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Abstract

We describe a feature-rich conditional random
field model for the extraction of conference and
workshop information (e.g. name, date, location,
deadline) from calls for papers (CFPs). This has
applications in the automatic construction of a
conference knowledge base from a collection of
CFPs. Relevant information in CFPs is often
contained in regions that do not contain com-
plete, grammatical sentences, but can be distin-
guished visually from other parts of the text by
their formatting. We show that in this situation
layout features, i.e. features that measure physi-
cal layout properties of a text, improve extraction
accuracy considerably. On a corpus of CFPs we
observe a 30% gain in F1 through the use of lay-
out features.

1 Introduction

Information about relevant conferences and workshops is
vital for people involved in research to present, discuss and
publish their results and exchange ideas. Conference and
workshop announcements are propagated to interested peo-
ple via mailing lists as calls for papers (CFPs). A CFP
includes such information as the conference or workshop
name, date, location, website, various submission and no-
tification dates, and possibly the name and website of an
associated or co-located conference. A conference knowl-
edge base (KB) presents this information for many con-
ferences and workshops in a particular area (e.g. computer
science, linguistics, artificial intelligence) in a structured
way, with links between related or associated events.

Our goal is to build a conference KB automatically from
a collection of CFPs. This involves two steps:

1. extracting relevant information from CFPs, which is
the topic of this paper;

2. matching extracted instances from different CFPs
that represent the same information but vary in their
surface form (for instance, “ECML/PKDD 2005,
“ECML/PKDD-2005”, “ECML/PKDD’05” are all
different spellings of the same conference name); this
problem is known as coreference analysis [Kehler,
1997] or identity uncertainty [McCallum and Wellner,
2005].

Wellner et al. [2004] describe an integrated model that per-
forms these two task simultaneously, with mutual benefit
for both tasks. However, this paper focuses on the informa-
tion extraction task only.

We apply conditional random fields (CRF) [Lafferty ez
al., 2001] to information extraction from CFPs. This al-
lows us to integrate various kinds of evidence from both
content (i.e. tokens in a text) and layout (i.e. the physical
structure of a text). CRFs have been applied successfully to
a variety of sequence labeling tasks such as shallow parsing
[Sha and Pereira, 2003], named entity recognition [Settles,
2004], information extraction [Peng and McCallum, 2004]
and table recognition [Pinto et al., 2003].

In particular we discuss the features we use to represent
tokens in a CFP. CFPs differ from normal text by placing
important information in regions that do not consist of com-
plete, grammatical sentences, but instead are often charac-
terized by rigid formatting, such as indented lines, centered
lines, and lines separated by blank lines. Traditional in-
formation extraction techniques that rely on the grammat-
ical structure of sentences (i.e. POS tags, syntactic struc-
ture), e.g. for extracting facts from news articles [Riloff
and Jones, 1999], usually ignore the physical layout of the
text and thus are not appropriate for information extraction
from CFPs.

We describe a CRF model for information extraction that
uses both token features (features measuring properties of
tokens such as shape, occurrence in dictionaries, etc.) and
layout features (features measuring the physical layout of
the text surrounding a token). We observe a dramatic im-
provement in extraction performance through the use of
these features.

The paper is organized as follows: In Sect. 2 we discuss
related work. In Sect. 3 we review the general framework
of CRFs. In Sect. 4 we describe the features used in our
model. Section 5 describes our experiments, and Sect. 6
presents results. We finish the paper with some conclusions
and an outlook to future work in Sect. 7.

2 Related Work

Layout features have been used previously in a variety
of information extraction tasks. In [Peng and McCallum,
2004] a CRF is trained to extract various fields (such as
author, title, etc.) from the header sections of research pa-
pers using a combination of linguistic and layout features.
The features are very similar to ours. CFPs are similar to
research papers in that most (though not all) of the impor-
tant information is contained in highly formatted regions
(the header section at the beginning) rather than in gram-
matical sentences. An important difference between this
task and ours is that research paper headers consist only
of header fields, with no intervening material. In contrast,
the field instances in a CFP comprise only a small frac-
tion of the tokens, making extraction a harder task. More-



over, many papers use standardized document layouts (e.g.
through the use of LaTeX style files), whereas CFPs exhibit
greater variation in form and layout.

Layout features have also been used for extracting tables
from text [Hurst and Nasukawa, 2000; Pinto et al., 2003].
In [Pinto et al., 2003] layout features are used to locate
tables in text, identify header and data cells and associate
data cells with their corresponding header cells. They use
a large variety of layout features that measure the occur-
rence of various amounts of whitespace indicative of ta-
ble rows in text lines. Layout features such as “line be-
gins with punctuation” and “line is the last line” are also
used to learn to detect and extract signature lines and re-
ply lines in E-mails [Carvalho and Cohen, 2004]. In both
tasks an input text (web page with tables, E-mail) are con-
sidered sequences of lines rather than sequences of tokens,
and features measure properties of lines. In contrast, we
use features that measure properties of both lines and to-
kens.

In [Cox et al., 2005] a conditional Markov model
(CMM) tagger and a CRF are trained to extract up to 11
fields from workshop calls for papers using various token
features, including orthography, POS tags and named en-
tity tags, but no layout features. In addition, a relational
model is used on top of the sequence model, that encodes
domain-specific expectations, e.g. workshop acronyms re-
semble their names, and workshop dates occur after paper
submission dates. The relational model improves perfor-
mance by 5% f-score over the CMM alone but degrades
performance of the CRF (probably because of the smaller
window size used with the CRF). Moreover, extraction per-
formance of the CRF is comparable to or better than that of
the CMM with the relational model.

3 Conditional Random Fields
3.1 Model

Conditional random fields are discriminatively-trained un-
directed graphical models that are based on an exponential
form and thus can combine overlapping, non-independent
features easily [Lafferty er al, 2001]. This allows us
to integrate various kinds of evidence from both content
and layout of a text. We use a linear-chain CRF, which
maximizes the conditional probability of a label sequence,
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ization constant that makes the probabilities of all label se-
quences sum to one, fx(y:—1,ys, X, t) is a feature function,
and )y is a learned weight associated with fi. A feature
function indicates the occurrence of an event consisting of
a state transition y;—1 — ¥; and a query to the input se-
quence x centered at the current time step ¢. For example, a
feature function might have value 1 if the current state, y,
is B-TI (indicating the beginning of a conference title) and
the previous state, y;—1, is O (meaning “not belonging to
any entity”) and the current word, x;, is “Fifth”, and value
0 otherwise.

A linear-chain CRF uses a global exponential model, in
contrast to Maximum-Entropy Markov Models (MEMM)
[McCallum et al., 2000] that maximize the conditional
probability of each state given the previous state and an
observation, making them prone to the label bias problem

[Lafferty er al., 2001]. CRFs avoid this problem by using a
model over state sequences rather than states.

3.2 Training

The weight )y, for a feature function fj, indicates how likely
the corresponding event is to occur. The weights are set to
maximize the conditional log-likelihood of a set of labeled
training sequences D = {(x(V,y): i=1,..., M}:
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counts. Any iterative procedure, such as traditional max-
imum entropy learning algorithms (GIS and IIS, [Della
Pietra et al., 1997]) can be used to maximize the log-
likelihood in (2), but we use a procedure called limited-
memory quasi-Newton (L-BFGS) [Sha and Pereira, 2003]
because it converges much faster [Malouf, 2002; Sha and
Pereira, 2003]. Since the log-likelihood function in a
linear-chain CRF is convex (we assume a one-to-one cor-
respondence between states and labels), learning is guaran-
teed to converge to a global maximum.

3.3 Inference

Information extraction with CRFs is seen as a sequence la-
beling task. We use the tokens from the text as the input se-
quence, and use three different types of symbols [Ramshaw
and Marcus, 1995]: B-type (first token of an entity), I-type
(subsequent tokens of an entity), and O (the token is not
part of an entity). Thus an instance of a particular entity
type is marked by the label sequence “B-type I-type...”’
An instance consisting of a single token is marked as “B-
fype”.

We use the Viterbi algorithm to find the label sequence
that maximizes the conditional probability of the label se-
quence given the input sequence:

y* = arg max P (y|x)
y

subject to the consistency constraint that I-rype must follow
B-type or I-type.

4 Features

Each token in a CFP is represented as a set of binary fea-
tures that measure lexical, contextual and spatial properties
of the token. Table 1 presents a summary of the features
that we use. The features can be divided into three groups:



Feature | Definition
Generic features

w word identity

ICAP capitalized

ACAP all uppercase

SCAP single uppercase letter

MCAP mixed case

ADIG all digits

PUNC punctuation symbol

URL regular expression for URL

EMAIL regular expression for E-mail address

HASUP token contains uppercase letter

HASDIG token contains digit

HASDASH | token contains “-”

HASPUNC | token contains punctuation symbol

ABBR word ends with period

LOC word occurs in gazetteer list

STATE abbreviation of U.S. state name

COUNTRY | UK, U.S.A.

D_MO january, february, march, april, may,
june, july, august, september, october,
november, december, jan, feb, mar, apr,
may, jun, jul, aug, sep, sept, oct, nov, dec

D_DAY monday, tuesday, wednesday, thursday,
friday, saturday, sunday, mon, tue, wed,
thu, fri, sat, sun

Domain features

CNAME conference name

CNUMY conference number or year

DAY day of week or day of month

DAYS range of days

YEAR four-digit year

SYEAR two-digit year

ROM roman number

NTH number attribute

D_INST center, centre, college, department, insti-
tute, school, univ., university

D_ORG association, consortium, council, group,
society

D_EV colloquium, conf., conference, congress,
convention, forum, meeting, round,
roundtable, seminar, summit, sympo-
sium, table, track, workshop

D_ATTR annual, autumn, biannual, biennial, eu-
ropean, fall, int., interdisciplinary, inter-
national, joint, national, special, spring,
summer, winter

D_TH st, nd, rd, th

Layout features

BOL first token in the line

EOL last token in the line

BOT first line in the text

EOT last line in the text

BLANK line contains no visible characters

PUNCTLN | line contains only punctuation characters

INDENT line is indented

FIRST10 first 10 lines in the text

FIRST20 first 20 lines in the text

Table 1: List of features used (features with prefix “D_" are

dictionary features and are case-insensitive)

Generic token features describe word identity (i.e. the
token itself is a feature), orthographic properties (e.g.
capitalized, all uppercase, mixed case, all digits, punc-
tuation), membership in certain token classes (month
names, week days, URLs, E-mails), and occurrence
in a gazetteer list.' We map capitalized words and
uppercase words to lowercase after generating capi-
talization features. We look up sequences of up to five
consecutive tokens in the gazetteer list and assign a
feature to each token of a matching sequence. In addi-
tion we have a list of names of U.S. states and a short
list of country abbreviations since these were not in
the gazetteer list.

Domain-specific features indicate parts of dates and
numerical expressions that are typical for CFPs (e.g.
2005, 3-7, 19th), occurrence in a dictionary of words
that are common in CFPs (e.g. conference, annual,
international) and regular expression pattern matches
that define common orthographic patterns in CFPs
(e.g. ACL’03, ECML/PKDD).

Layout features measure the position of a token in a
line (i.e. whether the token is at the beginning or end
of a line), the position of the line containing a token
in the text (first/last line, first 10 and first 20 lines)
and formatting properties of the line containing a to-
ken (indented lines, empty lines, lines consisting only
of punctuation characters). The rationale for the first
10 and first 20 lines features is that in most CFPs the
relevant information about a conference appears at the
beginning of the text, usually within the first 10 or 20
lines (but never at the end of a CFP). Note that the fea-
ture BLANK can never occur (because all features oc-
cur with tokens, and no token occurs in a blank line).
However, features BLANK-i and BLANK+: repre-
sent valuable information about the physical layout of
the text.

For each token we collect the features for that token as well
as for the two preceeding and following tokens, and for the
line containing the token as well as for the two preceeding
and following lines. For example, consider the following
feature set:

W=9th BOL HASDIG DAY NTH W-1=papers
ICAP-1 W-2=for W+I1=european ACAP+1
D_ATTR+1 W+2=workshop ACAP+2 D_EV+2
FIRST10 FIRST20 INDENT FIRST10-1
FIRST20-1 BLANK-1 BOT-2 FIRST10-2
FIRST20-2 INDENT-2 FIRST10+1 FIRST20+1
BLANK+1 FIRST10+2 FIRST20+2
INDENT+2

This feature set indicates the following properties of a to-
ken and its surrounding text:

the token is the word “9th”,

it occurs in the token sequence “for Papers 9th EU-
ROPEAN WORKSHOP” (for example, it could oc-
cur in the sequence “Call for Papers 9th EUROPEAN
WORKSHOP ON NATURAL LANGUAGE GEN-
ERATION”),

it appears at the beginning of a line,
the line containing the token is the third line,

the previous and next line are empty,

!obtained from http://www.world-gazetteer.com/



e the line containing the token and the lines two lines up
(first) and down (fifth) are indented,

e all of them are among the first 10 and first 20 lines in
the text.

S Experiments

5.1 Dataset

Our dataset consists of 263 CFPs received by the author
from various mailing lists between August 2002 and Jan-
uary 2004, and from February 2005 to May 2005.2 We
remove duplicate and near duplicate messages (based on
their Nilsimsa digest®) and use only the plain text part of
each message and remove mailing list signatures and email
headers that occur in the text.

We apply only minimal tokenization. We separate punc-
tuation, double quotes and parentheses from preceeding
and following words but do not separate a period from the
preceeding word if the word is a single capital letter or ap-
pears on a hand-crafted list of known abbreviations (“Dr”,
“Prof”, “Int”, etc.). Also, we do not separate dashes and
single quotes from preceeding and following material be-
cause these symbols are often part of conference names,
e.g. “ACL’05”, “ICML-2005".

Each CFP is manually annotated for seven fields:

e Name (e.g. “ACL 2005”)

e Title (e.g. “42nd Annual Meeting of the Association
for Computational Linguistics™)

e Date (i.e. when the conference takes place)

e Location (i.e. where the conference takes place)
e URL (of the conference web site)

e Deadline (for paper submission)

e Conjoined (i.e. the name and title of the main confer-
ence if the event is part of a larger conference, e.g. a
workshop held in conjunction with a conference)

The total number of tokens is 203,151, with 7,217 tokens
(3.6%) belonging to field instances.

For the experiments, we split the data into a training and
testing set. We use the first 128 CFPs (from August 2002
to January 2004) for training and the remaining 135 CFPs
(from February 2005 to May 2005) for testing.

5.2 Performance Measure

Following [Peng and McCallum, 2004] we measure perfor-
mance using two different sets of metrics: word-based and
instance-based. For word-based evaluation, we define TP
as the number of distinct words in all hand-tagged instances
of a field that occur in at least one extracted instance of that
field; FN as the number of distinct words in hand-tagged
instances that do not occur in an extracted instance; and FP
as the number of distinct words in all extracted instances
of a field that do not occur in at least one hand-tagged in-
stance of the field. These counts are summed over all CFPs
in the test set. Word precision, recall and F1 are defined as

TP _ __ 2XprecXrecall
TP+FP’ recall = Fl= prec+recall *

prec = %\,,
2Qur results are not directly comparable to Cox et al. [2005];
unfortunately we became aware of their work only after our ex-
periments and were unable to obtain their corpus and use it in time
for the publication of this paper.
3http://ixazon.dynip.com/ cmeclax/nilsimsa.html

Instance-based evaluation considers an extracted in-
stance correct only if it is identical to a hand-tagged in-
stance of the same field. Thus in instance-based evaluation
an extracted instance with even a single added or missing
word is counted as an error. Instance precision and instance
recall are the percentage of extracted instances of a field
that are identical to a hand-tagged instance, and the per-
centage of hand-tagged instances that are extracted by the
CREF, respectively. Instance F1 is defined accordingly as in
word-based evaluation.

Note that instance-based recall/precision/F1 is not nec-
essarily lower than word-based recall/precision/F1. As an
example, consider two instances ujug and v1v2v3. If ujusg,
v1v2 and wywy are extracted, instance-based recall, preci-
sion and F1 are 50%, 33.3% and 40%, respectively, while
word-based recall, precision and F1 are 80%, 66.7% and
72.7%, respectively. However, if ujus and wijwows are
extracted, instance-based recall and precision are both 50%
while word-based recall and precision are only 40%.

We report the word-based and instance-based measures
for each field. Overall performance is measured by cal-
culating precision and recall from counts summed over all
fields and calculating F1 from overall precision and recall
(called “micro average” in the information retrieval liter-
ature). This favors fields that occur more frequently than
others. In addition, we calculate the average of the per-
field F1 values (called “macro average” in the information
retrieval literature). This gives equal weight to all fields.

5.3 Training CRFs

We use a Java implementation of CRFs [McCallum, 2002].
Training with the full feature set took about four hours on
an Athlon AMD 800 MHz CPU with Linux operating sys-
tem and converged after 156 iterations.

6 Results
6.1 Performance Evaluation

Table 2 shows per-field and overall performance. Word-
based F1 is around 80% for most fields, except Conjoined
and Name which are significantly lower. As expected,
instance-based F1 is lower than word-based F1 for most
fields, except Name which is 1.3% higher and URL which
is equal to word-based F1 because URLs are single to-
kens. For Conjoined and Title instance-based F1 is much
lower than word-based F1 (around 15-18%), presumably
because on average instances of Conjoined and Title con-
sist of more tokens than other fields, making them more
prone to instance-based errors.

Notice also that performance is significantly lower than
in [Peng and McCallum, 2004] for the research paper ex-
traction task. However, field extraction from CFPs is a
more difficult task because most tokens in a CFP do not
belong to a field instance, whereas research paper headers
consist only of header fields. In the CFP task there are
three types of extraction errors: (i) assigning a word to the
wrong field, (ii) assigning a word that belongs to a field to
no field, (iii) assigning a non-field word to some field. In
the research paper task only the first error type can occur.

6.2 Effects of Different Kinds of Features

To analyze the contribution of different kinds of features
we trained four different models, using (i) only generic fea-
tures, (ii) generic and domain features, (iii) generic and lay-
out features, (iv) all features (the latter model is identical to



Field Instances | W-Recall | W-Precision | W-F1 | I-Recall | I-Precision I-F1

Conjoined 93 41.6% 66.1% 51.0% | 28.0% 48.1% 35.4%
Date 168 72.7% 90.8% 80.8% | 64.9% 79.6% 71.5%
Deadline 161 68.9% 92.0% 78.8% | 59.6% 80.7% 68.6%
Location 120 72.1% 90.8% 80.4% | 64.2% 82.8% 72.3%
Name 78 46.7% 78.1% 58.5% | 48.7% 77.6% 59.8%
Title 136 80.9% 79.8% 80.3% | 61.8% 63.6% 62.7%
URL 131 71.8% 87.9% 79.0% | 71.8% 87.9% 79.0%
Micro average 887 70.2% 84.1% 76.5% | 59.1% 75.8% 66.4%
Macro average 72.7% 64.2%

Table 2: Extraction results with the full feature set

Features generic | generic+domain | generic+layout | generic+domain+layout
micro Word-F1 58.8% | 61.4% (+4.4%) | 74.9% (+27.4%) 76.5% (+30.1%)
macro Word-F1 54.0% | 57.2% (+5.9%) | 70.4% (+30.4%) 72.7% (+34.6%)
micro Instance-F1 | 50.3% | 52.6% (+4.6%) | 65.0% (+29.2%) 66.4% (+32.0%)
macro Instance-F1 | 46.4% | 49.2% (+6.0%) | 62.3% (+34.3%) 64.2% (+38.4%)

Table 3: Contribution of different kinds of features (numbers in parentheses show relative improvement over generic

features alone)

that in the previous section). We compare the overall per-
formance of the four models in Table 3. Both domain and
layout features improve the performance over using only
generic features, both individually and in combination. Us-
ing the full feature set increases instance-based macro av-
eraged F1 by 38% (relative) over using only generic fea-
tures. Layout features have the biggest impact, resulting in
a 34% relative increase in F1 over the generic features and
30% over the combination of generic and domain features.
Domain features alone contribute only a 6% improvement
over the generic features.

Table 4 shows the per-field improvement in instance-
based F1 due to layout features. The biggest improvement
(64% relative) is obtained for Name, and for Title and Lo-
cation the relative improvement is 40%. These fields are
highly correlated with formatting in CFPs. For the Dead-
line field the improvement is relatively small (only 7%).
We explain this with the observation that deadlines are typ-
ically surrounded by unambiguous lexical material. This is
confirmed in Table 5 which shows the features with high-
est weights in the trained CRF for transitions that start an
instance from the default state O. According to Table 5 a
good indicator for the start of a deadline is when the token
two tokens to the left is one of the words “deadline” (as
in “Paper submission deadline: August 5, 2005”), “sub-
missions”, “submission”, “due”, “abstract” or the current
token is a day name. (Some of the features in Table 5 such
as W-2=2004 and W=esslli clearly occur due to our limited
training data.)

7 Conclusions and Future Work

This paper applies conditional random fields to a practical
problem: extracting important knowledge from calls for
papers for academic conferences and related events. We
demonstrate the effectiveness of layout features in the ab-
sence of grammatical structure, which is typical for those
regions in CFPs that contain the key information about an
event, obtaining an improvement in instance-based average
F1 by 30%.

Extraction performance in our experiments is reasonable
but not optimal, probably due to the relatively small train-
ing corpus. Increasing the amount of training data would

State | Features with highest weights

B-NA | W-1=( BOL ACAP W-2=systems MCAP
W-2=papers

B-TI | PUNC-1ICAP-1 W-1=: W-1=the
D_ATTR+1 BOL

B-DA | W-2=date W-2=dates D_EV-2
W-2=conference PUNC-1 BOL-2

B-LO | B-LOC YEAR-2 ADIG-2 PUNC-1 W-1=,
W-2=2004

B-DL | W-2=deadline W-2=submissions
W-2=submission W-2=due DAY
W-2=abstracts

B-UR | URL BLANK-2
W=www.irit.fr/cgi-bin/voir-congres
W-2=site W-2=website W-2=workshop

B-CJ | W-1=with HASUP W=esslli D_.EV+2
W-2=with W-2=information

Table 5: Features with highest weights in the trained CREF,
where the previous state is O

be expected to help improve the performance. However,
annotating training data manually is labor-intensive. In fu-
ture work we intend to employ bootstrapping [Lin et al.,
2003] to reduce the amount of manual work in obtaining
training data.
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