
Mining Temporal Patterns from Relational Data

Andreas D. Lattner and Otthein Herzog
TZI – Center for Computing Technologies, Universität Bremen

PO Box 330 440, D-28334 Bremen, Germany
{adl|herzog}@tzi.de

Abstract

Agents in dynamic environments have to deal
with world representations that change over time.
In order to allow agents to act autonomously and
to make their decisions on a solid basis an in-
terpretation of the current scene is necessary. If
intentions of other agents or events that are likely
to happen in the future can be recognized, the
agent’s performance can be improved as it can
adapt the behavior to the situation. In this work
we present an approach which applies unsuper-
vised symbolic learning off-line to a qualitative
abstraction in order to create frequent temporal
patterns in dynamic scenes. Here, an adaption of
a sequential pattern mining algorithm which was
presented earlier by the authors is proposed in
order to reduce the complexity by handling dif-
ferent aspects (class restrictions, variable unifi-
cations, and temporal relations) separatedly first,
and then combining the results of the single
steps. The work is still in progress– this paper
introduces the basic ideas and shows an example
run of the implemented system.

1 Introduction
Agents in dynamic environments have to deal with world
representations that change over time. In order to allow
agents to act autonomously and to make their decisions on
a solid basis an interpretation of the current scene is nec-
essary. Scene interpretation can be done by checking if
certain patterns match the current belief of the world. If in-
tentions of other agents or events that are likely to happen in
the future can be recognized, the agent’s performance can
be improved as it can adapt the behavior to the situation.

We focus on qualitative representations as they allow a
concise representation of the relevant information. Such a
representation provides means to use background knowl-
edge, to plan future actions, to recognize plans of other
agents, and is comprehensible for humans the same time.
Quantitative data has to be mapped to a qualitative repre-
sentation, e.g., by dividing time series into different seg-
ments satisfying certain monotonicity or threshold condi-
tions as suggested by Miene and colleagues[Mieneet al.,
2004a; 2004b]. One example is that if the distance between
two objects is observed it can be divided into increasing
and decreasing distance representing approaching and de-
parting relations (cf.[Mieneet al., 2004b]).

Additionally to the requirement to handle situations
which change over time, relations between arbitrary objects

can exist in the belief of the world. In this work we present
an approach which applies unsupervised symbolic learning
to a qualitative abstraction in order to create frequent pat-
terns in dynamic scenes. In this work an adaption of the se-
quential pattern mining algorithm presented in[Lattner and
Herzog, 2004] is proposed in order to reduce the complex-
ity by handling different aspects (class restrictions, variable
unifications, and temporal relations) separatedly first, and
then combining the results of the single steps. This work is
still in progress, i.e., a detailed evaluation of the approach
has to be done in future work. This paper introduces the
basic ideas and shows an example run of the system.

2 Related Work
Association rule mining addresses the problem of discov-
ering association rules in data. One typical example is the
mining of rules in basket data[Agrawalet al., 1993]. Dif-
ferent algorithms have been developed for the mining of
association rules in item sets (e.g.,[Agrawal and Srikant,
1994]). Mannila et al. extended association rule min-
ing by taking event sequences into account[Mannila et
al., 1997]. They describe algorithms which find all rele-
vant episodes which occur frequently in the event sequence.
Höppner presents an approach for learning rules about tem-
poral relationships between labeled time intervals[Höpp-
ner, 2001]. The labeled time intervals consist of propo-
sitions. Relationships are described by Allen’s interval
logic [Allen, 1983]. Other researchers in the area of spa-
tial association rule mining allow for more complex rep-
resentations with variables but do not take temporal inter-
val relations into account (e.g.,[Koperski and Han, 1995;
Malerba and Lisi, 2001; Mennis and Liu, 2003]).

Dehaspe and De Raedt combine association rule mining
algorithms with ILP techniques. Their system WARMR is
an extension of Apriori for mining association rules over
multiple relations[Dehaspe and Raedt, 1997; Dehaspe and
Toivonen, 2001]. The generated rules consist of sets of
logical atoms. This more expressive representations (com-
pared to itemset mining) allows for discovering rules like:
likes(KID,A), has(KID,B) ⇒ prefers(KID,A,B)
(cf. [Dehaspe and Raedt, 1997]).

The approaches of Kaminka et al. and Huang et al. also
create a sequence of certain events or behaviors and search
for frequent sequences[Kaminkaet al., 2003; Huanget al.,
2003]. The main difference to our approach is the represen-
tational power of the learned patterns. Our representation
allows for using variables (and assigning classes to them) in
the learned rules and allows for identifiying arbitrary tem-
poral relations between predicates (e.g., those introduced
by [Allen, 1983]).

Figure 1: Pattern and prediction rule generation

The learning approach presented here combines ideas
from different directions. Similar to Ḧoppner’s work
[Höppner, 2001] the learned patterns describe temporal
interrelationships with interval logic. Contrary to Höpp-
ner’s approach our representation allows for describing
predicates between different objects similar to approaches
like [Malerba and Lisi, 2001; Dehaspe and Raedt, 1997;
Dehaspe and Toivonen, 2001]. The generation of frequent
patterns comprises a top-down approach starting from the
most general pattern and specializing it. At each level of
the pattern mining just the frequent patterns of the previ-
ous step are taken into account knowing that only combi-
nations of frequent patterns can result in frequent patterns
again which is a typical approach in association rule mining
(e.g.,[Mannilaet al., 1997]).

3 Sequential Pattern Mining
Here, a dynamic scene is represented symbolically by a set
of objects and predicates between these objects as e.g. cre-
ated by the qualitative abstraction described in[Miene et
al., 2004a; 2004b]. The predicates are only valid for cer-
tain time intervals and the scene can thus be considered as a
sequence of (spatial or conceptual) predicates. These pred-
icates are in specific temporal relations regarding the time
dimension. An example for such a sequence can be seen at
the top of Fig. 1.

Each predicater is an instance of a predicate definition
rd. We use the letterr for predicates/relations; the letter
p is used for patterns.Rschema = {rd1, rd2, . . .} is the
set of all predicate definitionsrdi := 〈li, ai〉 with label li
and arityai, i.e., eachrdi defines a predicate betweenai

objects. Predicates can be hierarchically structured. If a
predicate definitionrd1 specializes another predicate def-
inition rd2 all instances ofrd1 are also instances of the
super predicaterd2. For each predicate definition it is de-
fined what their ranges are, i.e., it is defined what classes
the corresponding objects in predicate instances have to be
instances of.

A sequencesi is defined assi = (Ri, T Ri, Ci) where
Ri is the set of predicates,T Ri is the set of temporal re-
lations andCi is the set of constants representing differ-
ent objects in the scene. Every constant is an instance of
a class (default is the top concept “object”) and classes
form an inheritance hierarchy. Each predicate is defined as
r(c1, . . . , cn) with r being an instance ofrdi ∈ Rschema,
having arityn = ai, andci,1, . . . , ci,n ∈ Ci are represent-
ing the objects where the predicate holds. The set of tem-
poral relationsT Ri = {tr1, tr2, . . .} defines relations be-
tween pairs of elements inRi. Each temporal relation is

Figure 2: Pattern generation

defined astri(ra, op, rb) with ra, rb ∈ Ri. op is the set of
valid temporal relations. If Allen’s temporal relations be-
tween intervals[Allen, 1983] are used, this set is defined
asop ∈ {<,=, >, d, di, o, oi, m,mi, s, si, f, fi}. It is also
possible to use other temporal relations, e.g., those defined
by Freksa[Freksa, 1992].

Dehaspe and Toivonen proposed to use a “key parame-
ter” for the support computation[Dehaspe and Toivonen,
2001]. This has the disadvantage that this key predicate
must be part of each pattern and not all potentially frequent
patterns can be compared. Our notion of support is to count
all matches of the pattern in a sequence. As different com-
binations of (partially identical) predicates can lead to mul-
tiple counts we do not allow any predicate to be counted
more than once while pattern matching. The current ver-
sion of the algorithm greedily counts the first match and
disables the used predicates of the match for the further
pattern matching process.

In the current implementation the matches of the inter-
mediate steps are not stored, i.e., that the pattern matching
is done from scratch for each new pattern. A problem here
is that with the used support measure it is possible that a
match of a previous (more general) pattern might not be
extendable by another predicate but a different combina-
tion of a subset of the match with other predicates might
lead to a match. Due to lack of space this issue cannot be
discussed here in detail but will be addressed in future pub-
lications.

If more than one sequence has to be processed the sup-
port is computed in each sequence separatedly by counting
the different pattern matches in the single sequences and
accumulating the support values.

Figure 3: Generation of basic patterns

3.1 Pattern Representation and Pattern
Matching

Patterns are abstract descriptions of sequence parts with
specific properties. A pattern defines what predicates must
occur and how their temporal interrelationship has to be.
LetP = {p1, p2, . . .} be the set of all patternspi. A pattern
is (similar to sequences) defined aspi = (Ri, T Ri,Vi).
Ri is the set of predicatesrij(vij,1, . . . , vij,n) with

vij,1, . . . , vij,n ∈ Vi. Vi is the set of all variables used
in the pattern. A class is assigned to each variable.T Ri

defines the set of the temporal relations which have already
been defined above.

A patternp matches in a (part of a) sequencesp if there
exists a mapping of a subset of the constants insp to all
variables inp such that all predicates defined in the pattern
exist between the mapped objects and all time constraints
of p are satisfied by the time intervals in the sequence with-
out violating the class restrictions. In order to restrict the
exploration region a window size can be defined. Only
matches within a certain neighborhood (specified by the
window size) are valid.

During the pattern matching algorithm a sliding window
is used, and at each position of the window all matches for
the different patterns are collected. A match consists of the
matched predicates in the sequence and an assignment of
objects to the variables of the pattern. Fig. 1 illustrates
a sample pattern and one of the matches in the given se-
quence marked by a dashed line. In this example temporal
relations as defined by Freksa[Freksa, 1992] are used. The
example also illustrates how an association rule could be
created from the pattern.

3.2 Pattern Generation
Different patterns can be put into generalization-
specialization relations. A patternp1 subsumes another
pattern p2 if it covers all sequence parts which are
covered byp2: p1 v p2 := ∀sp,matches(p2, sp) :
matches(p1, sp). If p1 additionally covers at least
one sequence part which is not covered byp2 it
is more general: p1 @ p2 := p1 v p2 ∧ ∃spx :
matches(p1, spx),¬matches(p2, spx).
This is the case ifp1 v p2 ∧ p1 6w p2.

In order to specialize a pattern it is possible to add a new
predicater to Ri, add a new temporal relationtr to T Ri,
specialize the class of a variable, unify two variables, or
specialize a predicate, i.e., replacing it with another more
special predicate. Accordingly it is possible to generalize
a pattern by removing a predicater from Ri, removing a
temporal relationtr from T Ri, inserting a new variable,
or generalizing a predicater, i.e., replacing it with another

Figure 4: Class lattice

more general predicate.
Fig. 2 shows the different steps of the pattern generation

process. At the specialization of a basic pattern by adding a
predicate a new instance of any of the predicate definitions
can be added to the pattern with variables which have not
been used in the pattern so far. This Apriori-like step of
basic pattern generation is illustrated in Fig. 3.

For each basic pattern it is possible to perform further
specialications. We take into account specializations by
adding different kinds of restrictions w.r.t. classes, varibale
unifications, and temporal relations to the basic patterns.
These different kinds of specializations can be seen as a
search through lattices as illustrated in Fig. 4 - 6. Here, the
top-level elements are the most general restrictions while
the elements at the bottom (leaves) are the most special re-
strictions in the lattices.

Specializing the class of a variable means that the cur-
rent class assigned to a variable is replaced by one of its
subclasses (Fig. 4). The background knowledge defines
the class hierarchy and at a specialization step the class for
a variable is replaced by one of its subclasses.

A specialization through variable unification can be done
by unifying an arbitrary pair of variables, i.e., the different
predicates can be “connected” via identical variables after
this step (Fig. 5). In the general case each variable can
be bound to an arbitrary constant, i.e., it does not matter if
variables are bound to identical or different constants. If a
variable restriction is added it is stated that two variables
must be bound to the same object, e.g.,x1 = x2 in the first
left branch of Fig. 5.

Figure 5: Variable lattice

If a pattern is specialized by adding a new temporal re-
lation for any pair of predicates in the pattern (which has
not been constrained so far) a new temporal restriction can
be added. Initially, no temporal restrictions exist, i.e., the
time of appearance of certain predicates does not make any

Figure 6: Temporal lattice

difference. Temporal restrictions state that there must ex-
ist a certain temporal relation between two predicates, e.g.,
that one must bebeforethe other. In the first left branch of
Fig. 6 it is stated thatcloserToGoal(x1, x2) must
bebefore(denoted by<) pass(x3, x4) .

3.3 Generation and Merging of Separate
Borders

If all three kinds of restrictions (class, variable, and tem-
poral restrictions) were handled together at the same time
this would lead to a huge search space for specializing ba-
sic patterns by these restrictions. At each step in the spe-
cialization process a great number of restrictions to add
could possibly exist. Handling the different kinds of re-
strictions separated seems to be a good approach in order
to reduce complexity. But if for all frequent patterns all
frequent restrictions are created and then combined in a
brute-force way (i.e., creating all combinations) complex-
ity would make mining impossible even for a small number
of predicates.

Figure 7: Merging of lattices

Our approach to handling the complexity is to just work
with the most special borders in each of the single “dimen-
sions” (i.e., restriction kinds) and then merge this borders
in following steps. The algorithms starts from the most
special restrictions in each single lattice and generalizes
the restrictions until frequent patterns are found1. The ini-

1It would also be possible to perform specialization steps top-
down from the most general restrictions. Which approach is better
has to be evaluated but is expected to depend on the domain.

predicate(uncovered(_,_)).
predicate(pass(_,_)).
predicate(closerToGoal(_,_)).

range(uncovered,[object, object]).
range(pass, [object, object]).
range(closerToGoal, [object, object]).

directSubClassOf(team1, object).
directSubClassOf(team2, object).
directInstanceOf(p6, team1).
directInstanceOf(p7, team1).
directInstanceOf(p8, team1).
directInstanceOf(p9, team1).
directInstanceOf(q6, team2).
directInstanceOf(q7, team2).
directInstanceOf(q8, team2).
directInstanceOf(q9, team2).

holds(uncovered(q6, q6), 12, 14).
holds(pass(p9, p8), 15, 17).
holds(closerToGoal(p8, p9), 11, 19).
holds(uncovered(p8, p8), 13, 21).
holds(closerToGoal(q8, q9), 16, 26).
holds(pass(p7, p6), 27, 29).
holds(closerToGoal(p6, p7), 23, 31).
holds(uncovered(p6, p6), 25, 33).
holds(uncovered(q9, q9), 30, 36).
holds(closerToGoal(q8, q6), 36, 40).
holds(pass(p9, p7), 39, 41).
holds(closerToGoal(p7, p9), 35, 43).
holds(uncovered(q8, q8), 42, 44).
holds(uncovered(p7, p7), 37, 45).
holds(pass(p8, p6), 51, 53).
holds(closerToGoal(q7, q6), 50, 54).
holds(closerToGoal(p6, p8), 47, 55).
holds(uncovered(p6, p6), 49, 57).
holds(pass(p8, p7), 65, 67).
holds(uncovered(q6, q6), 58, 68).
holds(closerToGoal(p7, p8), 61, 69).
holds(uncovered(p7, p7), 63, 71).

Figure 8: Sample input for the pattern mining algorithm

tial most special borders (independent of a sequence and a
pattern’s support in it) can be generated by collecting the
leaves in the created lattices. The actual most special bor-
ders are created by computing the support of the pattern
with each restriction of the current border. Each infrequent
restriction is replaced by its (more general) super restric-
tions in the lattice.

After all most special borders (that still lead to frequent
patterns) are created for the single dimensions (step 1 in
Fig. 7) the different borders have to be merged. While
merging the class and variable restrictions all pairs of the
elements of the most special borders of the class and vari-
able restrictions are created. If any of the combinations
leads to a non-frequent pattern a generalization step is per-
formed using the restriction lattices. In this generalization
step one of the restrictions is kept fixed while the other
is replaced by more general restrictions in the generaliza-
tion/specialization lattice until a frequent pattern was found
again (in the worst case one of the restrictions would be fi-
nally replaced by the most general one in its lattice in or-
der to still create a frequent pattern). After the first two
borders were merged the process is repeated with the com-
bined border and the remaining border of the temporal re-
strictions. This process is illustrated in Fig. 7.

4 Example

This section presents a sample run of the system. Fig.
8 presents the (manually created) input data which con-
sists of some potential predicates of the soccer domain.
The predicate and range entries give information
about the predicates and their ranges to use while learn-

before(holds(_, _, E1),holds(_, S2, _)) :-
E1 < S2.

after(X,Y) :- before(Y,X).

equal(holds(_, S1, E1),holds(_, S2, E2)) :-
S1 == S2,
E1 == E2.

meets(holds(_, _, E1),holds(_, S2, _)) :-
E1 == S2.

isMetBy(X,Y) :- meets(Y,X).
...
younger(holds(_, _, E1),holds(_, S2, _)) :-
E1 < S2.
...

Figure 9: Examples for the logical represenations of tem-
poral relations

ing. In this example there are just three predicates
uncovered, pass , and closerToGoal and their
ranges are all set to the most general classobject . The
directSubClassOf anddirectInstanceOf rela-
tions represent information of the class hierarchy (e.g.,
team1 is a subclass ofobject) and assigns classes to
objects (e.g.,p6 is an instance of the classteam1). The
following lines with theholds entries represent the va-
lidity intervals of certain predicates. The first line means
that playerq6 is uncovered in the interval between time-
points12 and142.

Fig. 9 shows a snippet of different temporal relations
which also have been given as input. The first example
here says that an validity interval isbefore another one
if its end time point is smaller than the start time point of
the other. During the test run just a subset of the tempo-
ral relations introduced by Freksa (and some combinations)
were used, namelyyounger, older, younger & contempo-
rary, older & contemporary,andhead to head.

The output of the pattern mining algorithm can be seen
in Fig. 10 and Fig. 11. In the examples patterns of the size
2 and3 were created. The output shows the created basic
patterns and their support values and the merged restriction
border, respectively. The class restrictions assign classes to
the variables (in the sequence of their appearances). The
variable restriction shows for each variable if it is unique
(indicated by the value−1) or if it was unified with another
variable (indicated by the index of the other variable, start-
ing from index 1). The temporal restrictions represent the
temporal relations between different predicates. Here, the
first two numbers indicate which predicates are restricted
by the temporal relation by showing the index (also start-
ing from index 1).

The first restriction triple of the first basic patterns in Fig.
10 says that the first two variables are instances of the class
team1 and the remaining two are instances ofteam2 ,
that the second variable was unified with the first one and
the fourth with the third one, and the there is no temporal
relation between the two predicates (uncovered(G29,
G30), uncovered(G32, G33)). The support of

this pattern (also with the restrictions) is3. The first re-
striction triple of the second basic pattern includes a tem-
poral restriction. It says that the validity interval of the first
predicate (pass) is older and contemporary with the valid-
ity interval of the second predicate (uncovered). Some

2Please note that in the current version just binary relations are
allowed, i.e., unary relations are represented by a twin entry of an
identical object identifier.

more learned patterns can be seen in Fig. 11 where the
pattern size was set to 3.

BasicPattern: [uncovered(_G29, _G30),
uncovered(_G32, _G33)]

Frequency: 3

ClassRestr: [team1, team1, team2, team2]
VarRestr: varRestr(-1, 1, -1, 3)
TempRestr: [tempRestr(1, 2, none)]
Freq: 3

ClassRestr: [team2, team2, team1, team1]
VarRestr: varRestr(-1, 1, -1, 3)
TempRestr: [tempRestr(1, 2, none)]
Freq: 3

BasicPattern: [pass(_G26, _G27),
uncovered(_G29, _G30)]

Frequency: 5

ClassRestr: [team1, team1, team1, team1]
VarRestr: varRestr(-1, -1, 2, 2)
TempRestr: [tempRestr(1, 2, olderContemp)]
Freq: 5

ClassRestr: [team1, team1, team2, team2]
VarRestr: varRestr(-1, -1, -1, 3)
TempRestr: [tempRestr(1, 2, older)]
Freq: 3

BasicPattern: [closerToGoal(_G23, _G24),
uncovered(_G29, _G30)]

Frequency: 5

ClassRestr: [team1, team1, team1, team1]
VarRestr: varRestr(-1, -1, 1, 1)
TempRestr: [tempRestr(1, 2, none)]
Freq: 5

ClassRestr: [team1, team1, team2, team2]
VarRestr: varRestr(-1, -1, -1, 3)
TempRestr: [tempRestr(1, 2, none)]
Freq: 3

BasicPattern: [closerToGoal(_G23, _G24),
pass(_G26, _G27)]

Frequency: 5

ClassRestr: [team1, team1, team1, team1]
VarRestr: varRestr(-1, -1, 2, 1)
TempRestr: [tempRestr(1, 2, youngerContemp)]
Freq: 5

ClassRestr: [team2, team2, team1, team1]
VarRestr: varRestr(-1, -1, -1, -1)
TempRestr: [tempRestr(1, 2, none)]
Freq: 3

Figure 10: Examples of learned patterns with pattern size 2

5 Conclusion

In this paper we presented an approach to temporal pattern
mining. One possible application of such learned patterns
is the prediction of situations or behaviors by using (tem-
poral) association rules. One characteristic of the learning
approach is high representational power with the potential
of learning complex patterns with predicates and variables
from relational and temporal data.

As the drawback of the approach is the high complexity
of the mining algorithm as discussed in[Lattner and Her-
zog, 2004] we presented a way to reduce complexity in this
paper. Instead of creating all combinations of the frequent
restrictions of the different restriction kinds the algorithm
just works with the most special (but still frequent) border
of each single dimensions and still allows for extracting all
frequent restrictions from the merged border by general-
ization. The approach has been implemented but not yet

evaluated sufficiently, thus just a small sample run was pre-
sented in this paper.

Besides evaluation future work has to address further
ways to reduce complexity, e.g., by developing heuristics
which allow an efficient mining of patterns without cutting
off a large number of potentially good patterns. In future
work the performance of the learned patterns for predicting
future behaviors and situations must also be analyzed.

BasicPattern: [pass(_G26, _G27),
uncovered(_G28, _G29),
uncovered(_G30, _G31)]

Frequency: 3

ClassRestr: [team1, team1, team1, team1, team2, team2]
VarRestr: varRestr(-1, -1, 2, 2, -1, 5)
TempRestr: [tempRestr(1, 2, olderContemp),

tempRestr(1, 3, none),
tempRestr(2, 3, none)]

Freq: 3

ClassRestr: [team1, team1, team2, team2, team1, team1]
VarRestr: varRestr(-1, -1, -1, 3, 2, 2)
TempRestr: [tempRestr(1, 2, none),

tempRestr(1, 3, olderContemp),
tempRestr(2, 3, none)]

Freq: 3

BasicPattern: [closerToGoal(_G23, _G24),
pass(_G26, _G27),
uncovered(_G28, _G29)]

Frequency: 5

ClassRestr: [team1, team1, team1, team1, team1, team1]
VarRestr: varRestr(-1, -1, 2, 1, 1, 1)
TempRestr: [tempRestr(1, 2, youngerContemp),

tempRestr(1, 3, none),
tempRestr(2, 3, olderContemp)]

Freq: 5

ClassRestr: [team1, team1, team1, team1, team2, team2]
VarRestr: varRestr(-1, -1, 2, 1, -1, 5)
TempRestr: [tempRestr(1, 2, youngerContemp),

tempRestr(1, 3, none),
tempRestr(2, 3, none)]

Freq: 3

ClassRestr: [object, object, team1, team1, team2, team2]
VarRestr: varRestr(-1, -1, -1, -1, -1, 5)
TempRestr: [tempRestr(1, 2, none),

tempRestr(1, 3, none),
tempRestr(2, 3, older)]

Freq: 3

Figure 11: Examples of learned patterns with pattern size 3

References
[Agrawal and Srikant, 1994] Rakesh Agrawal and Ra-

makrishnan Srikant. Fast algorithms for mining asso-
ciation rules. InProceedings of the 20th International
Conference on Very Large Data Bases, VLDB, pages
487–499, September 1994.

[Agrawalet al., 1993] Rakesh Agrawal, Tomasz Imielin-
ski, and Arun N. Swami. Mining association rules be-
tween sets of items in large databases. InProceedings
of the 1993 ACM SIGMOD International Conference
on Management of Data, pages 207–216, Washington,
D.C., May 1993.

[Allen, 1983] James F. Allen. Maintaining knowledge
about temporal intervals.Communications of the ACM,
26(11):832–843, November 1983.

[Dehaspe and Raedt, 1997] Luc Dehaspe and Luc De
Raedt. Mining association rules in multiple relations.
In S. Džeroski and N. Lavrǎc, editors, Proceedings
of the 7th International Workshop on Inductive Logic

Programming, volume 1297, pages 125–132. Springer-
Verlag, 1997.

[Dehaspe and Toivonen, 2001] Luc Dehaspe and Hannu
Toivonen. Discovery of relational association rules. In
Relational Data Mining, pages 189 – 208. Springer-
Verlag New York, Inc., 2001.

[Freksa, 1992] Christian Freksa. Temporal reasoning
based on semi-intervals.Artificial Intelligence, 54(1–
2):199–227, 1992.

[Höppner, 2001] Frank Ḧoppner. Learning temporal rules
from state sequences. InProceedings of the IJCAI’01
Workshop on Learning from Temporal and Spatial Data,
pages 25–31, Seattle, USA, 2001.

[Huanget al., 2003] Zhanxiang Huang, Yang Yang, and
Xiaoping Chen. An approach to plan recognition and re-
trieval for multi-agent systems. In Mikhail Prokopenko,
editor, Workshop on Adaptability in Multi-Agent Sys-
tems, First RoboCup Australian Open 2003 (AORC-
2003), Sydney, Australia, 2003. CSIRO.

[Kaminkaet al., 2003] Gal Kaminka, Mehmet Fidan-
boylu, Allen Chang, and Manuela Veloso. Learning the
sequential coordinated behavior of teams from observa-
tion. In Gal Kaminka, Pedro Lima, and Raul Rojas, edi-
tors,RoboCup 2002: Robot Soccer World Cup VI, LNAI
2752, pages 111–125, Fukuoka, Japan, 2003.

[Koperski and Han, 1995] Krzysztof Koperski and Jiawei
Han. Discovery of spatial association rules in geo-
graphic information databases. InProceedings of the
4th International Symposium on Advances in Spatial
Databases, SSD, pages 47–66, Portland, Maine, 1995.

[Lattner and Herzog, 2004] Andreas D. Lattner and Ot-
thein Herzog. Unsupervised learning of sequential pat-
terns. InICDM 2004 Workshop on Temporal Data Min-
ing: Algorithms, Theory and Applications (TDM’04),
Brighton, UK, November 1st 2004.

[Malerba and Lisi, 2001] Donato Malerba and
Francesca A. Lisi. An ILP method for spatial as-
sociation rule mining. InWorking notes of the First
Workshop on Multi-Relational Data Mining, pages
18–29, Freiburg, Germany, 2001.

[Mannilaet al., 1997] Heikki Mannila, Hannu Toivonen,
and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences.Data Mining and Knowledge Dis-
covery, 1:259–289, 1997.

[Mennis and Liu, 2003] Jeremy Mennis and Junwei Liu.
Mining association rules in spatio-temporal data. InPro-
ceedings of the 7th International Conference on Geo-
Computation, University of Southampton, UK, 8 - 10
September 2003.

[Mieneet al., 2004a] Andrea Miene, Andreas D. Lattner,
Ubbo Visser, and Otthein Herzog. Dynamic-preserving
qualitative motion description for intelligent vehicles. In
Proceedings of the IEEE Intelligent Vehicles Symposium
(IV ’04), pages 642–646, June 14-17 2004.

[Mieneet al., 2004b] Andrea Miene, Ubbo Visser, and Ot-
thein Herzog. Recognition and prediction of motion sit-
uations based on a qualitative motion description. In
D. Polani, B. Browning, A. Bonarini, and K. Yoshida,
editors,RoboCup 2003: Robot Soccer World Cup VII,
LNCS 3020, pages 77–88. Springer, 2004.

