Finite-State Automata and Algorithms

Bernd Kiefer, kiefer@dfki.de
Many thanks to Anette Frank for the slides
MSc. Computational Linguistics Course, SS 2009

Overview

- Finite-state automata (FSA) - What for?
- Recap: Chomsky hierarchy of grammars and languages
- FSA, regular languages and regular expressions
- Appropriate problem classes and applications
- Finite-state automata and algorithms
- Regular expressions and FSA
- Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state automata
- Determinization: from NFSA to DFSA
- Minimization of DFSA
- Extensions: finite-state transducers and FST operations

Finite-state automata: What for?

Chomsky Hierarchy of
Languages

- Regular languages (Type-3)
- Context-free languages (Type-2)
- Context-sensitive languages (Type-1)
- Type-0 languages

Hierarchy of Grammars and
Automata

- Regular PS grammar Finite-state automata
- Context-free PS grammar Push-down automata
- Tree adjoining grammars Linear bounded automata
- General PS grammars Turing machine

Finite-state automata model regular languages

Finite-state automata model regular languages

Languages, formal languages and grammars

- Alphabet Σ : finite set of symbols
- String : sequence $x_{1} \ldots x_{n}$ of symbols x_{i} from the alphabet Σ
- Special case: empty string ε
- Language over Σ : the set of strings that can be generated from Σ
- Sigma star Σ^{*} : set of all possible strings over the alphabet Σ

$$
\Sigma=\{a, b\} \quad \Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

- Sigma plus $\Sigma+: \Sigma+=\Sigma^{*}-\{\varepsilon\}$
- Special languages: $\varnothing=\{ \}$ (empty language) $\neq\{\varepsilon\}$ (language of empty string)
- A formal language : a subset of Σ^{*}
- Basic operation on strings: concatenation -
- If $a=x_{i} \ldots x_{m}$ and $b=x_{m+1} \ldots x_{n}$ then $a \cdot b=a b=x_{i} \ldots x_{m} x_{m+1} \ldots x_{n}$
- Concatenation is associative but not commutative
- ε is identity element : $a \varepsilon=\varepsilon a=a$
- A grammar of a particular type generates a language of a corresponding type

Recap on Formal Grammars and Languages

- A formal grammar is a tuple $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$
- Σ alphabet of terminal symbols
- Φ alphabet of non-terminal symbols $(\Sigma \cap \Phi=\varnothing)$
- S the start symbol
- R finite set of rules $\mathrm{R} \subseteq \Gamma^{*} \times \Gamma^{*}$ of the form $\alpha \rightarrow \beta$ where $\Gamma=\Sigma \cup \Phi$ and $\alpha \neq \varepsilon$ and $\alpha \notin \Sigma^{*}$
- The language $L(G)$ generated by a grammar G
- set of strings $w \subseteq \Sigma^{*}$ that can be derived from S according to $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$
- Derivation: given $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ and $u, v \in \Gamma^{*}=(\Sigma \cup \Phi)^{*}$
- a direct derivation (1 step) $\boldsymbol{w} \Rightarrow_{G} \boldsymbol{v}$ holds iff $\mathrm{u}_{1}, \mathrm{u}_{2} \in \Gamma^{*}$ exist such that $w=u_{1} \alpha u_{2}$ and $v=u_{1} \beta u_{2}$, and $\alpha \rightarrow \beta \in \mathrm{R}$ exists
- a derivation $\boldsymbol{w} \Rightarrow_{G^{*}} \boldsymbol{v}$ holds iff either $w=v$
or $z \in \Gamma^{*}$ exists such that $w \Rightarrow_{G^{*}} z$ and $z \Rightarrow_{G} v$
- A language generated by a grammar $G: \mathrm{L}(\mathrm{G})=\left\{w: \mathrm{S} \Rightarrow_{G^{*}} w \& w \in \Sigma^{*}\right\}$ I.e., L(G) strongly depends on R !

Chomsky Hierarchy of Grammars

- Classification of languages generated by formal grammars
- A language is of type $i(i=0,1,2,3)$ iff it is generated by a type- i grammar
- Classification according to increasingly restricted types of production rules L-type-0 \supset L-type-1 \supset L-type-2 \supset L-type-3
- Every grammar generates a unique language, but a language can be generated by several different grammars.
- Two grammars are
- (Weakly) equivalent if they generate the same string language
- Strongly equivalent if they generate both the same string language and the same tree language

Chomsky Hierarchy of Grammars

Type-0 languages: general phrase structure grammars

- no restrictions on the form of production rules:
arbitrary strings on LHS and RHS of rules
- A grammar $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ generates a language L-type-0 iff
- all rules R are of the form $\alpha \rightarrow \beta$, where $\alpha \in \Gamma+$ and $\beta \in \Gamma^{*}$ (with $\Gamma=\Sigma \cup \Phi$)
- I.e., LHS a nonempty sequence of NT or T symbols with at least one NT symbol and RHS a possibly empty sequence of NT or T symbols
- Example:

$$
\begin{array}{lll}
\mathrm{G}=<\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}, & \{\mathrm{a}\}, \mathrm{S}, \mathrm{R}>, & \mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{a}^{\mathrm{n}}} \mid \mathrm{n} \geq 1\right\} \\
\mathrm{S} \rightarrow \mathrm{ACaB} . & \mathrm{CB} \rightarrow \mathrm{E} . & \mathrm{aE} \rightarrow \mathrm{Ea} . \\
\mathrm{Ca} \rightarrow \mathrm{aaC} . & \mathrm{aD} \rightarrow \mathrm{Da.} & \mathrm{AE} \rightarrow \varepsilon . \\
\mathrm{CB} \rightarrow \mathrm{DB} . & \mathrm{AD} \rightarrow \mathrm{AC} . & \\
\mathrm{a}^{2^{2}}=\text { aaaa } \in \mathrm{L}(\mathrm{G}) \text { iff } \mathrm{S} \Rightarrow^{*} \text { aaaa }
\end{array}
$$

Chomsky Hierarchy of Grammars

Type-1 languages: context-sensitive grammars

- A grammar $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ generates a language L-type-1 iff
- all rules R are of the form $\alpha A \gamma \rightarrow \alpha \beta \gamma$, or $S \rightarrow \varepsilon$ (with no S symbol on RHS) where $A \in \Phi$ and $\alpha, \beta, \gamma \in \Gamma^{*}(\Gamma=\Sigma \cup \Phi), \beta \neq \varepsilon$
- I.e., LHS: non-empty sequence of NT or T symbols with at least one NT symbol and RHS a nonempty sequence of NT or T symbols (exception: $\mathrm{S} \rightarrow \varepsilon$)
- For all rules LHS \rightarrow RHS : \mid LHS $|\leq|$ RHS \mid
- Example:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
- $\mathrm{R}=\{\mathrm{S} \rightarrow$ a S B C, \quad a B $\rightarrow \mathrm{ab}$,

$$
\mathrm{S} \rightarrow \mathrm{aBC}, \quad \mathrm{~b} \mathrm{~B} \rightarrow \mathrm{~b}, \quad \mathrm{~b}
$$

$$
\mathrm{CB} \rightarrow \mathrm{BC}, \quad \mathrm{bC} \rightarrow \mathrm{bc}, \quad \mathrm{c} \mathrm{C} \rightarrow \mathrm{c} \mathrm{c}\}
$$

$a^{3} b^{3} c^{3}=$ aaabbbccc $\in L(G)$ iff $S \Rightarrow^{*}$ aaabbbccc

Chomsky Hierarchy of Grammars

Type-2 languages: context-free grammars

- A grammar $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ generates a language L-type-2 iff
- all rules R are of the form $A \rightarrow \alpha$, where $A \in \Phi$ and $\alpha \in \Gamma^{*}(\Gamma=\Sigma \cup \Phi)$
- I.e., LHS: a single NT symbol; RHS a (possibly empty) sequence of NT or T symbols
- Example:

$$
\begin{aligned}
& \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{ba} \mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\} \\
& \mathrm{R}=\{\mathrm{S} \rightarrow \mathrm{ASA}, \mathrm{~S} \rightarrow \mathrm{~b}, \mathrm{~A} \rightarrow \mathrm{a}\}
\end{aligned}
$$

Chomsky Hierarchy of Grammars

Type-3 languages: regular or finite-state grammar

- A grammar $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ is called right (left) linear (or regular) iff
- all rules R are of the form
- $A \rightarrow w$ or $A \rightarrow w B$ (or $A \rightarrow B w$), where $A, B \in \Phi$ and $w \in \Sigma *$
- i.e., LHS: a single NT symbol; RHS: a (possibly empty) sequence of T symbols, optionally followed (preceded) by a NT symbol
- Example:

$$
\begin{aligned}
\Sigma= & \{\mathrm{a}, \mathrm{~b}\} \\
\Phi= & \{\mathrm{S}, \mathrm{~A}, \mathrm{~B}\} \\
\mathrm{R}= & \{\mathrm{S} \rightarrow \mathrm{aA}, \quad \mathrm{~B} \rightarrow \mathrm{bB}, \\
& \mathrm{A} \rightarrow \mathrm{aA}, \quad \mathrm{~B} \rightarrow \mathrm{~b}, \\
& \mathrm{~A} \rightarrow \mathrm{~b}, \mathrm{bB}
\end{aligned}
$$

$$
\mathrm{S} \Rightarrow \mathrm{aA} \Rightarrow \mathrm{aaA} \Rightarrow \mathrm{aab} b \mathrm{~B} \Rightarrow \mathrm{a} a \mathrm{~b} b \mathrm{bB} \Rightarrow \mathrm{a} a \mathrm{~b} b \mathrm{~b} b
$$

Operations on languages

- Typical set-theoretic operations on languages
- Union: $\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{w}: \mathrm{w} \in \mathrm{L}_{1}\right.$ or $\left.\mathrm{w} \in \mathrm{L}_{2}\right\}$
- Intersection: $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\left\{\mathrm{w}: \mathrm{w} \in \mathrm{L}_{1}\right.$ and $\left.\mathrm{w} \in \mathrm{L}_{2}\right\}$
- Difference: $\mathrm{L}_{1}-\mathrm{L}_{2}=\left\{\mathrm{w}: \mathrm{w} \in \mathrm{L}_{1}\right.$ and $\left.\mathrm{w} \notin \mathrm{L}_{2}\right\}$
- Complement of $\mathrm{L} \subseteq \Sigma^{*}$ wrt. $\Sigma^{*}: \mathrm{L}^{-}=\Sigma^{*}-\mathrm{L}$
- Language-theoretic operations on languages
- Concatenation: $\mathrm{L}_{1} \mathrm{~L}_{2}=\left\{\mathrm{w}_{1} \mathrm{w}_{2}: \mathrm{w}_{1} \in \mathrm{~L}_{1}\right.$ and $\left.\mathrm{w}_{2} \in \mathrm{~L}_{2}\right\}$
- Iteration: $\mathrm{L}^{0}=\{\varepsilon\}, \mathrm{L}^{1}=\mathrm{L}, \mathrm{L}^{2}=\mathrm{LL}, \ldots \mathrm{L}^{*}=\cup_{\mathrm{i} \geq 0} \mathrm{~L}^{\mathrm{i}}, \mathrm{L}^{+}=\cup_{\mathrm{i}>0} \mathrm{~L}^{\mathrm{i}}$
- Mirror image: $\mathrm{L}^{-1}=\left\{\mathrm{w}^{-1}: \mathrm{w} \in \mathrm{L}\right\}$
- Union, concatenation and Kleene star are called regular operations
- Regular sets/languages: languages that are defined by the regular operations: concatenation (\cdot), union (\cup) and kleene star (*)
- Regular languages are closed under concatenation, union, kleene star, intersection and complementation

Regular languages, regular expressions and FSA

Regular languages and regular expressions

- Regular sets/languages can be specified/defined by regular expressions Given a set of terminal symbols Σ, the following are regular expressions
$-\varepsilon$ is a regular expression
- For every $a \in \Sigma, a$ is a regular expression
- If R is a regular expression, then R^{*} is a regular expression
- If Q, R are regular expressions, then $\mathrm{QR}(\mathrm{Q} \cdot \mathrm{R})$ and $\mathrm{Q} \cup \mathrm{R}$ are regular expressions
- Every regular expression denotes a regular language
$-\mathrm{L}(\varepsilon)=\{\varepsilon\}$
- $\mathrm{L}(a)=\{a\}$ for all $a \in \Sigma$
- $\mathrm{L}(\alpha \beta)=\mathrm{L}(\alpha) \mathrm{L}(\beta)$
$-\mathrm{L}(\alpha \cup \beta)=\mathrm{L}(\alpha) \cup \mathrm{L}(\beta)$
$-\mathrm{L}\left(\alpha^{*}\right)=\mathrm{L}(\alpha)^{*}$

Finite-state automata (FSA)

- Grammars: generate (or recognize) languages Automata: recognize (or generate) languages
- Finite-state automata recognize regular languages
- A finite automaton (FA) is a tuple $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
- Φ a finite non-empty set of states
- $\boldsymbol{\Sigma}$ a finite alphabet of input letters
$-\delta$ a transition function $\Phi \times \boldsymbol{\Sigma} \rightarrow \Phi$
- $\mathrm{q}_{0} \in \Phi$ the initial state
$-\mathrm{F} \subseteq \Phi$ the set of final (accepting) states
- Transition graphs (diagrams):
- states: circles
- transitions: directed arcs between circles
- initial state
- final state

$$
\begin{aligned}
& \mathrm{p} \in \Phi \\
& \delta(\mathrm{p}, \mathrm{a})=\mathrm{q} \\
& \mathrm{p}=\mathrm{q}_{0} \\
& \mathrm{r} \subseteq \mathrm{~F}
\end{aligned}
$$

FSA transition graphs and traversal

- Transition graph

- Traversal of an FSA
= Computation with an FSA

FSA transition graphs and traversal

- Transition graph

- Traversal of an FSA
= Computation with an FSA

State diagram

δ	a	c	e	l	r	t	v
q_{0}	0	q_{1}	q_{3}	q_{6}	0	0	0
q_{1}	0	0	0	q_{2}	0	0	0
q_{2}	0	0	q_{3}	0	0	0	0
q_{3}	q_{4}	0	0	0	0	0	q_{9}
q_{4}	0	0	0	0	q_{5}	0	0
q_{5}	0	0	0	0	0	0	0
q_{6}	0	0	q_{7}	0	0	0	0
q_{7}	0	0	0	0	0	q_{8}	0
q_{8}	0	0	0	0	0	q_{9}	0
q_{0}	0	0	q_{4}	0	0	0	0

FSA can be used for

- acceptance (recognition)
- generation

FSA traversal and acceptance of an input string

- Traversal of a (deterministic) FSA
- FSA traversal is defined by states and transitions of A, relative to an input string $w \in \Sigma^{*}$
- A configuration of A is defined by the current state and the unread part of the input string: ($\mathrm{q}, \mathrm{w}_{\mathrm{i}}$), with $\mathrm{q} \in \Phi, \mathrm{w}_{\mathrm{i}}$ suffix of w
- A transition: a binary relation between configurations $\left.\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)\right|_{\mathrm{A}}\left(\mathrm{q}^{\prime}, \mathrm{w}_{\mathrm{i}+1}\right)$ iff $\mathrm{w}_{\mathrm{i}}=\mathrm{zw}_{\mathrm{i}+1}$ for $\mathrm{z} \in \Sigma$ and $\delta(\mathrm{q}, \mathrm{z})=\mathrm{q}^{\prime}$ $\left(\mathrm{q}^{2} \mathrm{w}_{\mathrm{i}}\right)$ yields $\left(\mathrm{q}^{\prime}, \mathrm{w}_{\mathrm{i}+1}\right)$ in a single transition step
- Reflexive, transitive closure of $\left.\right|_{-_{A}}:\left(q, w_{i}\right) \mid-_{A}^{*}\left(q^{\prime}, w_{j}\right)$ $\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)$ yields $\left(\mathrm{q}^{\prime}, \mathrm{w}_{\mathrm{j}}\right)$ in zero or a finite number of steps
- Acceptance
- Decide whether an input string w is in the language $\mathrm{L}(\mathrm{A})$ defined by FSA A
- An FSA A accepts a string wiff $\left.\left(\mathrm{q}_{0}, \mathrm{w}\right)\right|_{-{ }_{\mathrm{A}}}\left(\mathrm{q}_{\mathrm{f}}, \varepsilon\right)$, with q_{0} initial state, $\mathrm{q}_{\mathrm{f}} \subseteq \mathrm{F}$
- The language $L(A)$ accepted by FSA A is the set of all strings accepted by A I.e., $w \in L(A)$ iff there is some $q_{f} \subseteq F_{A}$ such that $\left.\left(q_{0}, w\right)\right|^{*}{ }_{A}\left(q_{f}, \varepsilon\right)$

Regular grammars and Finite-state automata

- A grammar $\mathrm{G}=<\Sigma, \Phi, \mathrm{S}, \mathrm{R}>$ is called right linear (or regular) iff all rules R are of the form $A \rightarrow w$ or $A \rightarrow w B$, where $A, B \in \Phi$ and $w \in \Sigma^{*}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}, \Phi=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}, \mathrm{R}=\{\mathrm{S} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{bbB}, \mathrm{B} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \mathrm{b}\}$ $\mathrm{S} \Rightarrow \mathrm{aA} \Rightarrow \mathrm{aaA} \Rightarrow \mathrm{aabbB} \Rightarrow \mathrm{aabbbB} \Rightarrow \mathrm{aabbbb}$
- The NT symbol corresponds to a state in an FSA: the future of the derivation only depends on the identity of this state or symbol and the remaining production rules.
- Correspondence of type-3 grammar rules with transitions in a (non-deterministic) FSA:
- $\mathrm{A} \rightarrow \mathrm{wB} \equiv \delta(\mathrm{A}, \mathrm{w})=\mathrm{B}$
- $\mathrm{A} \rightarrow \mathrm{w} \equiv \delta(\mathrm{A}, \mathrm{w})=\mathrm{q}, \mathrm{q} \in \Phi$
- Conversely, we can construct an FSA from the rules of a type-3 language
- Regular grammars and FSA can be shown to be equivalent

- Regular grammars generate regular languages
- Regular languages are defined by concatenation, union, kleene star

Deterministic finite-state automata

- Deterministic finite-state automata (DFSA)
- at each state, there is at most one transition that can be taken to read the next input symbol
- the next state (transition) is fully determined by current configuration
- δ is functional (and there are no ε-transitions)
- Determinism is a useful property for an FSA to have!
- Acceptance or rejection of an input can be computed in linear time $0(n)$ for inputs of length n
- Especially important for processing of LARGE documents
- Appropriate problem classes for FSA
- Recognition and acceptance of regular languages, in particular string manipulation, regular phonological and morphological processes
- Approximations of non-regular languages in morphology, shallow finitestate parsing, ...

Multiple equivalent FSA

- FSA for the language $\mathrm{L}_{\text {lehr }}=\{$ lehrbar, lehrbarkeit, belehrbar, belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit \}
- DFSA for $\mathrm{L}_{\text {lehr }}$

- Regular expression and FSA for $\mathrm{L}_{\text {lehr: }}$ (un $\mid \varepsilon$) (be lehr \mid lehr) bar (keit $\mid \varepsilon$) (non-deterministic)

- Equivalent FSA (non-deterministic)

Defining FSA through regular expressions

- FSA for even mildly complex regular languages are best constructed from regular expressions!
- Every regular expression denotes a regular language
$-\quad \mathrm{L}(\varepsilon)=\{\varepsilon\}$
- $\mathrm{L}(\alpha \beta)=\mathrm{L}(\alpha) \mathrm{L}(\beta)$
- $\mathrm{L}(a)=\{a\}$ for all $a \in \Sigma$
- $\mathrm{L}(\alpha \cup \beta)=\mathrm{L}(\alpha) \cup \mathrm{L}(\beta)$
- $\mathrm{L}\left(\alpha^{*}\right)=\mathrm{L}(\alpha)^{*}$
- Every regular expression translates to a FSA (Closure properties)
- An FSA for a (with $\mathrm{L}(a)=\{a\}), a \in \Sigma$:
- An FSA for ε (with $\mathrm{L}(\varepsilon)=\{\varepsilon\}), \varepsilon \in \Sigma$:
- Concatenation of two FSA F_{A} and F_{B} :
- $\Sigma_{\mathrm{AB}}=\Sigma_{\mathrm{A}}$ (Σ initial state)
- $\Phi_{\mathrm{AB}}=\Phi_{\mathrm{B}}$ (Φ set of final states)

$\forall \delta_{A B}=\delta_{A} \cup \delta_{B} \cup\left\{\delta\left(\left\langle\mathrm{q}_{\mathrm{i}}, \varepsilon>, \mathrm{q}_{\mathrm{j}}\right) \mid \mathrm{q}_{\mathrm{i}} \in \Phi_{\mathrm{A}}, \mathrm{q}_{\mathrm{j}}=\Sigma_{\mathrm{B}}\right\}\right.$

Defining FSA through regular expressions

- union of two FSA F_{A} and F_{B} :
- $\mathrm{S}_{\mathrm{AB}}=\mathrm{s}_{0}$ (new state)
- $\mathrm{F}_{\mathrm{AB}}=\left\{\mathrm{s}_{\mathrm{j}}\right\}$ (new state)
$\forall \delta_{\mathrm{AB}}=\delta_{\mathrm{A}} \cup \delta_{\mathrm{B}}$

$\cup\left\{\delta\left(<\mathrm{q}_{0}, \varepsilon>, \mathrm{q}_{z}\right) \mid \mathrm{q}_{0}=\mathrm{S}_{\mathrm{AB}},\left(\mathrm{q}_{\mathrm{z}}=\mathrm{S}_{\mathrm{A}}\right.\right.$ or $\left.\left.\mathrm{q}_{\mathrm{z}}=\mathrm{S}_{\mathrm{B}}\right)\right\}$
$\cup\left\{\delta\left(<\mathrm{q}_{z}, \varepsilon>, \mathrm{q}_{\mathrm{j}}\right) \mid\left(\mathrm{q}_{\mathrm{z}} \in \mathrm{F}_{\mathrm{A}}\right.\right.$ or $\left.\left.\mathrm{q}_{\mathrm{z}} \in \mathrm{F}_{\mathrm{B}}\right), \mathrm{q}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{AB}}\right\}$
- Kleene Star over an FSA F F_{A} :
- $\mathrm{S}_{\mathrm{A}^{*}}=\mathrm{s}_{0}$ (new state)
- $\mathrm{F}_{\mathrm{A}^{*}}=\left\{\mathrm{q}_{\mathrm{j}}\right\}$ (new state)

$\forall \delta_{\mathrm{AB}}=\delta_{\mathrm{A}} \cup$
$\cup\left\{\delta\left(\left\langle\mathrm{q}_{\mathrm{j}}, \varepsilon>, \mathrm{q}_{\mathrm{z}}\right) \mid \mathrm{q}_{\mathrm{j}} \in \mathrm{F}_{\mathrm{A}}, \mathrm{q}_{\mathrm{z}}=\mathrm{S}_{\mathrm{A}}\right)\right\}$
$\cup\left\{\delta\left(<\mathrm{q}_{0}, \varepsilon>, \mathrm{q}_{\mathrm{z}}\right) \mid \mathrm{q}_{0}=\mathrm{S}_{\mathrm{A}^{*}},\left(\mathrm{q}_{\mathrm{z}}=\mathrm{S}_{\mathrm{A}}\right.\right.$ or $\left.\left._{\mathrm{q}}=\mathrm{F}_{\mathrm{A}^{*}}\right)\right\}$
$\cup\left\{\delta\left(\left\langle\mathrm{q}_{z}, \varepsilon>, \mathrm{q}_{\mathrm{j}}\right) \mid \mathrm{q}_{\mathrm{z}} \in \mathrm{F}_{\mathrm{A}}, \mathrm{q}_{\mathrm{j}} \in \mathrm{F}_{\mathrm{A}^{*}}\right\}\right.$

Defining FSA through regular expressions

- ε-transition: move to $\delta(\mathrm{q}, \varepsilon)$ without reading an input symbol
- FSA construction from regular expressions yields
a non-deterministic FSA (NFSA)
- Choice of next state is only partially determined by the current configuration, i.e., we cannot always predict which state will be the next state in the traversal

Non-deterministic finite-state automata (NFSA)

- Non-determinism
- Introduced by ε-transitions and/or
- Transition being a relation Δ over $\Phi \times \Sigma^{*} \times \Phi$, i.e. a set of triples $\left.<\mathrm{q}_{\text {source }}, \mathrm{z}, \mathrm{q}_{\text {target }}\right\rangle$ Equivalently: Transition function δ maps to a set of states: $\delta: \Phi \times \Sigma \rightarrow \wp(\Phi)$
- A non-deterministic FSA (NFSA) is a tuple $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
- Φ a finite non-empty set of states
- $\boldsymbol{\Sigma}$ a finite alphabet of input letters
- δ a transition function $\Phi \times \Sigma^{*} \rightarrow \wp(\Phi) \quad$ (or a finite relation over $\Phi \times \Sigma^{*} \times \Phi$)
- $\mathrm{q}_{0} \in \Phi$ the initial state
- $\mathrm{F} \subseteq \Phi$ the set of final (accepting) states
- Adapted definitions for transitions and acceptance of a string by a NFSA
- $\left.(q, w)\right|_{-}\left(q^{\prime}, w_{i+1}\right)$ iff $w_{i}=\mathrm{zw}_{\mathrm{i}+1}$ for $\mathrm{z} \in \Sigma^{*}$ and $q^{\prime} \in \delta(q, z)$
- An NDFA (w/o ε) accepts a string w iff there is some traversal such that $\left.\left(\mathrm{q}_{0}, \mathrm{w}\right)\right|^{*}{ }_{A}\left(\mathrm{q}^{\prime}, \varepsilon\right)$ and $\mathrm{q}^{\prime} \subseteq \mathrm{F}$.
- A string w is rejected by NDFA A iff A does not accept w, i.e. all configurations of A for string w are rejecting configurations!

Non-determinism in FSA

Equivalence of DFSA and NFSA

- Despite non-determinism, NFSA are not more powerful than DFSA: they accept the same class of languages: regular languages
- For every non-deterministic FSA there is deterministic FSA that accepts the same language (and vice versa)
- The corresponding DFSA has in general more states, in which it models the sets of possible states the NFSA could be in in a given traversal
- There is an algorithm (via subset construction) that allows conversion of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

- It is a DFSA (efficiency)
- It is minimal (compact encoding)
\rightarrow Determinization of NFSA
\rightarrow Minimization of FSA

Equivalence of DFSA and NFSA

- FSA A_{1} and A_{2} are equivalent iff $\mathrm{L}\left(\mathrm{A}_{1}\right)=\mathrm{L}\left(\mathrm{A}_{2}\right)$
- Theorem: for each NFSA there is an equivalent DFSA
- Construction: $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\mathrm{a}$ NFSA over Σ
- $\operatorname{define} \operatorname{eps}(q)=\{p \in \Phi \mid(q, \varepsilon, p) \in \delta\}$
- define an FSA A ${ }^{〔}=\left\langle\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}\right\rangle$ over sets of states, with

$$
\begin{aligned}
& \Phi^{\prime}=\{\mathrm{B} \mid \mathrm{B} \subseteq \Phi\} \\
& \mathrm{q}_{0}^{\prime}=\left\{\operatorname{eps}\left(\mathrm{q}_{0}\right)\right\} \\
& \delta^{\prime}(\mathrm{B}, \mathrm{a})=\cup\{\operatorname{eps}(\mathrm{p}) \mid \mathrm{q} \in \mathrm{~B} \text { and } \exists \mathrm{p} \in \mathrm{~B} \text { such that }(\mathrm{q}, \mathrm{a}, \mathrm{p}) \in \delta\} \\
& \mathrm{F}^{\prime}=\{\mathrm{B} \subseteq \Phi \mid \mathrm{B} \cap \mathrm{~F} \neq \varnothing\}
\end{aligned}
$$

- A^{\prime} satisfies the definition of a DFSA. We need to show that $L(A)=L\left(A^{\prime}\right)$
- Define $\mathrm{D}(\mathrm{q}, w):=\left\{\mathrm{p} \in \Phi \mid(\mathrm{q}, w) \vdash^{*}(\mathrm{p}, \varepsilon)\right\} \quad$ and

$$
\mathrm{D}^{\prime}(\mathrm{Q}, w):=\left\{\mathrm{P} \in \Phi^{\prime} \mid(\mathrm{Q}, w) \vdash^{*}{ }_{\mathrm{A}^{\prime}}(\mathrm{P}, \varepsilon)\right\}
$$

Equivalence of DFSA and NFSA: Proof

Prove: $\mathrm{D}\left(\mathrm{q}_{0}, w\right)=\mathrm{D}^{\prime}\left(\left\{\mathrm{q}_{0}\right\}, w\right)$ by induction over length of w

- $|w|=0:$ by definition of D and D^{\prime}
- Induction step: $|w|=\mathrm{k}+1, w=v \mathrm{a}$, by hypothesis:

$$
\mathrm{D}\left(\mathrm{q}_{0}, v\right)=\mathrm{D}^{\prime}\left(\left\{\mathrm{q}_{0}\right\}, v\right)=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}\right\}=\mathrm{P}
$$

$$
\text { by def. of } \mathrm{D}: \mathrm{D}\left(\mathrm{q}_{0}, w\right)=\cup_{\mathrm{p} \in \mathrm{p}}\{\operatorname{eps}(\mathrm{q}) \mid(\mathrm{p}, \mathrm{a}, \mathrm{q}) \in \delta\}
$$

$$
\text { by def. of } \delta^{\prime}: D^{\prime}\left(\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, a\right)=\cup_{p \in P}\{\operatorname{eps}(q) \mid(p, a, q) \in \delta\}
$$

it follows:

$$
\begin{gathered}
D^{\prime}\left(\left\{q_{0}\right\}, w\right)=\delta^{\prime}\left(D^{\prime}\left(\left\{q_{0}\right\}, w\right), a\right)=D^{\prime}\left(\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, a\right) \\
=\bigcup_{p \in P}\{\operatorname{eps}(q) \mid(p, a, q) \in \delta\}=D\left(q_{0}, w\right) \text { q.e.d. }
\end{gathered}
$$

- Finally, A and A^{\prime} only accept if $D^{\prime}\left(\left\{\mathrm{q}_{0}\right\}, w\right)=D\left(\mathrm{q}_{0}, w\right)$ contain a state $\in \mathrm{F}$

Determinization by subset construction

NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$

$L(A)=a(b a)^{*} \cup a(b b a)^{*}$

$$
\mathrm{A}^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}^{\prime}, \mathrm{F}^{\prime}>
$$

Subset construction:

Compute δ ' from δ for all subsets $\mathrm{S} \subseteq \Phi$ and $\mathrm{a} \in \Sigma$ s.th. $\delta^{\prime}(\mathrm{S}, \mathrm{a})=\left\{\mathrm{s}^{\prime} \mid \exists \mathrm{s} \in \mathrm{S}\right.$ s.th. $\left.\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{`}\right) \in \delta\right\}$

Determinization by subset construction

NFSA $A=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\quad \mathrm{A}^{\prime}=\left\langle\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>\right.$

$\mathrm{L}(\mathrm{A})=\mathrm{a}(\mathrm{ba})^{*} \cup \mathrm{a}(\mathrm{bba})^{*}$
$\Phi^{\prime}=\{B \mid B \subseteq\{1,2,3,4,5,6\}$
$\mathrm{q}_{0}{ }^{\prime}=\{1\}$,
$\delta^{\prime}(\{1\}, a)=\{2,3\}, \quad \delta^{\prime}(\{4\}, a)=\{2\}$,
$\delta^{\prime}(\{1\}, \mathrm{b})=\varnothing$,
$\delta^{\prime}(\{2,3\}, a)=\varnothing$,
$\delta^{\prime}(\{2,3\}, b)=\{4,5\}$,
$\delta^{\prime}(\{4,5\}, a)=\{2\}$,
$\delta^{\prime}(\{4,5\}, b)=\{6\}$,
$\delta^{\prime}(\{2\}, a)=\varnothing$,
$\delta^{\prime}(\{2\}, b)=\{4\}$,
$\delta^{\prime}(\{6\}, a)=\{3\}$,
$\delta^{\prime}(\{6\}, b)=\varnothing$,
$\delta^{\prime}(\{4\}, \mathrm{b})=\varnothing$,
$\delta^{\prime}(\{3\}, a)=\varnothing$,
$\delta^{\prime}(\{3\}, \mathrm{b})=\{5\}$,
$\delta^{\prime}(\{5\}, a)=\varnothing$,
$\delta^{\prime}(\{5\}, \mathrm{b})=\{6\}$

$$
F^{\prime}=\{\{2,3\},\{2\},\{3\}\}
$$

Determinization by subset construction

NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\quad \mathrm{A}^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>$

$$
\begin{array}{ll}
\Phi^{\prime}=\{\mathrm{B} \mid \mathrm{B} \subseteq\{1,2,3,4,5,6\} \\
\mathrm{q}^{\prime}=\{1\}, & \\
\delta^{\prime}(\{1\}, \mathrm{a})=\{2,3\}, & \delta^{\prime}(\{4\}, \mathrm{a})=\{2\}, \\
\delta^{\prime}(\{1\}, \mathrm{b})=\varnothing, & \delta^{\prime}(\{4\}, \mathrm{b})=\varnothing, \\
\delta^{\prime}(\{2,3\}, \mathrm{a})=\varnothing, & \delta^{\prime}(\{3\}, \mathrm{a})=\varnothing, \\
\delta^{\prime}(\{2,3\}, \mathrm{b})=\{4,5\}, & \delta^{\prime}(\{3\}, \mathrm{b})=\{5\}, \\
\delta^{\prime}(\{4,5\}, \mathrm{a})=\{2\}, & \delta^{\prime}(\{5\}, \mathrm{a})=\varnothing, \\
\delta^{\prime}(\{4,5\}, \mathrm{b})=\{6\}, & \delta^{\prime}(\{5\}, \mathrm{b})=\{6\} \\
\delta^{\prime}(\{2\}, \mathrm{a})=\varnothing, & \\
\delta^{\prime}(\{2\}, \mathrm{b})=\{4\}, & \mathrm{F}^{\prime}=\{\{2,3\},\{2\}, \\
\delta^{\prime}(\{6\}, \mathrm{a})=\{3\}, & \\
\delta^{\prime}(\{6\}, \mathrm{b})=\varnothing, &
\end{array}
$$

Determinization by subset construction

NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\quad \mathrm{A}^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>$

$$
\begin{array}{ll}
\Phi^{\prime}=\{\mathrm{B} \mid \mathrm{B} \subseteq\{1,2,3,4,5,6\} \\
\mathrm{q}^{\prime}=\{1\}, \\
\delta^{\prime}(\{1\}, a)=\{2,3\}, & \delta^{\prime}(\{4\}, a)=\{2\}, \\
\delta^{\prime}(\{1\}, \mathrm{b})=\varnothing, & \delta^{\prime}(\{4\}, \mathrm{b})=\varnothing, \\
\delta^{\prime}(\{2,3\}, a)=\varnothing, & \delta^{\prime}(\{3\}, a)=\varnothing, \\
\delta^{\prime}(\{2,3\}, b)=\{4,5\}, & \delta^{\prime}(\{3\}, \mathrm{b})=\{5\}, \\
\delta^{\prime}(\{4,5\}, a)=\{2\}, & \delta^{\prime}(\{5\}, a)=\varnothing, \\
\delta^{\prime}(\{4,5\}, \mathrm{b})=\{6\}, & \delta^{\prime}(\{5\}, \mathrm{b})=\{6\} \\
\delta^{\prime}(\{2\}, a)=\varnothing, & \\
\delta^{\prime}(\{2\}, \mathrm{b})=\{4\}, & \mathrm{F}^{\prime}=\{\{2,3\},\{2\},\{3\}\} \\
\delta^{\prime}(\{6\}, \mathrm{a})=\{3\}, & \\
\delta^{\prime}(\{6\}, \mathrm{b})=\varnothing, &
\end{array}
$$

Determinization by subset construction

NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\quad \mathrm{A}^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>$

Determinization by subset construction

NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>\quad$ DFSA A ${ }^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>$

$$
\mathrm{L}(\mathrm{~A})=\mathrm{L}\left(\mathrm{~A}^{\prime}\right)=\mathrm{a}(\mathrm{ba})^{*} \cup \mathrm{a}(\mathrm{bba})^{*}
$$

ε-transitions and ε-closure

- Subset construction must account for ε-transitions
- ε-closure
- The ε-closure of some state q consists of q as well as all states that can be reached from q through a sequence of ε-transitions
- $\mathrm{q} \in \varepsilon-\cos \operatorname{cor} \varepsilon(\mathrm{q})$
- If $r \in \varepsilon$-closure(q) and $\left(r, \varepsilon, q^{\top}\right) \in \delta$, then $q^{\prime} \in \varepsilon$-closure(q),
- ε-closure defined on sets of states

$$
\forall \varepsilon \text {-closure }(\mathrm{R})=\underset{\mathrm{q} \in \mathrm{R}}{\cup} \varepsilon \text {-closure }(\mathrm{q}) \quad(\text { with } \mathrm{P} \subseteq \Phi)
$$

- Subset construction for ε-NFSA
- Compute δ ' from δ for all subsets $\mathrm{S} \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta^{\prime}(\mathrm{S}, \mathrm{a})=\left\{\mathrm{s}^{\prime \prime} \mid \exists \mathrm{s} \in \mathrm{S}\right.$ s.th. $\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\mathrm{s}}\right) \in \delta$ and $\mathrm{s}^{\prime \prime} \in \varepsilon$-closure $\left.\left(\mathrm{s}^{\prime}\right)\right\}$

Example

- ε-NFSA for $(a \mid b) c^{*}$

ε-closure for all $s \in \Phi$:
ε-closure $(0)=\{0,1,2\}$,
ε-closure (1) $=\{1\}$,
ε-closure (2) $=\{2\}$,
ε-closure (3) $=\{3,5,6,7,9\}$,
ε-closure(4) $=\{4,5,6,7,9\}$,
ε-closure (5) $=\{5,6,7,9\}$,
ε-closure(6) $=\{6,7,9\}$, ε-closure (7) $=\{7\}$,
ε-closure $(8)=\{8,7,9\}$,
ε-closure $(9)=\{9\}$

Transition function over subsets
$\delta^{\prime}(\{0\}, \varepsilon)=\{0,1,2\}$,
$\delta^{\prime}(\{0,1,2\}, a)=\{3,5,6,7,9\}$,
$\delta^{\prime}(\{0,1,2\}, b)=\{4,5,6,7,9\}$,
$\delta^{\prime}(\{3,5,6,7,9\}, c)=\{8,7,9\}$,
$\delta^{\prime}(\{4,5,6,7,9\}, c)=\{8,7,9\}$,
$\delta^{\prime}(\{8,7,9\}, \mathrm{c})=\{8,7,9\}$

An algorithm for subset construction

- Construction of DFSA A ${ }^{\prime}=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}{ }^{\prime}, \mathrm{F}^{\prime}>$ from NFSA $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
$-\Phi^{\prime}=\{B \mid B \subseteq \Phi\}$, if unconstrained can be $2^{|\Phi|}$ with $|\Phi|=33$ this could lead to an FSA with 2^{33} states (exceeds the range of integers in most programming languages)
- Many of these states may be useless

An algorithm for subset construction

- Construction of DFSA A ${ }^{‘}=\left\langle\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}, \mathrm{~F}^{\prime}>\right.$ from NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
- $\Phi^{\prime}=\{B \mid B \subseteq \Phi\}$, if unconstrained can be $2^{|\Phi|}$ with $|\Phi|=33$ this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)
- Many of these states may be useless

$$
\mathrm{L}=(\mathrm{a} \mid \mathrm{b}) \mathrm{a}^{*} \cup \mathrm{ab}+\mathrm{a}^{*}
$$

An algorithm for subset construction

- Construction of DFSA A ${ }^{‘}=\left\langle\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}, \mathrm{~F}^{\prime}>\right.$ from NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
- $\Phi^{\prime}=\{B \mid B \subseteq \Phi\}$, if unconstrained can be $2^{|\Phi|}$ with $|\Phi|=33$ this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)
- Many of these states may be useless

$$
\mathrm{L}=(\mathrm{a} \mid \mathrm{b}) \mathrm{a}^{*} \cup \mathrm{ab}+\mathrm{a}^{*}
$$

An algorithm for subset construction

- Construction of DFSA A ${ }^{‘}=\left\langle\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}, \mathrm{~F}^{\prime}>\right.$ from NFSA A $=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$
- $\Phi^{\prime}=\{B \mid B \subseteq \Phi\}$, if unconstrained can be $2^{|\Phi|}$ with $|\Phi|=33$ this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)
- Many of these states may be useless

Only consider states that can be traversed starting from q_{0}

An algorithm for subset construction

- Basic idea: we only need to consider states $\mathrm{B} \subseteq \Phi$ that can ever be traversed by a string $\mathrm{w} \in \Sigma^{*}$, starting from $\mathrm{q}_{0}{ }^{\text {' }}$
- I.e., those $\mathrm{B} \subseteq \Phi$ for which $\mathrm{B}=\delta^{\prime}\left(\mathrm{q}_{0}, \mathrm{w}\right)$, for some $\mathrm{w} \in \Sigma^{*}$, with δ^{\prime} the recursively constructed transition function for the target DFSA A'
- Consider all strings $w \in \Sigma^{*}$ in order of their length: $\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots$

$1=0(\varepsilon)$
$1=1(\mathrm{a}, \mathrm{b})$
$\mathrm{l}=2,3,4, \ldots$ (aa, ab, ba, bb, aaa, aab, aba, ...)
- Construction by increasing lengths of strings
- For each $\mathrm{a} \in \Sigma$, construct transitions to known or new states according to δ
- New target states (A') are placed in a queue (FIFO)
- Termination: no states left on queue

An algorithm for subset construction

```
DETERMINIZE( }\Phi,\Sigma,\delta,\mp@subsup{q}{0}{},\textrm{F}
\mp@subsup{q}{0}{}\mp@subsup{}{}{`}}\leftarrow\mp@subsup{\textrm{q}}{0}{
\Phi'}\leftarrow{\mp@subsup{q}{0}{}\mp@subsup{}{}{\prime}
ENQUEUE(Queue, q}\mp@subsup{\textrm{q}}{0}{}\mp@subsup{}{}{\prime}
while Queue }=
    S}\leftarrow\mathrm{ DEQUEUE(Quеие)
    for a\in\Sigma
    \delta'(S,a)= \cup \r\inS (r,a)
    if }\mp@subsup{\delta}{}{\prime}(\textrm{S},\textrm{a})\not\in\mp@subsup{\Phi}{}{\prime
        \Phi'}\leftarrow\mp@subsup{\Phi}{}{\prime}\cup\mp@subsup{\delta}{}{\prime}(\textrm{S},\textrm{a}
        ENQUEUE(Queue, \delta'(S,a))
        if }\mp@subsup{\delta}{}{\prime}(S,a)\capF\not=
            F
        fi
    fi
return ('\Phi',\Sigma, \delta', (q}\mp@subsup{}{0}{`},\mp@subsup{F}{}{\prime}
```

Complexity

Maximal number of states placed in queue is $2^{|\Phi|}$
So, worst case runtime is exponential

- determinization is a costly operation,
- but results in an efficient FSA (linear in size of the input)
- avoids computation of isolated states

Actual run time depends on the shape of the NFSA

Minimization of FSA

- Can we transform a large automaton into a smaller one (provided a smaller one exists)?
- If A is a DFSA, is there an algorithm for constructing an equivalent minimal automaton $\mathrm{A}_{\text {min }}$ from A ?

- A can be transformed to A':

A is equivalent to ${ }^{\prime}$ i.e., $\mathrm{L}(\mathrm{A})=\mathrm{L}\left(\mathrm{A}^{`}\right)$

A' is smaller than A i.e., $|\Phi|>\left|\Phi^{‘}\right|$

- States 2 and 3 in A "do the same job": once A is in state 2 or 3 , it accepts the same suffix string. Such states are called equivalent.
- Thus, we can eliminate state 3 without changing the language of A, by redirecting all arcs leading to 3 to 2 , instead.

Minimization of FSA

- A DFSA can be minimized if there are pairs of states $\mathrm{q}, \mathrm{q}^{‘} \in \Phi$ that are equivalent
- Two states q, q ' are equivalent iff they accept the same right language.
- Right language of a state:
- For $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$ a DFSA, the right language $L \rightarrow(q)$ of a state $q \in \Phi$ is the set of all strings accepted by A starting in state q :
$\mathrm{L} \rightarrow(\mathrm{q})=\left\{\mathrm{w} \in \Sigma^{*} \mid \delta^{*}(\mathrm{q}, \mathrm{w}) \in \mathrm{F}\right\}$
- Note: $L \rightarrow\left(q_{0}\right)=L(A)$
- State equivalence:
- For $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$ a DFSA, if $\mathrm{q}, \mathrm{q}^{\prime} \in \Phi, q$ and q^{\prime} are equivalent $\left(q \equiv q^{\prime}\right)$ iff $\mathrm{L} \rightarrow(\mathrm{q})=\mathrm{L} \rightarrow\left(\mathrm{q}^{\prime}\right)$
$-\equiv$ is an equivalence relation (i.e., reflexive, transitive and symmetric)
- \equiv partitions the set of states Φ into a number of disjoint sets $Q_{1} . . Q_{n}$ of equivalence classes s.th. $\cup_{\mathrm{i}=1 . . \mathrm{m}} \mathrm{Q}_{\mathrm{i}}=\Phi$ and $\mathrm{q} \equiv \mathrm{q}^{\prime}$ for all $\mathrm{q}, \mathrm{q}^{\prime} \in \mathrm{Q}_{\mathrm{i}}$

Partitioning a state set into equivalence classes

Equivalence classes on state set defined by \equiv

All classes C_{i} consist of equivalent states $\mathrm{q}_{\mathrm{j}=\mathrm{i} . \mathrm{n}}$ that accept identical right languages $\mathrm{L} \rightarrow\left(\mathrm{q}_{\mathrm{j}}\right)$

Whenever two states $\mathrm{q}, \mathrm{q}^{\text {‘ }}$ belong to different classes, $\mathrm{L} \rightarrow(\mathrm{q}) \neq \mathrm{L} \rightarrow\left(\mathrm{q}^{`}\right)$

Minimization: elimination of equivalent states

Minimization of a DFSA

A DFSA $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$ that contains equivalent states q, q^{\prime}
can be transformed to a smaller, equivalent DFSA A' $=<\Phi^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}, \mathrm{~F}^{\prime}>$ where

- $\Phi^{\prime}=\Phi \backslash\left\{\mathrm{q}^{\prime}\right\}, \mathrm{F}^{\prime}=\mathrm{F} \backslash\left\{\mathrm{q}^{\prime}\right\}, \quad \delta^{\prime}(\mathrm{s}, \mathrm{a})=\mathrm{q}$ if $\delta(\mathrm{s}, \mathrm{a})=\mathrm{q}^{\prime}$;
- δ^{\prime} is like δ with all transitions to q^{\prime} redirected to $\mathrm{q} \delta^{\prime}(\mathrm{s}, \mathrm{a})=\delta(\mathrm{s}, \mathrm{a})$ otherwise
- Two-step algorithm
- Determine all pairs of equivalent states q, q,
- Apply DFSA reduction until no such pair $\mathrm{q}, \mathrm{q}^{\prime}$ is left in the automaton
- Minimality
- The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A): we never merge different equivalence classes, so we obtain one state per class.
- We cannot do any further reduction and still recognize $\mathrm{L}(\mathrm{A})$.
- As long as we have >1 state per class, we can do further reduction steps.
- A DFSA $\mathrm{A}=<\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}>$ is minimal iff there is no pair of distinct but equivalent states $\in \Phi$, i.e. $\forall \mathrm{q}, \mathrm{q}^{\prime} \in \Phi: \mathrm{q} \equiv \mathrm{q}^{\prime} \Leftrightarrow \mathrm{q}=\mathrm{q}^{\prime}$

Example

Example

Algorithm

```
MINIMIZE(\Phi, \Sigma, \delta, q}\mp@subsup{\textrm{q}}{0}{},\textrm{F}
main
    EqClass[] }\leftarrow PARTITION(A)
    \mp@subsup{q}{0}{}}\leftarrow\mathrm{ EqClass[q}\mp@subsup{\textrm{q}}{0}{}
    for <q,a,q}\mp@subsup{q}{}{`}>\in
    \delta(q,a)}\leftarrow\operatorname{min}(\mathrm{ EqClass[q`])
    for q\in \Phi
    if q}\not=\operatorname{min}(EqClass[q]
    \Phi\leftarrow\Phi\{q}
    if q\inF
            F}\leftarrowF\{q
```


MINIMIZE

- PARTITION(A):
- determines all eqclasses of states in A
- returns array EqClass[q] of eq. classes of q
- redirect all transitions $<\mathfrak{q}, \mathrm{a}, \mathrm{q}^{\text {‘ }}>\in \delta$ to point to $\min \left(E q C l a s s\left[q^{\prime}\right]\right)$
- remove all redundant states from Φ and F

Computing partitions: Naïve partitioning

```
NAIVE_PARTITION( \(\left.\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)\)
for each \(q \in \Phi\)
    EqClass \([\mathrm{q}] \leftarrow\{\mathrm{q}\}\)
for each \(\mathrm{q} \in \Phi\)
    for each \(q\) ‘ \(\in \Phi\)
    if EqClass \([q] \neq\) EqClass \(\left[\mathrm{q}^{‘}\right] \wedge\) CHECKEQUIVALENCE \(\left(\mathrm{A}_{\mathrm{q}}, \mathrm{A}_{\mathrm{q}}\right)=\) True
        EqClass \([q] \leftarrow\) EqClass \([q] \cup\) EqClass \([q `]\)
        EqClass[q'] \(\leftarrow\) EqClass[q]
```


NAIVE_PARTITION

- array EqClass of pointers to disjoint sets for equivalence classes
- first loop: initializing EqClass by $\{q\}$, for each $q \in \Phi$
- second nested loop: if we find new equivalent states $q \equiv q$ ',
we merge the respective equivalence classes EqClasses and reset EqClass[q] to point to the new merged class Runtime complexity: loops: $0\left(|\Phi|^{2)}\right.$ CheckEquivalence: $0\left(|\Phi|^{2} \cdot|\Sigma|\right) \Rightarrow 0\left(|\Phi|^{4} \cdot|\Sigma|\right)$!

Computing partitions: Dynamic Programming

- Source of inefficiency: naive algorithm traverses the whole automaton to determine, for pairs $\mathrm{q}, \mathrm{q}^{6}$, whether they are equivalent
- Results of previous equivalence checks can be reused

$$
\begin{aligned}
& \text { If } q \neq q^{‘}, L^{\rightarrow}(q) \neq L \rightarrow\left(q^{\prime}\right), \\
& \text { therefore, } \\
& \text { for all }<\text { p,p } p^{‘}>\text { s.th. } \delta^{-1}(p, a)=q \text { and } \delta^{-1}\left(p^{\prime}, a\right)=q^{\prime} \\
& \text { for some } a \in \Sigma, p \not \equiv p \text { p. }
\end{aligned}
$$

- Thus, non-equivalence results can be propagated
- Propagation from final/non-final pairs: $L \rightarrow(q) \neq L \rightarrow\left(q^{\prime}\right)$ if $q \in F \wedge q^{\prime} \notin F$
- Propagation from pairs $\left\langle\mathrm{q}, \mathrm{q}^{\prime}>\right.$ where $\delta(\mathrm{q}, \mathrm{a})$ is defined but $\delta\left(\mathrm{q}^{\prime}, \mathrm{a}\right)$ is not.

Propagation of non-equivalent states

```
LocalEquivalenceCheck(q,q}\mp@subsup{q}{}{`}
if (q\inF and q}\mp@subsup{q}{}{`}\not\in\textrm{F})\mathrm{ ) ( (q#F and q` }\in\textrm{F}
    return (False)
if \existsa\in\Sigma s.th. only one of }\delta(q,a),\delta(\mp@subsup{q}{}{\prime},a
    is defined
    return (False)
return (True)
```

```
PROPAGATE (q, \(\mathrm{q}^{\text {‘ }}\) )
for \(a \in \Sigma\)
    for \(\mathrm{p} \in \delta^{-1}(\mathrm{q}, \mathrm{a})\),
        for \(p^{\prime} \in \delta^{-1}\left(q^{\prime}, a\right)\)
        if \(\operatorname{Equiv}\left[\min \left(p, p^{\prime}\right), \max \left(p, p^{\prime}\right)\right]=1\)
            \(\operatorname{Equiv}\left[\min \left(\mathrm{p}, \mathrm{p}^{\prime}\right), \max \left(\mathrm{p}, \mathrm{p}^{\prime}\right)\right] \leftarrow 0\)
            PROPAGATE \(\left(\mathrm{p}, \mathrm{p}^{`}\right)\)
```

Non-equivalence check for states $<\mathrm{q}, \mathrm{q}^{\text {‘ }}>$

- Only one of q, q ' is final
- For some $\mathrm{a} \in \Sigma, \delta(\mathrm{q}, \mathrm{a})$ is defined, $\delta\left(\mathrm{q}^{\prime}, \mathrm{a}\right)$ is not

Propagation (I): Table filling algorithm (Aho, Sethi, Ullman)

- represent equivalence relation as a table Equiv, cells filled with boolean values
- initialize all cells with 1 ; reset to 0 for non-equivalent states
- main loop: call of PROPAGATE for nonequivalent states from LocalEquivalenceCheck

Propagation of non-equivalent states

LocalEquivalenceCheck($q, q^{`}$)
if $\left(q \in F\right.$ and $\left.q^{‘} \notin F\right)$ or $\left(q \notin F\right.$ and $\left.q^{‘} \in F\right)$
return (False)
if $\exists \mathrm{a} \in \Sigma \mathrm{s}$.th. only one of $\delta(\mathrm{q}, \mathrm{a}), \delta\left(\mathrm{q}^{\prime}, \mathrm{a}\right)$ is defined
return (False)
return (True)

```
PROPAGATE ( \(q, q^{*}\) )
for \(a \in \Sigma\)
    for \(p \in \delta^{-1}(q, a)\),
        for \(p^{\prime} \in \delta^{-1}\left(q^{\prime}, a\right)\)
        if \(\operatorname{Equiv}\left[\min \left(p, p^{\prime}\right), \max \left(\mathrm{p}, \mathrm{p}^{\prime}\right)\right]=1\)
        \(\operatorname{Equiv}\left[\min \left(\mathrm{p}, \mathrm{p}{ }^{\prime}\right), \max \left(\mathrm{p}, \mathrm{p}^{\prime}\right)\right] \leftarrow 0\)
        PROPAGATE (p,p \({ }^{‘}\) )
```

Runtime Complexity: $0\left(|\Phi|^{2} \cdot|\Sigma|\right)$

- PROPAGATE is never called twice on a given pair of states (checks
Equiv[$\left.\mathrm{q}, \mathrm{q}^{\prime}\right]=1$)
Space requirements: $0\left(|\Phi|^{2}\right)$ cells

```
TableFillingPARTITION \(\left(\Phi, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)\)
for \(\mathrm{q}, \mathrm{q}^{‘} \in \Phi, \mathrm{q}<\mathrm{q}\),
    Equiv \(\left[q, q^{\prime}\right] \leftarrow 1\)
for \(q \in \Phi\)
    for \(q^{‘} \in \Phi, q<q^{\prime}\)
    if Equiv \(\left[q, q^{\prime}\right]=1\) and
        LocalEquivalenceCheck( \(\mathrm{q}, \mathrm{q}^{\prime}\) ) \(=\) False
        Equiv[q,q'] \(\leftarrow 0\)
        PROPAGATE \(\left(\mathrm{q}, \mathrm{q}^{`}\right)\)
```


More optimizations

- Hopcroft and Ullman: space requirement $0(|\Phi|)$, by associating states with their equivalence classes
- Hopcroft: Runtime complexity of $0(|\Phi| \cdot \log |\Phi| \cdot|\Sigma|)$, by distinction of active/non-active blocks

Brzozowski‘s Algorithm

Minimization by reversal and determinization
L(A)

Reversal

- Final states of A^{-}: set of initial states of A
- Initial state of $\mathrm{A}^{-}: \mathrm{F}$ of A
- $\delta(\mathrm{q}, \mathrm{a})=\{\mathrm{p} \in \Phi \mid \delta(\mathrm{p}, \mathrm{a})=\mathrm{q}\}$
- $\mathrm{L}\left(\mathrm{A}^{-1}\right)=\mathrm{L}(\mathrm{A})^{-1}$

Why does it yield a minimal DFSA A‘?

DFSA A ${ }^{-1}$

Consider the right languages of states q, q^{\prime} in NFSA $\left(A^{-1}\right)^{-1}$:

- If for all distinct states $\mathrm{q}, \mathrm{q}^{‘} \mathrm{~L} \rightarrow(\mathrm{q}) \neq \mathrm{L} \rightarrow\left(\mathrm{q}^{\prime}\right)$, i.e. $\mathrm{L} \rightarrow(\mathrm{q}) \cap \mathrm{L} \rightarrow\left(\mathrm{q}^{\prime}\right)=\varnothing$, it holds that each pair of states $\mathrm{q}, \mathrm{q}^{\prime}$ recognize different right languages, and thus, that the NFSA $\left(\mathrm{A}^{-1}\right)^{-1}$ satisfies the minimality condition for a DFSA.
- If there were states $\mathrm{q}, \mathrm{q}^{\prime}$ in NFSA $\left(\mathrm{A}^{-1}\right)^{-1}$ s.th. $\mathrm{L} \rightarrow(\mathrm{q}) \cap \mathrm{L} \rightarrow\left(\mathrm{q}^{\prime}\right) \neq \varnothing$, there would be some string w that leads to two distinct states in DFSA A ${ }^{-1}$. This contradicts the determinicity criterion of a DFSA.
- Determinization of NFSA $\left(\mathrm{A}^{-1}\right)^{-1}$ does not destroy the property of minimality

Applications of FSA: String Matching

- Exact, full string matching
- Lexicon lookup: search for given word/string in a lexicon
- Compile lexicon entries to FSA by union
- Test input words for acceptance in lexicon-FSA

recognition/application/lookup of input word w in/to FSA A Aexicon:

$\left(\mathrm{q}_{0}, \mathrm{w}\right) \vdash^{-}{ }_{\text {Alexicon }}\left(\mathrm{q}_{\mathrm{f}}, \varepsilon\right)$ is true, with q_{0} initial state and $\mathrm{q}_{\mathrm{f}} \subseteq \mathrm{F}$
traversal and recognition (acceptance)

Applications of FSA: String Matching

- Substring matching
- Identify stop words in stream of text
- Stem recognition: small, smaller, smallest
- Make use of full power of finite-state operations!
- Regular expression with any-symbols for text search
- ?* small($\varepsilon \mid$ er \mid est $) ~ ? *$
- ?* ($\mathrm{a} \mid$ the $\mid \ldots$...) ?*
- Compilation to NFSA, convert to DFSA
- Application by composition of FST with full text
- $\mathrm{FSA}_{\text {text stream }} \circ \mathrm{FST}_{\text {small }}$: if defined, search term is substring of text

Application of FSA: Replacement

- (Sub)string replacement
- Delete stop words in text
- Stemming: reduce/replace inflected forms to stems: smallest \rightarrow small
- Morphology: map inflected forms to lemmas (and PoS-tags): good, better, best \rightarrow good+Adj
- Tokenization: insert token boundaries
\Rightarrow Finite-state transducers (FST)

From Automata to Transducers

Automata

- recognition of an input string w

- define a language
- accept strings, with transitions defined for symbols $\in \Sigma$

Transducers

- recognition of an input string w
- generation of an output string w^{\prime}

- define a relation between languages
- equivalent to FSA that accept pairs of strings, with transitions defined for pairs of symbols $\langle x, y\rangle$
- operations: replacement
- deletion $<\mathrm{a}, \varepsilon>, \mathrm{a} \in \Sigma-\{\varepsilon\}$
- insertion $<\varepsilon, a>, a \in \Sigma-\{\varepsilon\}$
- substitution $<\mathrm{a}, \mathrm{b}>, \mathrm{a}, \mathrm{b} \in \Sigma, \mathrm{a} \neq \mathrm{b}$

Transducers and composition

- An FSTs encodes a relation between languages
- A relation may contain an infinite number of ordered pairs, e.g. translating lower case letters to upper case

a lower/upper case transducer

a path through the lower/upper case transducer, for string xyzzy
- The application of a transducer to a string may also be viewed as composition of the FST with the (identity relation on the string)

$\bigcirc \underset{\mathrm{L}}{\mathrm{l}} \bigcirc \underset{\mathrm{E}}{\mathrm{e}} \bigcirc \underset{\mathrm{F}}{\mathrm{f}} \bigcirc \underset{\mathrm{T}}{\mathrm{f}} \bigcirc$

Literature

- H.R. Lewis and C.H. Papadimitriou: Elements of the Theory of Computation. Prentice-Hall, New Jersey (Chapter 2).
- J. Hopcroft and J. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Massachusetts, (Chapter 2,3).
- B.H. Partee, A. ter Meulen and R.E. Wall: Mathematical Methods in Linguistics, Kluwer Academic Publishers, Dordrecht (Chapter 15.5,15.6, 17)
- D. Jurafsky and J.H. Martin: Speech and Language Processing. An introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, New Jersey (Chapter 2).
- C. Martin-Vide: Formal Grammars and Languages. In: R. Mitkov (ed): Oxford Handbook of Computational Linguistics, (Chapter 8).
- L. Karttunen: Finite-state Technology. In: R. Mitkov (ed): Oxford Handbook of Computational Linguistics, (Chapter 18).

Off-the-shelf finite-state tools

- Xerox finite-state tools
- http://www.xrce.xerox.com/competencies/content-analysis/fst/ $>$ Xerox Finite State Compiler (Demo)
- XFST Tools (provided with Beesley and Karttunen: Finite-State Morphology, CSLI Publications)
- Geertjan van Noord's finite-state tools
- http://odur.let.rug.nl/~vannoord/Fsa/
- FSA Utilities at John Hopkins
- http://cs.jhu.edu/~jason/406/software.html
- AT\&T FSM Library
- http://www.research.att.com/sw/tools/fsm/

Research - Content Analysis

Content Analysis,
Home,
FST
Machine Learning,
Parsing \& Semantics ,
Demos,
People,
Document Structure, Image Processing . Work Practice Pāst Projécts, Demos,

XEROX FINITE-STATE COMPILER

This page allows you to create a finite-state network from a reqular expression and to apply the resulting network to strings. You can also try out some of our Examples.

- COMPILATION :

Type a regular expression in this area and submit it to the compiler by pressing the SUBMIT button. The compilation result will appear in a new browser window. Clear with RESET.

SUBMIT. RESET.
 $$
(a \mid b) * c b+(a \mid c) d
$$

V Display the structure of the network (if it has not more than 50 states).

Regular expression

```
(a|b)*c b+ (a|c) d
;
```


Network

```
4 8 4 \text { bytes. 5 states, 9 arcs, Circular.}
Sigma: a b c d
s0: a -> s0, b -> s0, c -> s1.
s1: b -> s2.
s2: a -> s3, b -> s2, c -> s3, d -> fs4
s3: d -> fs4.
fs4: (no arcs)
```


Exercises

- Write a program for acceptance of a string by a DFSA.

Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.

- Determinize the following NFSA by subset construction. $A_{1}=<\{p, q, r, s\},\{a, b\}, \delta_{1}, p,\{s\}>$ where δ_{1} is as follows:

δ_{1}	a	b
p	p, q	p
q	r	r
r	s	-
s	s	s

- Construct an NFSA with ε-transitions from the regular expression $(\mathrm{a} \mid \mathrm{b}) \mathrm{ca}^{*}$, according to the construction principles for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.
- Find a minimal DFSA for the FSA $A=<\{\mathrm{A}, . ., \mathrm{E}\},\{0,1\}, \delta_{3}, \mathrm{~A},\{\mathrm{C}, \mathrm{E}\}>$ (using the table filling algorithm by propagation).

δ_{3}	0	1
A	B	D
B	B	C
C	D	E
D	D	E
E	C	-

