = SAB, (qz = SA or qz = SB)}
 ∪ {δ(<qz,ε>,qj) | (qz∈FA or qz∈FB), qi ∈FAB}

– Kleene Star over an FSA FA :
 SA* = s0 (new state)
 FA* = { qj } (new state)

∀ δAB = δA ∪

 ∪ {δ(<qj,ε>,qz) | qj ∈ FA, qz = SA)}

 ∪ {δ(<q0,ε>,qz) | q0 = SA*, (qz = SA or qz = FA*)}
 ∪ {δ(<qz,ε>,qj) | qz∈FA , qj∈FA*}

FA

FA∪Bε ε

FB
ε ε

FA

FA*
ε ε

ε

ε

ε

Defining FSA through regular expressions

(ab ∪ aba)*

 ε-transition: move to δ(q, ε) without reading an input symbol
 FSA construction from regular expressions yields

a non-deterministic FSA (NFSA)
– Choice of next state is only partially determined by the current configuration,

i.e., we cannot always predict which state will be the next state in the traversal

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

Non-deterministic finite-state automata (NFSA)
 Non-determinism

 Introduced by ε-transitions and/or
 Transition being a relation Δ over Φ × Σ* × Φ, i.e. a set of triples <qsource,z,qtarget>

Equivalently: Transition function δ maps to a set of states: δ: Φ × Σ → ℘(Φ)

 A non-deterministic FSA (NFSA) is a tuple A = <Φ,Σ, δ, q0,F>
 Φ a finite non-empty set of states
 Σ a finite alphabet of input letters
 δ a transition function Φ × Σ* → ℘(Φ) (or a finite relation over Φ × Σ* × Φ)
 q0 ∈ Φ the initial state
 F ⊆ Φ the set of final (accepting) states

 Adapted definitions for transitions and acceptance of a string by a NFSA
 (q,w) |–A (q’,wi+1) iff wi = zwi+1 for z∈Σ* and q’∈ δ(q,z)
 An NDFA (w/o ε) accepts a string w iff there is some traversal such that

(q0,w) |–*A (q’, ε) and q’ ⊆ F.
 A string w is rejected by NDFA A iff A does not accept w,

i.e. all configurations of A for string w are rejecting configurations!

ε

Non-determinism in FSA

(ab ∪ aba)*

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

a b a

ε

Non-determinism in FSA

(ab ∪ aba)*

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

a b a

ε

Non-determinism in FSA

(ab ∪ aba)*

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

a b a

ε

Non-determinism in FSA

(ab ∪ aba)*

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

 eofa b a

ε

Non-determinism in FSA

(ab ∪ aba)*

a b ε ε ε

a bε ε ε a

ε

ε

ε ε

ε

ε
ε

ε

 eofa b a

Equivalence of DFSA and NFSA

 Despite non-determinism, NFSA are not more powerful than DFSA:
they accept the same class of languages: regular languages

 For every non-deterministic FSA there is deterministic FSA that
accepts the same language (and vice versa)
– The corresponding DFSA has in general more states, in which it models

the sets of possible states the NFSA could be in in a given traversal

 There is an algorithm (via subset construction) that allows conversion
of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

 It is a DFSA (efficiency) → Determinization of NFSA

 It is minimal (compact encoding) → Minimization of FSA

 FSA A1 and A2 are equivalent iff L(A1) = L(A2)

 Theorem: for each NFSA there is an equivalent DFSA
 Construction: A = < Φ, Σ, δ, q0, F > a NFSA over Σ

– define eps(q) = { p ∈ Φ | (q, ε, p) ∈δ }

– define an FSA A‘= <Φ’,Σ, δ’, q0’,F’> over sets of states, with

Φ’={B | B⊆ Φ}
q0’={eps(q0)}

δ’(B,a) = { ⋃ eps(p) | q ∈Β and ∃ p∈B such that (q, a, p) ∈ δ }
F’={B ⊆ Φ | B ∩ F ≠ ∅}

 A’ satisfies the definition of a DFSA. We need to show that L(A) = L(A’)

 Define D(q, w) := { p ∈ Φ | (q, w) ⊢*

A
(p, ε) } and

 D'(Q, w) := { P ∈ Φ' | (Q, w) ⊢*

A'
(P, ε) }

Equivalence of DFSA and NFSA

Prove: D(q
0
, w) = D'({q

0
}, w) by induction over length of w

 |w| = 0 : by definition of D and D'
 Induction step: |w| = k+1, w = v a, by hypothesis:

D(q
0
, v) = D'({q

0
}, v) = {p

1
, p

2
, ... , p

k
 }= P

by def. of D: D(q
0
, w) =⋃

p P ∈
{eps(q) | (p, a, q) ∈ δ }

by def. of δ': D'({p
1
, p

2
, ... , p

k
 }, a) =⋃

p P ∈
{eps(q) | (p, a, q) ∈ δ }

it follows:
D'({q

0
}, w) = δ'(D'({q

0
}, w), a) = D'({p

1
, p

2
, ... , p

k
 }, a)

= ⋃
p P ∈

{eps(q) | (p, a, q) ∈ δ } = D(q
0
, w) q.e.d.

 Finally, A and A' only accept if D'({q
0
}, w) = D(q

0
, w) contain a state F∈

Equivalence of DFSA and NFSA: Proof

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> A‘=<Φ’,Σ, δ’,q0’,F’>

L(A)= a(ba)* ∪ a(bba)*

a

b

a

a

b

ba

Subset construction:

Compute δ’ from δ
for all subsets S ⊆ Φ and a∈Σ s.th.
δ’(S,a) = { s’| ∃s∈S s.th. (s,a,s‘)∈δ}

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> A‘=<Φ’,Σ, δ’, q0’,F’>

L(A)= a(ba)* ∪ a(bba)*

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> A‘=<Φ’,Σ, δ’, q0’,F’>

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> A‘=<Φ’,Σ, δ’, q0’,F’>

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a

4,5
b

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> A‘=<Φ’,Σ, δ’, q0’,F’>

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a

4,5
b

2
a

6
b

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F> DFSA A‘=<Φ’,Σ, δ’, q0’,F’>

a

b

a

a

b

ba

1

2

4

3 5

6

5

4

1 2,3
a

4,5
b

2

6 3

a a

a

b

b

bb

L(A) = L(A’) = a(ba)* ∪ a(bba)*

ε-transitions and ε-closure
 Subset construction must account for ε-transitions
 ε-closure

– The ε-closure of some state q consists of q as well as all states that
can be reached from q through a sequence of ε-transitions

 q ∈ ε−closurε(q)
 If r∈ε−closure(q) and (r, ε,q‘)∈δ, then q’∈ ε−closure(q),

− ε-closure defined on sets of states

∀ ε-closure(R) = ε-closure(q) (with Ρ ⊆ Φ)

 Subset construction for ε-NFSA
– Compute δ’ from δ for all subsets S ⊆Φ and a∈Σ s.th.

δ’(S,a) = { s’’| ∃s∈S s.th. (s,a,s‘)∈δ and s’’∈ ε-closure(s’) }

∪
q∈R

Example

 ε-NFSA for (a|b)c*

2 4

ε

ε

ε

ε
ε ε ε

εa

b
c

0

1 3

5 6 7 8 9

ε-closure for all s∈Φ:
ε-closure(0)={0,1,2},
ε-closure(1)={1},
ε-closure(2)={2},
ε-closure(3)={3,5,6,7,9},
ε-closure(4)={4,5,6,7,9},
ε-closure(5)={5,6,7,9},
ε-closure(6)={6,7,9},
ε-closure(7)={7},
ε-closure(8)={8,7,9},
ε-closure(9)={9}

ε

Transition function over subsets
δ’({0},ε)= {0,1,2},
δ’({0,1,2},a)={3,5,6,7,9},
δ’({0,1,2},b)= {4,5,6,7,9},
δ’({3,5,6,7,9},c)= {8,7,9},
δ’({4,5,6,7,9},c)= {8,7,9},
δ’({8,7,9},c)= {8,7,9}

 012

35679

45679

 879

a

b

c

c
c

012

 02 01 12

0

2

1

An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0’,F’> from NFSA A=<Φ,Σ, δ, q0,F>

– Φ’={B| B ⊆ Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in most programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

21

012

 02 01 12

0

2

1

An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F>

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

2

b

a1
a a

aa,b

a,bb

b

012

 02 01 12

0

2

1

An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F>

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

2

b

a1
a a

aa,b

a,bb

b

No transition can ever
enter these states

12

0

2

1

An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F>

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

2

b

a
a a

b

Only consider states
that can be traversed

starting from q0

An algorithm for subset construction

 Basic idea: we only need to consider states B ⊆ Φ that can ever be traversed
by a string w∈Σ*, starting from q0‘

 I.e., those B ⊆ Φ for which B = δ’(q0,w), for some w∈Σ*, with δ’ the
recursively constructed transition function for the target DFSA A’

 Consider all strings w∈Σ* in order of their length: ε, a,b, aa,ab,ba,bb, aaa,...

 l=0 (ε) l=1 (a,b) l=2,3,4, … (aa, ab, ba, bb, aaa, aab, aba, …)

– Construction by increasing lengths of strings
– For each a∈Σ, construct transitions to known or new states according to δ
– New target states (A’) are placed in a queue (FIFO)
– Termination: no states left on queue

0 0

12

2

b

a
12

0 2b
aa a

b

An algorithm for subset construction

DETERMINIZE(Φ, Σ, δ, q0, F)
q0‘← q0

Φ’ ← {q0‘}
ENQUEUE(Queue, q0‘)
while Queue ≠ ∅
 S ← DEQUEUE(Queue)
 for a∈Σ
 δ’(S,a) = ∪r∈S δ(r,a)

 if δ’(S,a) ∉ Φ’
 Φ’ ← Φ’ ∪ δ’(S,a)
 ENQUEUE(Queue, δ’(S,a))
 if δ’(S,a) ∩ F ≠ ∅
 F‘ ← {δ’(S,a)}
 fi
 fi
return (Φ’,Σ, δ’, q0‘, F’)

Complexity

Maximal number of states
placed in queue is 2|Φ|
So, worst case runtime is exponential

• determinization is a costly operation,
• but results in an efficient FSA
 (linear in size of the input)
• avoids computation of isolated states

Actual run time depends on the
shape of the NFSA

1

Minimization of FSA

 Can we transform a large automaton into a smaller one
(provided a smaller one exists)?

 If A is a DFSA, is there an algorithm for constructing an
equivalent minimal automaton Amin from A?

 A can be transformed to A‘:
– States 2 and 3 in A “do the same job”: once A is in state 2 or 3, it

accepts the same suffix string. Such states are called equivalent.
– Thus, we can eliminate state 3 without changing the language of A,

by redirecting all arcs leading to 3 to 2, instead.

0 2
b

c
a

3 a1

0 2
b,c

b a

A A‘ A is equivalent to A‘
i.e., L(A) = L(A‘)

A‘ is smaller than A
i.e., |Φ| > |Φ‘|

b

aa

Minimization of FSA

 Right language of a state:
– For A=<Φ,Σ, δ, q0,F> a DFSA, the right language L→(q) of a state

q∈Φ is the set of all strings accepted by A starting in state q:
L→(q) = {w∈Σ* | δ*(q,w) ∈F}

– Note: L→(q0) = L(A)
 State equivalence:

– For A=<Φ,Σ, δ, q0,F> a DFSA,
if q,q’∈Φ, q and q‘ are equivalent (q ≡ q’) iff L→(q) = L→(q’)

– ≡ is an equivalence relation (i.e., reflexive, transitive and symmetric)

– ≡ partitions the set of states Φ into a number of disjoint sets Q1 .. Qn of

equivalence classes s.th. ∪i=1..m Qi = Φ and q ≡ q’ for all q,q’∈ Qi

 A DFSA can be minimized
 if there are pairs of states q,q‘∈Φ that are equivalent
 Two states q,q’ are equivalent iff they accept the same right language.

5

1

7

3

2 6

4

Partitioning a state set into equivalence classes

a

0

a

a

b

b

b

a

a

a

C1

C4

C0

C2

C3

All classes Ci consist
of equivalent states qj=i..n
that accept identical
right languages L→(qj)

Whenever two states q,q‘
belong to different classes,
L→(q) ≠ L→(q‘)

Equivalence classes
on state set defined by ≡

Minimization:
elimination of equivalent states

Minimization of a DFSA

 A DFSA A=<Φ,Σ, δ, q0,F> that contains equivalent states q, q’

 can be transformed to a smaller, equivalent DFSA A’=<Φ’,Σ, δ’, q0,F’> where
 Φ’ = Φ\{q’}, F’=F\{q’},
 δ’ is like δ with all transitions to q’ redirected to q:

 Two-step algorithm
– Determine all pairs of equivalent states q,q’
– Apply DFSA reduction until no such pair q,q’ is left in the automaton

 Minimality
– The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A):
 we never merge different equivalence classes, so we obtain one state per class.

 We cannot do any further reduction and still recognize L(A).
 As long as we have >1 state per class, we can do further reduction steps.

 A DFSA A=<Φ,Σ, δ, q0,F> is minimal iff there is no pair of distinct but equivalent
states ∈Φ, i.e. ∀ q, q’∈Φ : q ≡ q’ ⇔ q = q’

δ’(s,a) = q if δ(s,a) = q’;
δ’(s,a) = δ(s,a) otherwise

Example

5

1

7

3

2 6

4

a

0

a

a

b

b

b

a

a

a

1

7

3

2

4

0 a

bb

b

a

a

a

Example

1

3

2

4

0 a

bb

a

a,b

a

1

7

3

2

4

0 a

bb

b

a

a

a

Algorithm

MINIMIZE(Φ, Σ, δ, q0, F)
main
 EqClass[] ← PARTITION(A)
 q0 ← EqClass[q0]
 for <q,a,q‘>∈δ
 δ(q,a) ← min(EqClass[q‘])
 for q∈ Φ
 if q ≠ min(EqClass[q])
 Φ ← Φ\{q}
 if q∈ F
 F ← F\{q}

MINIMIZE
• PARTITION(A):
 - determines all eqclasses of states in A
 - returns array EqClass[q] of eq. classes of q
• redirect all transitions <q,a,q‘>∈δ to point
 to min(EqClass[q’])
• remove all redundant states from Φ and F

Computing partitions: Naïve partitioning

NAIVE_PARTITION(Φ, Σ, δ, q0, F)
for each q∈Φ
 EqClass[q] ← {q}
for each q∈Φ
 for each q‘∈Φ
 if EqClass[q] ≠ EqClass[q‘] ∧ CHECKEQUIVALENCE(Aq,Aq‘) = True
 EqClass[q] ← EqClass[q] ∪ EqClass[q‘]
 EqClass[q‘] ← EqClass[q]

NAIVE_PARTITION
• array EqClass of pointers to disjoint sets for equivalence classes
• first loop: initializing EqClass by {q}, for each q∈Φ
• second nested loop: if we find new equivalent states q ≡ q’,
 we merge the respective equivalence classes EqClasses
 and reset EqClass[q] to point to the new merged class
Runtime complexity: loops: 0(|Φ|2) CheckEquivalence: 0(|Φ|2 · |Σ|) ⇒ 0(|Φ|4 · |Σ|) !

Computing partitions: Dynamic Programming

 Source of inefficiency: naive algorithm traverses the whole automaton to
determine, for pairs q,q‘, whether they are equivalent

 Results of previous equivalence checks can be reused

p q a
ba

p‘ q‘ a
a

b

q q‘≡

 If q q‘, L→(q) ≠ L→(q’),
 therefore,
 for all <p,p‘> s.th. δ-1(p,a)=q and δ-1(p’,a)=q’
 for some a∈Σ, p p’.

≡

≡p p‘≡

 Thus, non-equivalence results can be propagated
● Propagation from final/non-final pairs: L→(q) ≠ L→(q’) if q ∈F ∧ q’∉F
● Propagation from pairs <q,q’> where δ(q,a) is defined but δ(q’,a) is not.

Propagation of non-equivalent states

Non-equivalence check for states <q,q‘>
– Only one of q, q’ is final
– For some a∈Σ, δ(q,a) is defined, δ(q’,a) is not

Propagation (I): Table filling algorithm
 (Aho, Sethi, Ullman)
 represent equivalence relation as a table
 Equiv, cells filled with boolean values
 initialize all cells with 1;
 reset to 0 for non-equivalent states
 main loop: call of PROPAGATE for non-
 equivalent states from LocalEquivalenceCheck

LocalEquivalenceCheck(q,q‘)
if (q∈F and q‘∉F) or (q∉F and q‘∈F)
 return (False)
if ∃a∈Σ s.th. only one of δ(q,a), δ(q’,a)
 is defined
 return (False)
return (True)

PROPAGATE(q,q‘)
for a∈Σ
 for p∈δ-1(q,a),
 for p’∈δ-1(q’,a)
 if Equiv[min(p,p’),max(p,p’)]=1
 Equiv[min(p,p’),max(p,p’)] ← 0
 PROPAGATE(p,p‘)

Propagation of non-equivalent states

LocalEquivalenceCheck(q,q‘)
if (q∈F and q‘∉F) or (q∉F and q‘∈F)
 return (False)
if ∃a∈Σ s.th. only one of δ(q,a), δ(q’,a)
 is defined
 return (False)
return (True)

PROPAGATE(q,q‘)
for a∈Σ
 for p∈δ-1(q,a),
 for p’∈δ-1(q’,a)
 if Equiv[min(p,p’),max(p,p’)]=1
 Equiv[min(p,p’),max(p,p’)] ← 0
 PROPAGATE(p,p‘)

TableFillingPARTITION(Φ, Σ, δ, q0, F)
for q,q‘∈Φ, q<q’
 Equiv[q,q’] ← 1
for q∈Φ
 for q‘∈Φ, q<q’
 if Equiv[q,q’]=1 and
 LocalEquivalenceCheck(q,q’)=False
 Equiv[q,q’] ← 0
 PROPAGATE(q,q‘)

Runtime Complexity: 0(|Φ|2 · |Σ|)
• PROPAGATE is never called twice on a
 given pair of states (checks
Equiv[q,q’]=1)
Space requirements: 0(|Φ|2) cells

More optimizations

 Hopcroft and Ullman: space requirement 0(|Φ|), by
associating states with their equivalence classes

 Hopcroft: Runtime complexity of 0(|Φ| · log|Φ| · |Σ|), by
distinction of active/non-active blocks

Brzozowski‘s Algorithm

Minimization by reversal and determinization

DFSA A
reverse

NFSA A-1

determinize
DFSA A-1

reverse

NFSA (A-1)-1
determinizeDFSA (A-1)-1

Reversal
• Final states of A— : set of initial states of A
• Initial state of A— : F of A
• δ–(q,a) = {p∈Φ | δ(p,a)=q }
• L(A-1) = L(A)-1

L(A) L(A)-1

L(A)

L(A)

Why does it yield a minimal DFSA A‘?

DFSA A
rev

NFSA A-1

det
DFSA A-1

rev
NFSA (A-1)-1 DFSA (A-1)-1

Consider the right languages of states q, q‘ in NFSA (A-1)-1:

• If for all distinct states q, q‘ L→(q) ≠ L→(q’), i.e. L→(q) ∩ L→(q’) = ∅,
 it holds that each pair of states q,q’ recognize different right languages,
 and thus, that the NFSA (A-1)-1 satisfies the minimality condition for a DFSA.

• If there were states q,q’ in NFSA (A-1)-1 s.th. L→(q) ∩ L→(q’) ≠ ∅,
 there would be some string w that leads to two distinct states in DFSA A-1.
 This contradicts the determinicity criterion of a DFSA.

• Determinization of NFSA (A-1)-1 does not destroy the property of minimality

det

qo

DFSA A-1
a

a

b
c

d rev qo

NFSA (A–1) -1 a

a

b
c

d

Applications of FSA: String Matching

 Exact, full string matching
– Lexicon lookup: search for given word/string in a lexicon
– Compile lexicon entries to FSA by union
– Test input words for acceptance in lexicon-FSA

Word
list

recognition/application/lookup
of input word w in/to FSA Alexicon:

(q0,w) |–*Alexicon (qf, ε) is true,

with q0 initial state and qf ⊆ F
transition table!

compile
to FSA

traversal and recognition (acceptance)

Applications of FSA: String Matching

 Substring matching
– Identify stop words in stream of text
– Stem recognition: small, smaller, smallest

 Make use of full power of finite-state operations!
– Regular expression with any-symbols for text search

 ?∗ small(ε | er | est) ?∗
 ?∗ (a | the | …) ?∗

– Compilation to NFSA, convert to DFSA
– Application by composition of FST with full text

 FSAtext stream FST∘ small : if defined, search term is substring of text

Application of FSA: Replacement

 (Sub)string replacement
– Delete stop words in text

– Stemming: reduce/replace inflected forms to stems: smallest → small
– Morphology: map inflected forms to lemmas (and PoS-tags):

good, better, best → good+Adj
– Tokenization: insert token boundaries
– …

⇒ Finite-state transducers (FST)

From Automata to Transducers

q3
q0 q1 q2 q4 q5

l e a v e
q3

q0 q1 q2 q4 q5

l e a v e

l e f t ε

Automata
 recognition of an input string w

 define a language
 accept strings, with transitions

defined for symbols ∈Σ

Transducers
 recognition of an input string w
 generation of an output string w‘

 define a relation between languages
 equivalent to FSA that accept pairs of

strings, with transitions defined for
pairs of symbols <x,y>

 operations: replacement
● deletion <a, ε>, a ∈Σ -{ε}
● insertion <ε, a>, a ∈Σ -{ε}
● substitution <a, b>, a,b ∈Σ, a ≠ b

Transducers and composition

 An FSTs encodes a relation between languages
 A relation may contain an infinite number of ordered pairs,

e.g. translating lower case letters to upper case

 The application of a transducer to a string may also be viewed as
composition of the FST with the (identity relation on the string)

a lower/upper case transducer
a:A,
b:B,
c:C,...

x:X y:Y z:Z z:Z y:Y
a path through the lower/upper
case transducer, for string xyzzy

q5q4q4q3
q0 q1 q2

l e f v e

l e f t ε
+VBD

ε

 l e f t
 L E F T

q5q4q4q3
q0 q1 q2

l e f v e

L E F T ε
+VBD

ε

Literature

 H.R. Lewis and C.H. Papadimitriou: Elements of the Theory of Computation.
Prentice-Hall, New Jersey (Chapter 2).

 J. Hopcroft and J. Ullman: Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Massachusetts, (Chapter 2,3).

 B.H. Partee, A. ter Meulen and R.E. Wall: Mathematical Methods in
Linguistics, Kluwer Academic Publishers, Dordrecht (Chapter 15.5,15.6, 17)

 D. Jurafsky and J.H. Martin: Speech and Language Processing. An
introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, Prentice-Hall, New Jersey (Chapter 2).

 C. Martin-Vide: Formal Grammars and Languages. In: R. Mitkov (ed): Oxford
Handbook of Computational Linguistics, (Chapter 8).

 L. Karttunen: Finite-state Technology. In: R. Mitkov (ed): Oxford Handbook
of Computational Linguistics, (Chapter 18).

Off-the-shelf finite-state tools

 Xerox finite-state tools
– http://www.xrce.xerox.com/competencies/content-analysis/fst/

> Xerox Finite State Compiler (Demo)
– XFST Tools (provided with Beesley and Karttunen: Finite-State

Morphology, CSLI Publications)
 Geertjan van Noord’s finite-state tools

– http://odur.let.rug.nl/~vannoord/Fsa/
 FSA Utilities at John Hopkins

– http://cs.jhu.edu/~jason/406/software.html
 AT&T FSM Library

– http://www.research.att.com/sw/tools/fsm/

Exercises

 Write a program for acceptance of a string by a DFSA.
Then extend it to a finite-state transducer that can translate a surface form to lemma
+ POS, or between upper and lower case.

 Determinize the following NFSA by subset construction.
A1=<{p,q,r,s},{a,b},δ1,p,{s}> where δ1 is as follows:

 Construct an NFSA with ε-transitions from the regular expression (a|b)ca*,
according to the construction principles for union, concatenation and kleene star.
Then transform the NFSA to a DFSA by subset construction.

 Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ3,A,{C,E}>
(using the table filling algorithm by propagation).

-CE
EDD
EDC
CBB
DBA
10δ3

sss
-sr
rrq
pp,qp
baδ1

	 Finite-State Automata and Algorithms Anette Frank frank@dfki.de MSc. Computational Linguistics Course, SS 2006
	Overview
	Finite-state automata: What for?
	Finite-state automata model regular languages
	Slide 5
	Languages, formal languages and grammars
	Recap on Formal Grammars and Languages
	Chomsky Hierarchy of Grammars
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Operations on languages
	Regular languages, regular expressions and FSAs
	Regular languages and regular expressions
	Finite-state automata (FSA)
	FSA transition graphs and traversal
	Slide 18
	FSA traversal and acceptance of an input string
	Regular grammars and Finite-state automata
	Deterministic finite-state automata
	Multiple equivalent FSAs
	Defining FSAs through regular expressions
	Slide 24
	Slide 25
	Non-deterministic finite-state automata (NFSA)
	Non-determinism in FSAs
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Equivalence of DFSAs and NFSAs
	Slide 33
	Slide 34
	Determinization by subset construction
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	-transitions and -closure
	Example
	An algorithm for subset construction
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Minimization of FSAs
	Slide 50
	Partitioning a state set into equivalence classes
	Minimization of a DFSA
	Slide 53
	Slide 54
	Algorithm
	Computing partitions: Naïve partitioning
	Computing partitions: Dynamic Programming
	Propagation of non-equivalent states
	Slide 59
	More optimizations
	Brzozowski‘s Algorithm
	Why does it yield a minimal DFSA A‘?
	Applications of FSAs: String Matching
	Slide 64
	Application of FSAs: Replacement
	From Automata to Transducers
	Transducers and composition
	Literature
	Off-the-shelf finite-state tools
	PowerPoint Presentation
	Exercises

