
On Position Error and Label Ranking Through Iterated Choice

Eyke Hüllermeier
Fakultät für Informatik

Otto-von-Guericke-Universität
Magdeburg

Johannes Fürnkranz
Fachbereich Informatik
Technische Universität

Darmstadt

Jürgen Beringer
Fakultät für Informatik

Otto-von-Guericke-Universität
Magdeburg

Abstract
We consider the problem of learning a ranking
function, that is a mapping from instances to
rankings over a finite number of labels. Our
learning method, referred to as ranking by pair-
wise comparison (RPC), first induces pairwise
order relations from suitable training data, using
a natural extension of so-called pairwise classifi-
cation. A ranking is then derived from a set of
such relations by means of a ranking procedure.
This paper elaborates on a key advantage of such
a decomposition, namely the fact that our learner
can be adapted to different loss functions by us-
ing different ranking procedures on the same un-
derlying order relations. In particular, the Spear-
man rank correlation is minimized by using a
simple weighted voting procedure. Moreover, we
discuss a loss function suitable for settings where
candidate labels must be tested successively un-
til a target label is found. In this context, we pro-
pose the idea of “empirical conditioning” of class
probabilities. A related ranking procedure, called
“ranking through iterated choice”, is investigated
experimentally.

1 Introduction
Prediction problems involving complex outputs and struc-
tured output spaces have recently received a great deal of
attention within the machine learning literature (e.g., [12]).
Problems of that kind are particularly challenging, since
the prediction of complex structures such as, say, graphs
or trees, is more demanding than the prediction of single
values as in classification and regression.

A common problem of this type is preference learning,
the learning with or from preferences.1 In the literature,
one can identify two different learning scenarios for pref-
erence learning [8]: (i) learning from object preferences,
where the task is to order a set of objects according to
training information that specifies the preference relations
between a set of training objects (see, e.g., [2]), and (ii)
learning from label preferences, where the task is to learn
a mapping from instances to rankings (total orders) over a
finite number of class labels [7]. A corresponding ranking
function can be seen as an extension of a standard classifi-
cation function that maps instances to single class labels. In

1Space restrictions prevent a thorough review of related work
in this paper, but we refer to [6] and recent workshops in this area,
e.g., those at NIPS-02, KI-03, SIGIR-03, NIPS-04, and GfKl-05
(the second and fifth organized by the authors).

this paper, we focus on the second scenario, but our results
can be carried over to the first scenario as well.

In [7], we have introduced a method for learning label
preferences that we shall subsequently refer to as rank-
ing by pairwise comparison (RPC). This method works in
two phases. First, pairwise order relations (preferences) are
learned from suitable training data, using a natural exten-
sion of so-called pairwise classification. Then, a ranking is
derived from a set of such orders (preferences) by means of
a ranking procedure.

The goal of this paper is to show that by using suit-
able ranking functions, our approach can easily be cus-
tomized to different performance tasks, that is, to different
loss functions for rankings. In fact, the need for a rank-
ing of class labels may arise in different learning scenarios.
In this work, we are particularly interested in two types of
practically motivated learning problems, one in which the
complete ranking is relevant and one in which the predicted
ranking serves the purpose of reducing the search effort for
finding the single target label.

The remainder of the paper is organized as follows: The
problem of preference learning is formally introduced in
Section 2, and our pairwise approach is presented in Sec-
tion 3. In Section 4, the aforementioned types of learning
problems are discussed and compared in more detail. The
ranking procedures suitable for the two types of problems
are then discussed in Sections 5 and 6, respectively. Exper-
imental results are presented in Section 7.

2 Learning from Label Preferences
We consider the following learning problem [8]:

Given:
• a set of labels L = {λı | ı = 1 . . .m }
• a set of examples S = {xk | k = 1 . . . n }
• for each training example (instance) xk:

– a set of preferences Pk ⊆ L × L, where
(λı, λ) ∈ Pk indicates that label λı is pre-
ferred over label λ for instance xk.

Find: a function that orders the labels λ ∈ L for any given
example.

We will abbreviate (λı, λ) ∈ Pk with λı �xk
λ or

simply λı � λ if the particular example xk doesn’t matter
or is clear from the context.

The above setting has recently been introduced as con-
straint classification in [9]. As shown in that paper, it is a
generalization of several common learning settings, in par-
ticular

• ranking: Each training example is associated with a
total order of the labels.

• classification: A single class label λx is assigned to
each example x; implicitly, this defines the set of pref-
erences {λx � λ |λ ∈ L \ {λx} }.

• multi-label classification: Each example x is asso-
ciated with a subset Lx ⊆ L of labels; implicitly,
this defines the preferences {λ � λ′ |λ ∈ Lx, λ′ ∈
L \ Lx}.

As mentioned above, we are mostly interested in the first
problem, that is in predicting a ranking (complete, transi-
tive, asymmetric relation) of the labels. The ranking �x of
an instance x can be expressed in terms of a permutation τx

of {1 . . .m} such that

λτx(1) �x λτx(2) �x . . . �x λτx(m). (1)

Note that we make the simplifying assumption that all pref-
erences are strict, i.e., we do not consider the case of indif-
ference between labels.

An appealing property of this learning framework is that
its input, consisting of comparative preference informa-
tion of the form λı �x λ (x prefers λı to λ), is often
easier to obtain than absolute ratings of single alternatives
in terms of utility degrees. In this connection, note that
knowledge about the complete ranking (1) can be expanded
into m(m− 1)/2 comparative preferences λτx(ı) � λτx(),
1 ≤ ı < ≤ m.

3 Learning Pairwise Preferences
The idea of pairwise learning is well-known in the con-
text of classification [5], where it allows one to transform a
multi-class classification problem, i.e., a problem involv-
ing m > 2 classes L = {λ1 . . . λm}, into a number
of binary problems. To this end, a separate model (base
learner)Mı is trained for each pair of labels (λı, λ) ∈ L,
1 ≤ ı < ≤ m; thus, a total number of m(m− 1)/2 mod-
els is needed. Mı is intended to separate the objects with
label λı from those having label λ.

At classification time, a query x is submitted to all learn-
ers, and each prediction Mı(x) is interpreted as a vote for
a label. If classifier Mı predicts λı, this is counted as a
vote for λı. Conversely, the prediction λ would be consid-
ered as a vote for λ. The label with the highest number of
votes is then proposed as a prediction.

The above procedure can be extended to the case of pref-
erence learning in a natural way [7]. A preference informa-
tion of the form λı �x λ is turned into a training exam-
ple (x, y) for the learner Mab, where a = min(ı,) and
b = max(ı,). Moreover, y = 1 if ı < and y = 0 oth-
erwise. Thus, Mab is intended to learn the mapping that
outputs 1 if λa �x λb and 0 if λb �x λa:

x 7→
{

1 if λa �x λb

0 if λb �x λa
(2)

The mapping (2) can be realized by any binary classi-
fier. Alternatively, one might of course employ a classi-
fier that maps into the unit interval [0, 1] instead of {0, 1}.
The output of such a “soft” binary classifier can usually be
interpreted as a probability or, more generally, a kind of
confidence in the classification. Thus, the closer the out-
put of Mab to 1, the stronger the preference λa �x λb is
supported.

A preference learner composed of an ensemble of soft
binary classifiers (which can be constructed on the basis of

training data in the form of instances with associated partial
preferences) assigns a valued preference relationRx to any
(query) instance x ∈ X :

Rx(λı, λ) =
{

Mı(x) if ı <
1−Mı(x) if ı >

for all λı 6= λ ∈ L.
Given a preference relation Rx for an instance x, the

next question is how to derive an associated ranking τx.
This question is non-trivial, since a relation Rx does not
always suggest a unique ranking in an unequivocal way.
In fact, the problem of inducing a ranking from a (valued)
preference relation has received a lot of attention in sev-
eral research fields, e.g., in fuzzy preference modeling and
(multi-attribute) decision making [4]. Besides, in the con-
text of our application, it turned out that the ranking pro-
cedure used to transform a relation Rx into a ranking τx

is closely related to the definition of the quality of a pre-
diction and, hence, to the intended purpose of a ranking.
In other words, risk minimization with respect to different
loss functions might call for different ranking procedures.

4 Ranking Error versus Position Error
In Section 2, we introduced the problem of predicting a
ranking of class labels in a formal way, but did not discuss
the semantics of a predicted ranking. In fact, one should
realize that such a ranking can serve different purposes.
Needless to say, this point is of major importance for the
evaluation of a predicted ranking.

In this paper, we are especially interested in two types
of practically motivated performance tasks. In the first set-
ting, which is probably the most obvious one, the complete
ranking is relevant, i.e., the positions assigned to all of the
labels. As an example, consider the problem or ordering
the questions in a questionnaire. Here, the goal is to max-
imize a particular respondents’ motivation to complete the
questionnaire. Another example is learning to predict the
best order in which to supply a certain set of stores (route
of a truck), depending on external conditions like traffic,
weather, purchase order quantities, etc.

In case the complete ranking is relevant, the quality of a
prediction should be quantified in terms of a distance mea-
sure between the predicted and the true ranking. We shall
refer to any deviation of the predicted ranking from the true
one as a ranking error.

To motivate the second setting, consider a fault detec-
tion problem which consists of identifying the cause for
the malfunctioning of a technical system. If it turned out
that a predicted cause is not correct, an alternative candi-
date must be tried. A ranking then suggests a simple (trial
and error) search process, which successively tests the can-
didates, one by one, until the correct cause is found [1]. In
this scenario, where labels correspond to causes, the exis-
tence of a single target label (instead of a target ranking)
is assumed. Hence, an obvious measure of the quality of a
predicted ranking is the number of futile trials made before
that label is found. A deviation of the predicted target la-
bel’s position from the top-rank will subsequently be called
a position error.

The main difference between the two types of error is
that an evaluation of a full ranking (ranking error) attends
to all positions. For example, if the two highest ranks of
the true ranking are swapped in the predicted ranking, this
is as bad as the swapping of the two lowest ranks.

Note that the position error is closely related to the con-
ventional (classification) error, i.e., the incorrect prediction
of the top label. In both cases, we are eventually concerned
with predictions for the top rank. In our setting, however,
we not only try to maximize the number of correct predic-
tions. Instead, in the case of a misclassification, we also
look at the position of the target label. The higher this po-
sition, the better the prediction. In other words, we differ-
entiate between “bad” predictions in a more subtle way.

Even though we shall not deepen this point in the cur-
rent paper, we note that the idea of a position error can of
course be generalized to multi-label (classification) prob-
lems which assume several instead of a single target label
for each instance. There are different options for such a
generalization. For example, it makes a great difference
whether one is interested in having at least one of the tar-
gets on a top rank (e.g., since one solution is enough), or
whether all of them should have high positions (resp. none
of them should be ranked low). An application of the latter
type has recently been studied in [3].

5 Minimizing the Ranking Error
The quality of a model M (induced by a learning algo-
rithm) is commonly expressed in terms of its expected loss
or risk

E (D(y,M(x))) , (3)
where D(·) is a loss or distance function,M(x) denotes the
prediction made by the learning algorithm for the instance
x, and y is the true outcome. The expectation E is taken
over X ×Y , where Y is the output space (e.g., the set L of
classes in classification).2

The simplest loss function, commonly employed in clas-
sification, is the 0/1–loss: D(y, ŷ) = 0 for y = ŷ and = 1
otherwise. Given this loss function, the optimal (Bayes)
prediction for a specific instance x is simply the most prob-
able outcome y. In the classification setting, for example,
where Y = L, this estimate is the class with maximum
posterior probability P(λı |x).

A straightforward generalization of this principle to the
ranking setting, where Y is the class of rankings over L,
leads to the prediction

τ̂x = arg max
τ∈Sm

P(τ |x),

where P(τ |x) is the conditional probability of a ranking
(permutation) given an instance x, and Sm denotes the class
of all permutations of {1 . . .m}.

Obviously, the simple 0/1–distance function is a rather
crude evaluation measure for rankings, because it assigns
the same loss to all rankings that differ from the correct
ranking, and does not take into account that different rank-
ings can have different degrees of similarity. For this rea-
son, a number of more sophisticated distance measures for
rankings have been proposed in literature.

In general, if D(τ, τ ′) is a measure of the distance be-
tween two rankings τ and τ ′, the risk minimizing predic-
tion is

τ̂x = arg min
τ∈Sk

∑
τ∈Sm

D(τ, τ ′) · P(τ ′ |x). (4)

A frequently used distance measure is the sum of squared
rank distances

D(τ ′, τ) df=
m∑

ı=1

(τ ′(ı)− τ(ı))2 (5)

2The existence of a probability measure over X × Y must of
course be assumed.

which is equivalent to the Spearman rank correlation3

1− 6D(τ, τ ′)
m(m2 − 1)

∈ [−1, 1].

RPC can yield a risk minimizing prediction for this loss
function, if the predictions of the binary classifiers are com-
bined by weighted voting, i.e., the alternatives λı are eval-
uated by means of the sum of weighted votes

S(λı) =
∑

λ 6=λı

Rx(λı, λ) (6)

and ranked according to these evaluations:

λτx(1) �x λτx(2) �x . . . �x λτx(m) (7)

with τx satisfying S(λτx(ı)) ≥ S(λτx(ı+1)), ı = 1 . . .m−
1.4 This is a particular type of “ranking by scoring” strat-
egy; here, the scoring function is given by (6).

Formally, we can show the following result, which pro-
vides a theoretical justification for the voting procedure (6).
The proof of this theorem can be found in [11].
Theorem 1 Using the “ranking by scoring” procedure
outlined above, RPC is a risk minimizer with respect to (5)
as a loss function. More precisely, with

Mı(x) = P(λı �x λ) =
∑

τ : τ()<τ(ı)

P(τ |x),

the expected distance

E(τ ′) =
∑

τ

p(τ)·D(τ ′, τ) =
∑

τ

p(τ)
m∑

ı=1

(τ ′(ı)−τ(ı))2

becomes minimal by choosing τ ′ such that τ ′(ı) ≤ τ ′()
whenever S(λı) ≥ S(λ), where S(λı) is given by (6).

6 Minimizing the Position Error
Despite the fact that (5) is a reasonable loss function for
rankings, it is not always appropriate. In particular, it as-
sumes that the complete ranking is relevant for the quality
of a prediction, which is not the case in connection with the
fault detection scenario outlined in Section 4. Here, only
the prefix of a ranking τx is considered, up to the position
of the target label λx, while the rest of the prediction is of
no importance (since the search procedure stops if λx has
been found). In this case, the loss function only depends on
the rank of λx.

More specifically, we define the position error as
τ−1
x (λx), i.e., by the position of the target label λx in the

ranking τx. To compare the quality of rankings of different
problems, it is useful to normalize the position error for the
number of labels. This normalized position error is defined
as

τ−1
x (λx)− 1

m− 1
∈ {0, 1/(m− 1) . . . 1}, (8)

What kind of ranking procedure should be used in order
to minimize the risk of a predicted ranking with respect to
the position error as a loss function? Intuitively, the can-
didate labels λ should now be ordered according to their
probability P(λ = λx) of being the target label. Espe-
cially, the top-rank (first position) should be given to the
label λ> for which this probability is maximal. Regard-
ing the second rank, recall the fault detection metaphor,

3This is, of course, a similarity rather than a distance measure.
4Ties can be broken arbitrarily.

where the second hypothesis for the cause of the fault is
only tested in case the first one turned out to be wrong. In
this setting, the second rank should not simply be given
to the label with the second highest probability accord-
ing to the measure P1(·) = P(·). Instead, it must be as-
signed to the label that maximizes the conditional proba-
bility P2(·) = P(· |λx 6= λ>), i.e., the probability of being
the target label given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) might ap-
pear meaningless from a ranking point of view, since stan-
dard probabilistic conditioning (dividing all probabilities
by 1 − P(λ>) and setting P(λ>) = 0) does not change
the order of the remaining labels. One should realize, how-
ever, that standard conditioning is not an incontestable up-
dating procedure in our context, simply because P1(·) is
not a “true” measure over the class labels. Rather, it is only
an estimated measure coming from a learning algorithm.
Thus, it seems sensible to perform “conditioning” not on
the measure itself, but rather on the learner that produced
the measure. By this we mean retraining the learner on
the original data without the λ>-examples, something that
could be paraphrased as empirical conditioning. To em-
phasize that this type of conditioning depends on the data
D and the model assumptions (hypothesis space) H and,
moreover, that it concerns an estimated (“hat”) probabil-
ity, the conditional measure P2(·) could be written more
explicitly as

P2(·) = P̂(· |λx 6= λ>,D,M).

To motivate the idea of empirical conditioning, suppose
that the estimated probabilities come from a classification
tree. Of course, the original tree trained with the com-
plete data will be highly influenced by λ>-examples, and
the probabilities assigned by that tree to the alternatives
λ 6= λ> might be inaccurate. Retraining a classification
tree on a reduced set of data might then lead to more accu-
rate probabilities for the remaining labels, especially since
the multi-class problem to be solved has now become sim-
pler (as it involves fewer classes).

A problem of the above “ranking through iterated
choice” procedure, that is, the successive selection of alter-
natives by estimating top-labels from (conditional) prob-
ability measures P1(·),P2(·) . . .Pm(·), concerns its com-
putational complexity. In fact, realizing empirical condi-
tioning by retraining a standard multi-class classifier comes
down to training such a classifier for (potentially) each sub-
set of the label set L. As will be shown in the following,
empirical conditioning can be implemented much more ef-
ficiently by our pairwise approach.

6.1 Implementing “ranking through iterated
choice” by RPC

What kind of aggregation procedure is suitable for deriving
an estimated probability distribution from pairwise classi-
fications resp. valued preference R(λı, λ)? Let Eı denote
the event that λı = λx, i.e., that λı is the target label, and
let Eı = Eı ∨ E (either λı or λ is the target). Then,

(m− 1) P(Eı) =
∑
6=ı

P(Eı) =
∑
6=ı

P(Eı |Eı)P(Eı),

(9)
where m is the number of labels. Considering the
(pairwise) estimates R(λı, λ) as conditional probabilities
P(Eı |Eı), we obtain a system of linear equations for the

(unconditional) probabilities P(Eı):

P(Eı) =
1

m− 1

∑
6=ı

R(λı, λ)P(Eı)

=
1

m− 1

∑
6=ı

R(λı, λ)(P(Eı) + P(E)) (10)

In conjunction with the constraint
∑m

ı=1 P(Eı) = 1, this
system has a unique solution provided that R(λı, λ) > 0
for all 1 ≤ ı, ≤ m [13].

Based on this result, the “ranking through iterated
choice” procedure suggested above can be realized as fol-
lows: First, the system of linear equations (10) is solved
and the label λı with maximal probability P(Eı) is chosen
as the top-label λ>. This label is then removed, i.e., the
corresponding row and column of the relationR is deleted.
To find the second best label, the same procedure is then
applied to the reduced relation, i.e., by solving a system of
m− 1 linear equations. This process is iterated until a full
ranking has been constructed.
Lemma 1 In each iteration of the above “ranking through
iterated choice” procedure, the correct conditional proba-
bilities are derived.

Proof: Without loss of generality, assume that λm has
obtained the highest rank in the first iteration. The infor-
mation that this label is incorrect, λm 6= λx, is equivalent
to P(Em) = 0, P(Em |Em) = 0, and P(E |Em) = 1
for all 6= m. Incorporating these probabilities in (10)
yields, for all ı < m,

(m− 1)P(Eı) =
∑

=1...m,6=ı

P(Eı |Eı)P(Eı)

=
∑

=1..m−1, 6=ı

P(Eı |Eı)P(Eı) + 1P(Eım)

and as P(Eım) = P(Eı) + P(Em) = P(Eı),

(m− 2)P(Eı) =
∑

=1..m−1, 6=ı

P(Eı |Eı)P(Eı).

Obviously, the last equation is equivalent to (10) for a sys-
tem with m − 1 labels, namely the system obtained by re-
moving the m-th row and column of R. 2

As can be seen, the pairwise approach is particularly
well-suited for the “ranking through iterated choice” pro-
cedure, as it allows for an easy incorporation of the infor-
mation coming from futile trials. One just has to solve the
system of linear equations (10) once more, with some of
the pairwise probabilities set to 0 resp. 1 (or, equivalently,
solve a smaller system of equations). No retraining of any
classifier is required!
Theorem 2 By ranking the alternative labels according
to their (conditional) probabilities of being the top-label,
RPC becomes a risk minimizer with respect to the position
error (8) as a loss function. That is, the expected loss

E(τ) =
1

m− 1

m∑
ı=1

(ı− 1) · P
(
λτ(ı) = λx

)
becomes minimal for the ranking predicted by RPC.
Proof: This result follows almost by definition. In fact,
note that we have

E(τ) ∝
m∑

ı=1

P
(
λx 6∈ {λτ(1) . . . λτ(ı)}

)
,

data m PnI PI MnI MI
abalone 28 3,492 3,552 4,650 4,004
anneal 6 1,023 1,024 1,023 1,028
audiology 24 2,668 3,190 2,310 2,186
autos 7 1,498 1,502 1,273 1,293
balance-scale 3 1,357 1,294 1,397 1,326
glass 7 1,481 1,449 1,547 1,486
heart-c 5 1,224 1,224 1,231 1,231
heart-h 5 1,197 1,197 1,197 1,197
hypothyroid 4 1,006 1,008 1,005 1,007
iris 3 1,073 1,053 1,073 1,053
lymph 4 1,236 1,236 1,270 1,250
primary-tumor 22 3,516 3,531 4,254 3,764
segment 7 1,045 1,042 1,135 1,042
soybean 19 1,183 1,085 1,205 1,113
vehicle 4 1,327 1,313 1,411 1,309
vowel 11 1,285 1,309 2,314 1,274
zoo 7 1,178 1,149 1,238 1,099
letter 26 1,170 1,202 2,407 1,279

Table 1: Position error for conventional pairwise classifi-
cation (PnI), iterated pairwise classification (PI), conven-
tional multi-class classificiation (MnI) and iterated multi-
class classification (MI) using C4.5 as the base learner.

data m PnI PI MnI MI
abalone 28 3,466 3,500 4,667 4,358
anneal 6 1,020 1,017 1,031 1,028
audiology 24 2,863 3,270 2,394 3,274
autos 7 1,434 1,449 1,449 1,376
balance-scale 3 1,256 1,256 1,406 1,325
glass 7 1,444 1,463 1,612 1,486
heart-c 5 1,218 1,218 1,218 1,218
heart-h 5 1,187 1,187 1,187 1,187
hypothyroid 4 1,007 1,007 1,012 1,011
iris 3 1,073 1,073 1,067 1,073
lymph 4 1,291 1,297 1,284 1,277
primary-tumor 22 3,499 3,472 4,478 4,316
segment 7 1,059 1,060 1,131 1,075
soybean 19 1,124 1,073 1,220 1,123
vehicle 4 1,329 1,343 1,489 1,449
vowel 11 1,387 1,423 2,501 1,516
zoo 7 1,228 1,188 1,307 1,327
letter 26 1,176 1,188 2,168 1,375

Table 2: Position error for conventional pairwise classifi-
cation (PnI), iterated pairwise classification (PI), conven-
tional multi-class classificiation (MnI) and iterated multi-
class classification (MI) using Ripper as the base learner

and that, for each position ı, the probability to excess this
position when searching for the target λx is obviously min-
imized when ordering the labels according to their (condi-
tional) probabilities. 2

7 Empirical Results
Regarding the ranking error, our RPC approach has already
been investigated empirically in [7; 10]. In this section, we
shall therefore focus on the second type of loss function
discussed in the paper, the position error, and present first
results for the idea of empirical conditioning and the related
“ranking through iterated choice” procedure.

Suppose any multi-class classifier, capable of producing
probability estimates for the classes under consideration,
to be given as a base learner. Depending on whether or
not the multi-class problem is decomposed into a number
of pairwise problems (to which the same base learner is
of course also applicable), and whether or not the learning
procedure is iterated, the following four learning strategies
are conceivable.
• Pairwise, iterated (PI): This is the “ranking through

iterated choice” procedure as outlined in Section 6.1.
• Pairwise, non-iterated (PnI): The original problem

is decomposed into a number of pairwise problems,
but the learning procedure is not iterated, i.e., the
probabilities (10) are not recomputed. Instead, these
probabilities are only computed once and the class la-
bels are ranked according these probabilities.

• Multi-class, iterated (MI): The “ranking through it-
erated choice” procedure is implemented using the
base learner in its original (multi-class) version.

• Multi-class, non-iterated (MnI): A ranking is pro-
duced by applying the base learner to the complete
data set and ordering the class labels according to their
probabilities.

As an aside, let us note that, in connection with select-
ing the top-label or ordering the labels according to their
probability, ties are always broken through coin flipping.

As mentioned before, the strategy MI is tremendously
inefficient from a computational point of view, since m−1
multi-class classifiers have to be trained (and applied to the
query case) in order to produce a single ranking of m la-
bels: The first classifier is trained on the complete data, the
second on the reduced data which does not include the ex-
amples of the first top-label, and so forth. Although this ap-
proach is hardly practical for real applications, we include
it in our experiments as our main interest is to compare it-
erated with non-iterated learning. Our main goal is to find
out whether the idea of iterating the learning procedure is
beneficial or not.

Tables 1 and 2 show the results that we obtained for a
number of well-known benchmark data sets from the UCI
repository5, and the StatLib archive6, using C4.5 and Rip-
per as base learners, respectively. For each data set and
each method we estimate the mean (absolute) position error
using leave-one-out cross validation, except for the data set
’letter’, for which we used the predefined separation into
training and test data. Table 3 shows the numbers of wins
and losses for each pair of methods.

PnI PI MnI MI
PnI — 9/6 13/3 9/8
PI 6/9 — 13/4 8/7
MnI 3/13 4/13 — 3/13
MI 9/9 7/8 13/3 —
PnI — 9/4 13/3 12/3
PI 4/9 — 12/3 13/2
MnI 3/13 3/12 — 3/13
MI 3/12 2/13 13/3 —

Table 3: Win/Loss statistics for each pair of methods, using
C4.5 (top) and Ripper (bottom) as base learners.

5http://www.ics.uci.edu/˜mlearn
6http://stat.cmu.edu/

In contrast to our expectations, the results suggest that
iterating (empirical conditioning) does not pay off in the
pairwise learning approach. More often than not, the av-
erage position error for the non-iterated variant is smaller
than the one for the iterated version. On the other hand,
empirical conditioning significantly outperforms standard
conditioning in the case of multi-class classification (the
results are significant at a level of 2% according to a simple
sign test).

Even though the results do not comply with our first ex-
pectations, they can be explained in an intuitively plausible
way. In fact, one has to realize that the idea of empirical
conditioning produces two antagonistic effects:

• In each iteration, the size of the data set to learn from
becomes smaller. This reduction of data comes along
with a loss of information.

• Due to the reduced number of classes, the learning
problems become simpler in each iteration.

The first effect will have a negative influence on gener-
alization performance, whereas the second one will have a
positive influence. In pairwise classification, the first effect
manifests itself by a reduction of the number of “voters”:
In the k-th iteration of iterated choice, only m−k+1 labels
and, hence, only (m− k + 1)(m− k)/2 binary classifiers
participate. Since the score of each label is thus derived
from the votes of only m− k instead of m− 1 such classi-
fiers, the impact of each individual binary classifier on the
final ranking increases. An erroneous prediction of a single
binary classifier will have a larger effect if fewer classifiers
are used to derive the ranking. Thus, the ranking scores
become less reliable with a decreasing number of labels.

For conventional iterated choice, this is countered by
the fact that the classifiers become increasingly simple, be-
cause it can be expected that the decision boundary for sep-
arating m classes is more complex than the decision bound-
ary for separating m′ < m classes of the same problem.
The crucial point is that this effect is effectively disabled
in the pairwise approach: Since the original learning prob-
lem is decomposed into pairwise problems right from the
start, the simplification due to a reduction of class labels
is already bailed out at the beginning. In later iterations,
some pairwise problems become irrelevant, but the remain-
ing problems do not become simpler. Consequently, only
the first (negative) effect remains, which in turn explains
the deterioration for the pairwise approach. In contrast, the
second (positive) effect often seems to dominate the first
effect in the case of multi-class classification.

8 Concluding Remarks
By showing that RPC is a risk minimizer with respect to
particular loss functions for rankings, this paper provides a
sound theoretical foundation for ranking by pairwise com-
parison. The interesting point is that RPC can easily be cus-
tomized to different performance tasks, simply by changing
the ranking procedure employed in the second step of the
method. By modifying this procedure, the goal of RPC
can be changed from minimizing the expected distance be-
tween the predicted and the true ranking to minimizing the
expected number of futile trials in searching a target label.
This can be done without retraining the classifier ensemble.

The second type of loss function, the position error,
is minimized by ordering the class labels according their
(conditional) probability of being the target label. To im-
prove the estimations of these probabilities, we proposed

the idea of “empirical conditioning” and the related “rank-
ing through iterated choice” procedure. In an experimen-
tal study, this procedure was compared with the standard
(“non-iterated”) variant where the probabilities are not re-
computed, i.e., where the class labels are ranked accord-
ing to the originally estimated probabilities. Our results
suggest that empirical conditioning does indeed reduce the
expected loss in the case of standard multi-class classifi-
cation (where the “choice” of the top-label is realized by
a multi-class classifier in each iteration), whereas it does
not pay off in the case of pairwise learning. Even though
this finding is interesting by itself and gives some important
theoretical insights, it is to some extent unfortunate from a
practical point of view, since empirical conditioning can be
implemented efficiently only in the pairwise approach.

References
[1] C. Alonso, J.J. Rodrı́guez, and B. Pulido. Enhanc-

ing consistency based diagnosis with machine learn-
ing techniques. In Current Topics in AI, pp. 312–321.
Springer, 2004.

[2] W.W. Cohen, R.E. Schapire, and Y. Singer. Learn-
ing to order things. Journal of Artificial Intelligence
Research, 10:243–270, 1999.

[3] K. Crammer and Y. Singer. A family of additive on-
line algorithms for category ranking. Journal of Ma-
chine Learning Research, 3:1025–1058, 2003.

[4] J. Fodor, M. Roubens. Fuzzy Preference Modelling
and Multicriteria Decision Support. Kluwer, 1994.

[5] J. Fürnkranz. Round robin classification. Journal of
Machine Learning Research, 2:721–747, 2002.

[6] J. Fürnkranz and E. Hüllermeier. Pairwise pref-
erence learning and ranking—Proceedings of the
KI-2003 Workshop, Technical Report TR-2003-14,
Österreichisches Forschungsinstitut für Artificial In-
telligence, Wien, 2003.

[7] J. Fürnkranz and E. Hüllermeier. Pairwise preference
learning and ranking. In Proc. ECML-03, Cavtat-
Dubrovnik, Croatia, 2003.

[8] J. Fürnkranz and E. Hüllermeier. Preference learning.
Künstliche Intelligenz, 1/05:60–61, 2005.

[9] S. Har-Peled, D. Roth, and D. Zimak. Constraint clas-
sification: a new approach to multiclass classification.
In Proc. ALT-02, pp. 365–379, Lübeck, 2002.

[10] E. Hüllermeier and J. Fürnkranz. Comparison of
ranking procedures in pairwise preference learning.
In Proc. IPMU-04, Perugia, 2004.

[11] E. Hüllermeier and J. Fürnkranz. Learning label pref-
erences: Ranking error versus position error. In Proc.
IDA–2005, Madrid, 2005.

[12] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for in-
terdependent and structured output spaces. In Proc.
ICML–2004, pp. 823–830, Banff, Alberta, 2004.

[13] T.F. Wu, C.J. Lin, and R.C. Weng. Probability es-
timates for multi-class classification by pairwise cou-
pling. Journal of Machine Learning Research, 5:975–
1005, 2004.

