OntoNERdIE – Mapping and Linking Ontologies to Named Entity Recognition and Information Extraction Resources

Ulrich Schäfer

German Research Center for Artificial Intelligence (DFKI), Language Technology Lab
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
email: ulrich.schaefer@dfki.de

Abstract

We describe an implemented offline procedure that maps OWL/RDF-encoded ontologies with large, dynamically maintained instance data to named entity recognition (NER) and information extraction (IE) engine resources, preserving hierarchical concept information and links back to the ontology concepts and instances. The main motivations are (i) improving NER/IE precision and recall in closed domains, (ii) exploiting linguistic knowledge (context, inflection, anaphora) for identifying ontology instances in texts more robustly, (iii) giving full access to ontology instances and concepts in natural language processing (NLP) results, e.g. for subsequent ontology queries, navigation or inference, (iv) avoiding duplication of work in development and maintenance of similar resources in independent places, namely lingware and ontologies. We show an application in hybrid deep-shallow NLP that is e.g. used for question analysis in closed domains. Further applications could be automatic hyperlinking or other innovative semantic-web related applications.

1. Introduction and Motivation

Ontologies on the one hand and resources for natural language processing (lingware) on the other hand, though closely related, are often maintained independently, thus constituting duplication of work. In this paper, we describe an implemented offline procedure based on XSLT that can be used to map concepts and instance information from ontologies to lingware resources for named entity recognition and information extraction systems.

The advantages of this approach for semantic web and natural language processing-based applications come from a ‘cross-fertilisation’ effect. While ontology instance data can improve precision and recall of e.g. named entity recognition (NER) and information extraction (IE) in closed domains, linguistic knowledge contained in NER and IE components can help to recognise ontology instances (or concepts) occurring in text, e.g. by taking into account context, inflection and anaphora.

If both resources would be managed jointly at a single place (in the ontology), they could be easily kept up-to-date and in sync, and their maintenance would be less time-consuming. When ontology concepts and instances are recognised in text, their name or ID can be used by applications to support subsequent queries, navigation or inference in the ontology using an ontology query language. The procedure we describe preserves hierarchical concept information and links back to the ontology concepts and instances.

Applications are e.g. hybrid deep-shallow question answering (Frank et al., 2006), automatic typed hyperlinking (Busemann et al., 2003) of instances and concepts occurring in documents, or other innovative applications that combine semantic web and natural language processing technologies.

The approach has been implemented for the ontology on language technology that works at the back end of the LT World web portal (Uszkoreit et al., 2003)\(^1\), but could be easily adapted to other domains and ontologies, because it is already almost fully automated, except for the choice of relevant concepts and properties to map which is a matter of configuration.

The target named entity recognition and information extraction tool we employed is SProUT\(^2\) (Drozdzyński et al., 2004), a shallow multilingual, multi-purpose natural language processor.

The advantage of SProUT in the described approach for named entity recognition and information extraction is that it comes with (1) a type system and typed feature structures as basic data structures, (2) a powerful, declarative rule mechanism with regular expressions over typed feature structures, (3) a highly efficient gazetteer module with fine-grained, customisable classification of recognised entities (Piskorski, 2005).

Moreover, SProUT provides additional modules like morphology or a reference resolver, that can be exploited in the rule system, e.g. to use context or morphological variation for improved NER.

The SProUT runtime component has been integrated as NER and IE component into the Heart of Gold (Callmeier et al., 2004), a middleware architecture for the integration of shallow and deep natural language processing components. Through automatically generated mappings, SProUT output enriched with ontology information can be used for robust, hybrid deep-shallow parsing and semantic analysis.

In Section 2., we describe the XSLT-based mapping process. In Section 3., we present an example how the recognised named entities enriched with ontology information can be used in hybrid natural language processing and subsequent applications. Finally, we conclude and give an outlook to future extensions.

\(^2\)SProUT stands for Shallow Processing with Unification and Typed feature structures.

\(^3\)The SProUT formalism uses a subset of TDL (Krieger and Schäfer, 1994), but with a closed type world and strict well-typedness and appropriateness conditions.
2. The OntoNERdIE procedure

In this section, we describe the processing steps of the OntoNERdIE approach (the offline part depicted in Figure 1 on the left; the right, online part is described in Section 3.). Following a general motivation presented in (Schäfer, 2003), the approach heavily relies on XSLT transformation of the XML representation formats, both in the offline mapping and in the online application. XSLT (Clark, 1999) is an XML transformation language and W3C standard. It can be used to transform XML documents with known structure to other XML formats or to syntaxes different from XML. In our case, the transformation is an offline mapping from RDF/OWL\(^4\) representation of the ontology to component-specific formats for gazetter entries and type hierarchy.

2.1. RDF preprocessing

Input to the mapping procedure is an OWL ontology file containing both concept and instance descriptions. Figure 2 shows a (shortened) example for the instance LREC 2006 in the LT World ontology. To ease stylesheet development, the current implementation requires the file to be in the unabbreviated RDF syntax (no QName abbreviations for instances etc.) for the subsequent processing steps. I.e., instead of the abbreviated

\[
<\text{Active_Person}\ rdf:ID="\text{obj_72976}"
 > ... </\text{Active_Person}>
\]

the full, unabbreviated description syntax has to be used:

\[
<\text{rdf\:Description}\ rdf\:about="\text{http://www.lt\-world.org/ltw.owl\#obj_72976}"
 > ... </\text{rdf\:Description}>
\]

A further preprocessing step might be necessary that inserts explicit statements where only implicit statements are encoded in the OWL file, e.g. for \text{rdfs:subClassOf}. This is because for efficiency reasons, the subsequent stylesheets (in the current implementation) will not track implicit information. This could however be done during preprocessing through systems like Sesame\(^5\) that support forward-chaining inference rules generating the missing statements. However, as typically not the full ontology will be mapped to NER/IE resources, a sufficient solution would be typically to enumerate all relevant concepts as part of the configuration of the mapping stylesheets described in Sections 2.3. and 2.4.

2.2. Grouping and sorting rdf\:Descriptions

The resulting RDF file is processed with a small but sophisticated XSLT stylesheet (\text{rdfsort.xsl}; cf. Figure 3). This is a necessary prerequisite for the subsequent extraction steps, and, as it cannot be implemented by a simple XSLT sort statement, has to be coded as a proper, dedicated transformation. The stylesheet groups together rdf\:Descriptions that are distributed over the file but belong together by using the key and sort statements and the generate-id() function.

The next two processing stages take a list of concepts as filter because, depending on the application, it will typically not be desirable to extract all concepts or instances available in the ontology. In both cases, resource files are generated as output that can be used to extend existing named entity recognition resources. E.g., while general rules can recognise domain-independent named entities (e.g. any person name), the extended resource contain specific, and potentially more detailed information on domain-specific entities.

2.3. Extracting inheritance statements and converting to TDL type definitions

The second stylesheet (\text{rdf2tdl.xsl}) converts the RDF subClassOf statements from the output of step 2 (Section 2.2.) into a set of TDL type definitions that can be immediately imported by the SProUT NER grammar, e.g. currently 1260 type definitions for the same number of subClassOf statements in the LT World ontology.

Following are two examples.

\[
\begin{align*}
\text{Active_Conference} & : = \\
& \text{Conferences} \& \text{Backend_Events}. \\
\text{Natural_Language_Parsing} & : = \\
& \text{Written_Language} \& \text{Language_Analysis}.
\end{align*}
\]

This is of course a lossy conversion because not all relations supported by an OWL (DL or full) ontology such as unionOf, disjointWith, intersectionOf, etc. are mapped. However, we think that for named entity (NE) classifications, the subClassOf taxonomy mappings will be sufficient. Other relations could be formulated as direct (though slower) ontology queries using the OBJID mechanism described in the next step.

If the target of OntoNERdIE would be a NER system different from SProUT and without type hierarchy, then this step can be omitted. The subClassOf information can

\footnote{\url{http://www.openrdf.org}; for details, cf. (Frank et al., 2006). Sesame can also be used to produce the unabbreviated RDF format from QName-abbreviated OWL syntax.}
always be gained by querying the ontology appropriately on the basis of the concept name.

2.4. Generating gazetteer entries

The next stylesheet (rdf2gaz.xsl) selects statements about instances of relevant concepts via the rdf:type information and converts them to structured gazetteer source files for the SProUT gazetteer compiler (or into a different format for other NER systems). In the following example, two of the approx. 20000 converted entries for LT World are shown.

Martin Kay | GTYPE: lt_person | SNAME:"Kay" | GNAME: "Martin" | CONCEPT: Active_Person | OBJID: "obj_65046"

LREC 2006 | GTYPE: lt_event | GABBID: "LREC 2006" | CONCEPT: Active_Conference | OBJID: "obj_89404"

The attribute CONCEPT contains the TDL type mapped in step 3 (described in Section 2.3.). For convenience, several ontology concepts are mapped (defined manually as part of the configuration of the stylesheet) to only a few named entity classes (under attribute GTYPE). For LT World, these classes are person, organisation, event, project, product and technology. This has the advantage that NER context rules from existing SProUT named entity grammars can be reused for better robustness and disambiguation.

6Alternatively, a fully automatic, but maybe too fine-grained 1:1 mapping of all concepts could be performed.

The rules e.g. recognise name variants with title like Prof. Kay, Dr. Kay, Mr. Kay with or without firstname. Moreover, context (e.g. prepositions with location names, verbs), morphology and reference resolution information can be exploited in these rules.

The following SProUT rule (XTDL syntax) simply copies the slots of a matched gazetteer entry for events (e.g. a conference) to the output as a recognised named entity.

lt-event :> gazetteer & [GTYPE lt_event, SURFACE #name, CONCEPT #concept, OBJID #objid, GABBID #abbrev] -> ne-event & [EVENTNAME #name, CONCEPT #concept, OBJID #objid, GABBID #abbrev].

OBJID contains the object identifier of the instance in the ontology. It can be used as link back to the full knowledge stored in the ontology, e.g. for subsequent queries, like "Who else participated in project [with OBJID obj_4789]" etc.

In case multiple instances with same names but different object IDs occur in the ontology (which actually happens to be the case in LT World), then multiple alternatives are generated as output which is probably the expected and desired behavior (e.g. for frequent names like John Smith). On the other hand, if product names or event name with an abbreviated variant exist in the ontology, both point to the same object ID (provided they are stored appropriately in the ontology).

The overall processing time (steps 1-4) on a 2.66 GHz Pentium 4 Linux machine is approx. 35 seconds for a 25 MByte
Figure 3: rdfsort.xsl: XSLT stylesheet that combines distributed rdf:description statements.

OWL LT world ontology input file with mappings for person, project, organisation, event, product and technology concepts and instances, resulting in 1200 TDL type definitions and 20000 structured gazetteer entries.

3. Application to hybrid NLP

We now describe and exemplify how the named entities enriched with ontology information can be employed in a robustness-oriented, hybrid deep-shallow architecture that combines domain-specific shallow NER and deep, domain-independent HPSG parsing for generating a semantics representation of the meaning of parsed sentences.

An application of this scenario is e.g. deep question analysis for question answering on structured knowledge sources. A detailed description of such an application can be found in (Frank et al., 2006).

3.1. Named entity recognition at runtime

The output of SProUT for a recognised named entity is a typed feature structure (e.g. in XML format; cf. (Lee et al., 2004)) containing the RHS of the recognition rule as shown in step 4 (Section 2.4.) with the copied structured gazetteer data plus some additional information like character span, named entity type etc.

The mapping of recognised named entities to generic lexicon entries of an HPSG grammar, in this case the ERG (Flickinger, 2002), for hybrid processing can be performed through an XSLT stylesheet automatically generated from the SProUT type hierarchy. The stylesheet generation facility is part of the freely available Heart of Gold (Callmeier et al., 2004) framework for hybrid deep-shallow processing and described in detail in (Schäfer, 2005). Analogous mappings are currently supported for German, Greek and Japanese HPSG grammars.

To continue the example from the sections above, the gen-
erated stylesheet would at run time produce the following item for LREC 2006 on the deep parser's input chart (PET XML input chart; the corresponding, mapped HPSG type being $generic_event$).

\[\text{OBJID}\]

| w id="SPR3.1" cstart="48" cend="56" constant="yes" |
| surface=LREC 2006 |
| typeinfo id="TIN3.1" baseform="no" |
| stem=$generic_event" |

I.e., the transformation output then contains only the NER information that is required by the deep parser with its broad-coverage, domain-independent grammar, namely character span and generic HPSG type for a chart item to be generated. A sample output of the semantic representation the deep parsers generates is shown in Figure 4. How the finer-grained, domain-specific information from the ontology instance is transported to an application, is shown in the next section.

In addition to the basic named entity type mapping for default lexicon entries, the recognised concepts could also be useful for constraining the semantic sort in HPSG in a more fine-grained way (e.g. for disambiguation). The PET input chart format and also the upcoming, similar MAF/SAF format (Waldron et al., 2006) foresee ‘injection’ of such types into the HPSG structures. As an alternative to the hybrid deep-shallow processing model, the full output from a SProUT runtime system could be used instead in a shallow-only application framework like automatic typed hyperlinking (Busemann et al., 2003).

3.2. Information extraction at runtime

Similar to the NER mapping from the previous section, Heart of Gold can also automatically generate XSLT stylesheets that produce a richer, robust semantics representation, German and English entries could be specified as appropriate for German texts but only English entries for English texts.

5. Summary and Outlook

We have described an XSLT-based procedure that maps ontology instances and concepts to named entity recognition and information extraction resources, providing links back for further ontology queries. The process is automatic except for the selection of relevant concepts and properties to map. The possible benefits are (i) improved precision and recall of NER and IE in closed domains, (ii) exploitation of linguistic knowledge for identifying ontology concepts and instances in text, (iii) access to full ontology knowledge through subsequent ontology queries, (iv) reduced work-load for managing ontology data and language by avoiding duplication of work. An application using hybrid shallow and deep natural language processing on the basis of the mapped ontology data has been successfully implemented for question answering.

Future work will include a deeper investigation of adaptability to other ontologies and domains than described here, and extension of the mapping approach to additional relations supported by OWL.

6. Acknowledgements

I would like to thank Hans-Ulrich Krieger for helpful discussions and the LREC reviewers for their comments. This work has been supported by a grant from the German Federal Ministry of Education and Research (FKZ 01I1WC02).

7. References

Dan Flickinger. 2002. On building a more efficient grammar by exploiting types. In Dan Flickinger, Stephan...

