
Parallel Mining for Frequent Fragments on a Shared-Memory Multiprocessor
– Results and Java-Obstacles –

Thorsten Meinl, Ingrid Fischer, and Michael Philippsen
University of Erlangen-Nuremberg
Computer Science Department 2

Martensstr. 3, 91058 Erlangen, Germany
{meinl,idfische,philippsen}@cs.fau.de

Abstract

Although in the last years about a dozen so-
phisticated algorithms for mining frequent sub-
graphs have been proposed, it still takes too long
to search big databases with 100,000 graphs and
more. Even the currently fastest algorithms like
gSpan, FFSM, Gaston, or MoFa need hours to
complete their tasks.
This paper presents a thread-based parallel ver-
sion of MoFa, [5] that achieves a speedup
of about 7 on a shared-memory SMP system
equipped with 12 processors. We discuss the de-
sign space of the parallelization, the results, the
obstacles, that are caused by the irregular search
space and by the current state of Java technol-
ogy, and reason about ways to achieve even bet-
ter speedups in future.

1 Introduction
Mining of frequent subgraphs in graph databases is an im-
portant challenge, especially in its most important appli-
cation area “chemoinformatics” where frequent molecu-
lar fragments help finding new drugs. Subgraph mining
is more challenging than traditional data mining, since in-
stead of bit vectors (i.e., frequent itemsets) arbitrary graph
structures must be generated and matched. Since graph iso-
morphism testing is NP-complete [18], fragment miners are
exponential in runtime and/or memory consumption. For a
general overview see [12].

The naive fragment miner starts from the empty graph
and recursively generates all possible refinements/fragment
extensions by adding edges and nodes to already generated
fragments. For each new possible fragment, it then per-
forms a subgraph isomorphism test conceptually on each
of the graphs in the graph database to determine, if that
fragment appears frequently (i.e., if it has enough support).
Since a new refinement can only appear in those graphs,
that already hold the original fragment, the miner keeps ap-
pearance lists to restrict isomorphism testing to the graphs
in these lists.

All possible graph fragments of a graph database form
a lattice, see Fig. 1 for an example database with just one
graph. The empty graph ∗ is given at the top, the final graph
at the bottom of the picture. During the search this lattice
will be pruned at infrequent fragments since their refine-
ments will appear even more rarely. In the last few years
sophisticated algorithms to solve this problem were pre-
sented [5; 28; 15; 22; 17], but still, the process of finding

*
N O C

N C C CO CO C

N CC C CCC CO C COO C O

CCN

C OC CNOC CN

OO C

C
O C C C

O C C C

O OC

C

C

C CN

C

OC CN

C

O O OC

C

N

N C C

C

O

O

Figure 1: The complete fragment lattice of the molecule
shown at the bottom.

frequent fragments is (and is likely to remain) too time-
consuming.

Although it may seem to be an obvious approach to split
the problem into p parts, to solve the subproblems on p par-
allel processors, and to then hope for a speedup of p, only
little work on parallel or distributed algorithms has been
done in the area of frequent subgraph mining so far. The
reason is that the problem is hard to parallelize. One issue
is the highly irregular search space that requires sophisti-
cated load balancing techniques. Especially for molecular
databases, certain frequent fragments are bigger and have a
higher support than others. Any search space partitioning
(e.g., database partitioning) among the processors that does
not take this effect into account must result in some proces-
sors that finish their work long before others whose part of
the search space is more complex. Another issue is that the
proper granularity of parallelization is far from obvious:
On the one hand, almost each loop in the algorithm could
be parallelized in a fine-granular way (which is common
for e.g. parallel scientific Fortran programs); on the other
hand, several coarse-grain “worker” threads could explore
the search space. Finally, it is not straightforward to design
optimal data structures since the performance implications
are much more severe than for sequential algorithms. Ei-
ther parallel activities that access shared data must be prop-
erly synchronized properly or replicated copies of the data
must be kept in a consistent state. In both cases, runtime



costs must be considered. The potential runtime advantage
of the latter approach is paid for by increased memory con-
sumption.

Starting from the well-known sequential MoFa algo-
rithm [5] (that is summarized in section 3) this paper
derives and discusses a parallel algorithm for a shared-
memory multiprocessor system in section 4. The state of
currently available Java implementations on multiproces-
sors cause certain obstacle in the implementation; these are
discussed in section 5.1. The performance measurements
given in section 5.2 provides insights in ways to further
improve the parallel algorithm.

2 Related Work
While general parallel depth first search strategies are well-
known and quite easy to implement for many standard
problems, for an introduction see for example [16], data
or fragment mining requires special care.

The area of parallel or distributed data mining has been
a hot topic for years. Related algorithms for parallel sub-
graph mining stem from the area of association rule min-
ing. Just in the way subgraph miners search for frequent
graph fragments, association rule miner search for sets
of items that occur frequently in the database (e.g. mar-
ket basket analysis). For the two well-known association
rule miners Apriori [2] and Eclat [31] parallelized version
have been developed, e.g. [3; 30; 29]. In contrast to our
approach, these authors target cluster-like supercomputers
that are interconnected by fast networks. Hence, these pa-
pers mainly deal with the different ways to distribute the
work so that communication cost can be reduced. One
extreme approach is to partition the database among the
threads but to let all threads work on a single shared lat-
tice. That approach is adopted in [8] for parallelizing the
oldest graph mining algorithm Subdue. In the other ex-
treme, the database is replicated, i.e., each thread has its
own copy thereof while working on a private search lat-
tice. More sophisticated methods to overcome the defi-
ciencies of the early algorithms were presented in [13;
23]. In [9] the authors discuss the problems of data skew-
ness and load balancing of association rule mining on a
shared-nothing cluster. However, since the cost of network
communication is not predominantly important on shared-
memory machines, this issue need not be discussed thor-
oughly here. The only parallel/distributed implementation
of MoFa is [11]. There the authors implemented a dis-
tributed version of the MoFa algorithm. The intended plat-
form is a cluster of independent computers.

It seems to be more significant for this paper to focus on
the two main difference between data mining and graph
fragment mining, i.e., first, that the isomorphism test is
much more expensive than the bit vector operations, and
second, that fragment mining requires a lot more memory.

3 Finding frequent fragments with MoFa
Like many other subgraph miners, the MoFa-algorithm
for finding frequent fragments in molecular databases [5]
searches the lattice of all fragments in a depth-first way.
New candidate fragments are created by extending existing
frequent structures by an edge and a node (or only an edge
if cycles are closed). In order to speed up candidate gen-
eration and frequency computation (i.e. counting the num-
ber of molecules a fragment occurs in) so-called embedding
lists are used. An embedding is a map from the nodes and

edges of a fragment to the corresponding nodes and edges
in the molecules. An embedding list holds all possible em-
beddings into all molecules of the database. New fragments
can easily be generated by looking at the surroundings of
an embedded fragment in the molecule. In order to find out
the number of supported molecules the embeddings list has
to be scanned for all distinct molecules. Since this can be
done in linear time, the use of embeddings greatly improves
the overall performance. However, the obvious drawback
is the huge memory requirement for storing all the embed-
dings. Especially for small fragments or fragments with
symmetries, the number of embeddings can easily reach
millions, even on small databases of a few thousand com-
pounds.

As can be seen in Fig. 1, many structures can be reached
following different paths through the lattice. This is unde-
sirable, because theses duplicates have to be filtered out by
expensive graph isomorphism tests. In order to reduce the
number of these checks, MoFa applies the following set of
pruning rules:
• Frequency based pruning. If a fragment is found

during the search that does not have enough support in
the database this branch of the search tree can be cut,
because all other bigger fragments must be infrequent
too. This is also known as the frequency antimonotone
constraint from association rule mining [2; 31].

• Structural pruning. MoFa numbers the nodes in the
structures according to the time when they are added
to it. After extending a subgraph from node n, there
are three different types of nodes in the subgraph:
Nodes being added to the fragment before n may not
be extended any more. Nodes being added to the frag-
ment after n are freely extendable. The node n itself
has only restricted extensibility, i.e., not all possible
edge-node pairs may be added to it in the next step.
Given a total order on node and edge labels (atoms are
sorted by their numbers in the periodic system, edges
are sorted by bond types), only those extensions are
permitted, that are greater (with respect to that order)
than the last extension.

• Finally, equivalent sibling pruning [6] removes chil-
dren of a fragment that represent the same fragment as
one of its siblings but that were extended at an atom
with a higher index.

Of course, the pruning rules cannot avoid all duplicates.
The remaining ones still need to be filtered out by checking
for graph isomorphism in the already discovered structures.

When starting to address the parallel fragment mining
problem, we had two main reasons to start from MoFa
instead of starting from one of the other fast sequential
fragment miners. First the basic algorithm of MoFa is
much simpler than others. Second, several extensions to
MoFa’s base algorithm have been published, e.g., special
handling of rings [14] to speed up the search even further,
or the search for fragments with carbon chains of variable
lengths [19]. The question, when to do the filtering will
open up an interesting tradeoff in the parallel algorithm dis-
cussed next.

4 Parallelizing the search
Before parallelizing a sequential algorithm, one has the
fundamental choice to either target a loosely coupled grid
or cluster of several computers (distributed or grid com-
puting) or to address a shared-memory multiprocessor ma-



chine (SMP, symmetric multiprocessing). While in gen-
eral, SMP machines are much more expensive than clus-
ters of workstations, the obvious advantage is their global
shared memory that makes them not only easier to program
but also often results in faster memory access, both in terms
of latency and throughput. Therefore, in this paper we tar-
get the latter architecture. We present an implementation in
Java mainly because of Java’s built-in support for threads
and synchronization that neatly fit this architecture.

Another fundamental decision is the granularity of par-
allelization. Because of almost negligible communication
costs on SMP machines, one could try to parallelize as
many parts of the algorithm as possible, e.g. like in par-
allel Fortran programs almost every loop with independent
operations could be parallelized. However, because Java
does not offer parallel loops but “only” threads that have to
be implemented explicitly, this would render the code ut-
terly complex and unreadable. A coarser granularity would
for example parallelize the search for extensions and/or
the filtering of duplicates (the graph isomorphism tests).
This approach would however require many synchroniza-
tion points because all threads are working on one (or sev-
eral) global data structures. We favored a third alternative
discussed next, namely to use a set of more or less indepen-
dent workers.

4.1 General setup
For our implementation, we used a worker approach in
which as many threads are started as there are CPUs in the
machine. Each thread is a fully functional copy of MoFa
with its own embedding lists, frequent fragment set, and
stack of unprocessed nodes. This keeps the number of syn-
chronization barriers at a minimum level. The only global
data structures are the graphs of the database (which for-
tunately are read-only), a list of idle workers, and a global
fragment set with which the workers merge their local sets.
The general setup is depicted in Fig. 2. The search starts

Worker 1

C

C

O

O
N

C

C
C

O

O

Worker 2

C

C

O

O
N

C

C
C

O

O

C

C

O

O
N

C

C
C

O

O

Worker n

C

C

O

O
N

C

C
C

O

O

…

Worker

3

Worker

4

S
ta

ck

S
ta

ck

S
ta

ckLocal frequent
fragments

Local frequent
fragments

Global frequent
fragments

Local frequent
fragments

Idle workers

Figure 2: Key components of the parallel search

with the first worker searching for all frequent nodes and
embedding them into all molecules of the database. Al-
though the other workers are idle during that time, there is
no need for the added complexity caused by a paralleliza-
tion of this initial step, since it normally only takes a negli-
gibly tiny fraction of the overall runtime.

Each one-node fragment forms a node in the search tree
that consists of the fragment itself and its embedding list.
They are all pushed onto the thread’s local stack. Now,
before the (next) call to the recursive search function, the
running worker inspects the list of idle workers. If there
is a waiting worker it is removed from the list. All list
operations have to be synchronized among all threads since

otherwise two running workers might remove the same idle
thread.1

The interaction between the running worker and the idle
worker can be achieved in two general ways. The easier-to-
implement approach is to have the running worker donate
part of its work to the idle worker by first splitting its stack
of unprocessed search tree nodes into two halves and by
then copying one part into the idle worker’s stack. Alterna-
tively, the idle worker can be woken up and actively steal
work from the running worker. Work donation is much
simpler to implement, since there is only one active thread.
Therefore, no complex locking is required. In section 5.2
we will discuss the performance implications of our choice
to use the donation approach.

This process is now repeated in every worker. Once a
worker’s stack becomes empty, it puts itself into the list of
idle workers and waits for another worker to donate parts
of its stack.

4.2 Load balancing
The straightforward way to implement work donation is to
cut the stack in the middle. However, this creates a severe
work imbalance among the two workers: The nodes on the
bottom of the stack contain small fragments with long em-
bedding lists and thus the number of children will be huge.
On the other side, the nodes on the top of the stack consist
of bigger fragments with shorter embedding lists and will
therefore allow fewer extensions.

A perfect stack splitting would result in identical run-
times for both workers. Unfortunately, since there is no
known cost function to calculate the precise runtimes re-
quired to process an unknown subgraph for each node on
the stack, some heuristics need to be applied.

While it will be future work to conceive and quantita-
tively compare various stack splitting heuristics with re-
spect to their overall runtime effects, a not-so-bad heuris-
tics is alternation-splitting, i.e., to take every other element
from the stack and transfer it to the idle worker’s stack (see
Fig. 3). Please note that because of this stack-splitting strat-

Worker 1

C

C

O

O
N

C

C
C

O

O

Worker 2

C

C

O

O
N

C

C
C

O

O

Frequent
fragments

Frequent
fragments

Worker

2

Figure 3: Alternation-splitting of the stack for better load
balancing

egy the stack and recursion provided by the programming
language cannot be used because entries in the stack except
the top-most cannot be accessed. Thus an explicit stack and
recursive search had to be implemented.

4.3 Duplicate detection
As mentioned at the end of section 3, the locally applica-
ble pruning rules cannot totally prevent the generation of

1It is convenient that the Java library provides a suitable list
class with synchronized accessor methods.



duplicates.
If the workers would use a single shared fragment set,

after generation of a fragment, it could immediately be
checked whether that fragment has been generated before,
maybe by another worker. At least conceptually, it would
be necessary to lock the lattice whenever a worker mod-
ifies it so that no other worker can interfere. This would
effectively turn the parallel workers into a sequentially pro-
cessed sequence of set updates. Hence, all parallelism
would be lost. There are of course better ways to do it:
Instead of locking the whole set, locks of finer granularity
can be used that would allow concurrent update operations
on distinct areas of the set. The fact that the first step of du-
plicate detection is implemented by means of a hash table,
leads to an approach that locks individual bins.

Since locking of the whole set is too inefficient and since
we considered a fine-grained locking mechanisms to be
too error-prone, in the current implementation each worker
keeps its own local result set of frequent fragments. Of
course, by keeping these sets separate, they might contain
undetected duplicates. However, the increase of memory
consumption by a factor of p turns out to be a significant
problem, when p workers store fragments with their em-
bedding lists redundantly. On the other hand, merging local
result sets saves memory but causes a slowdown because of
synchronization costs and – depending on the granularity of
locks – by various degrees of sequentialization.

Our experiments show, that if only a small number (up to
about 1,000) frequent fragments appeared in the data base,
it is sufficient to let all the workers process until completion
and then merge the local result sets in a final step. After all
workers have finished their search, the master collects the
structures in the local sets and merges them into the global
set. Merging requires duplicate detection by costly isomor-
phism tests. (Instead of merging the local result sets one
after the other sequentially, for large numbers of workers it
might be beneficial to perform the merging in a a binary-
tree based merging reduction. This has not been imple-
mented yet, because the available SMP machine does not
have enough CPUs to render this a profitable endeavor.)

In contrast, when searching with very low support val-
ues, several tens of thousand fragments are found. Among
those where so many duplicates consuming so much mem-
ory that a final merge phase at the end was insufficient. In
fact, since almost every worker had almost all fragments in
its local result set, with p workers up to p times the heap
space has been consumed that would have been necessary
with a shared global set.

To circumvent the complexity of a parallel merging with
fine-granularity locks, we have solved this problem in the
following way: A maximum size for the local fragment
sets is defined. If any of the workers reaches this thresh-
old it tries to merge its local set with the global set. By
this, most of the duplicates are already filtered out during
the search. However, there is another issue with this ap-
proach. The merging of the sets takes quite some time, as
many expensive graph isomorphism tests have to be made.
Thus, if one thread is merging and another thread mean-
while reaches the limit, it is blocked because the access to
the global set must be serialized. This is of course unde-
sirable and therefore we chooses a lazy merging by using
some kind of try-lock. The second thread first checks if
the lock for the global fragment set is free and only in this
case it acquires it. Otherwise it continues with the search
and does not try to get the lock within a random number of

iterations. This is important because with a very high prob-
ability the lock will be still in use the next time the thread
tries to merge its local fragment set. As a side effect of this
strategy the merging is implicitly done in parallel. Only af-
ter all workers have finished the remaining fragments in the
local sets have to be added to the global set.

5 Experimental evaluation
We evaluated the performance of our parallel implemen-
tation on a cc-NUMA SGI Altix 3700 [25] equipped with
28 Itanium-2 (1.3 GHz) processors with a total of 112 GB
RAM. The IA64-version of IBM’s Java Development Kit
1.4.2 had to be used since Sun’s JDK 1.4.2 was instable
and frequently produced core-dumps. At the time of writ-
ing, the JDK 1.5 was not yet available for IA-64. The use
of a 64-bit JVM is crucial because otherwise only about 3.5
GB of memory can be used. For all performance measure-
ments the available heap has been set to 24GB.

Unfortunately, we could not get exclusive access to the
Altix. Hence it was impossible to experiment with more
than 12 CPUs. Moreover, we had to restrict the number
of parallel garbage collector threads to 4. Otherwise, the
JVM would have created 28 GC threads that overloaded
the CPUs available to us.

5.1 Obstacles of current Java technology
The most severe difficulty when implementing the parallel
MoFa in Java was that the Java virtual machine available
to us has serialized all allocation and deallocation opera-
tions on the global heap. During the search MoFa allocates
many small and short-living objects: Each found extension
is represented as an object, each embedding consists of sev-
eral objects, and each non-primitive data structure is an ob-
ject as well. All these objects are allocated on the one and
only global heap. Similarly, the concurrent garbage col-
lector threads work on the same heap. The problem with
current JVMs is that all heap modification operations are
synchronized internally by the virtual machine so that only
one modification is allowed at any given time. This led to
situations where most of the workers were blocked waiting
to get a chance to allocate an object on the global heap.2

To deal with this Java problem on multiprocessor ma-
chines, in version 1.4 so-called thread-local allocation
buffers (TLAB) [20; 27] or thread-local heaps (TLH) [10;
24] have been introduced. The idea is to assign a private
area of the heap to each thread that it can then access with-
out acquiring a global heap lock. Only when a TLAB is
full the thread has to access the global heap again. While
TLABs might be a good idea for some applications, they
are not suitable for parallel MoFa. The problem is that the-
ses buffers are rather small in the standard settings (only
some KB) and are filled up very quickly by MoFa. Even
a manual increase of the buffer size did not improve the
performance by much.

To solve this problem, each of the workers in our imple-
mentation uses a private object pool for the most frequently
used objects, which are extensions and embeddings. In-
stead of directly creating an object by means of the new-
operator, a request to the object pool is made. If the pool
contains an unused object a reference to it is returned. If
the pool is empty, it creates a new object. When an objects
is not needed any more it is put back into the pool for fu-
ture reuse. Although Sun officially discourages the use of

2We have verified this by means of the status dump function-
ality available in the IBM JVM implementation.



object pools [26] since future Java compilers will apply es-
cape analysis [7] to allocate objects on a thread’s runtime
stack instead of the global heap whenever possible, at the
time of writing only with private object pools we could see
speedups at all – without object pools adding more workers
even slowed down the total runtime.

Other than that, we had to implement the try-lock func-
tionality by hand, since the JDK 1.4.x does not provide any
library support for it. Such library support is not only avail-
able in the JDK 1.5, but in addition, the implementation
makes use of hardware support for efficient non-blocking
synchronization. Although our manual implementation is
less efficient, we did not notice the difference in the bench-
marks.

5.2 Performance measurements
Let us first study the performance of the parallel MoFa
when searching for fragments that occur in at least 700
of all molecules (2% support) of the publicly available
NCI Cancer (H23) dataset that consists of about 35,000
molecules [21]. The results for up to 12 workers are shown
in Fig. 4 (the runtime is shown on the left x-axis, the
speedup on the right). The following observations can be
1 4220,68 4218,48 2,2 0,9 0,02%

2 3039,96 3036,17 1,39 3,79 314,15 10,35%

3 2431,89 2427,57 1,74 4,32 500,53 20,62%

4 1556,39 1552,41 2,72 3,99 620,11 39,95%

5 1433,61 1429,02 2,95 4,59 542,39 37,96%

6 1566,53 1560,45 2,7 6,08 980,11 62,81%

7 1409,55 1403,75 3,01 5,8 878,23 62,56%

8 1122,25 1116,69 3,78 5,56 890,2 79,72%

9 1188,07 1169,15 3,61 18,92 1208,16 103,34%

10 1015,57 1009,46 4,18 6,11 1326,93 131,45%

11 1123,41 1115,61 3,78 7,8 1694,7 151,91%

12 1080,91 1074,74 3,93 6,17 1678,43 156,17%

4500

Laufzeiten, H23 auf Altix, Minimalsupport 700
1 2 3 4 5 6 7 8 9 10 11 12

500

1500

2500

3500

4500

5500

6500

1

2

3

4

5

6

7

8

9

10

11

12

H23 on Altix, 700 molecules minimum support

Total time

Speedup

Ideal speedup

threads

ti
m
e
 i
n
 s
e
c
o
n
d
s

Figure 4: Runtime and speedup on the H23 dataset

made: First, on 12 CPUs the parallel version achieved a re-
spectable speedup of about 7. Second, the speedup scales
more or less linearly. The fact the the line is not smooth
is mainly caused by our non-exclusive access to the Altix
machine. When other users were working heavily our ex-
periments slowed down a bit. However, there is room for
improvement. Only the initial parsing of the molecules and
the merging of thread local results are inherently sequen-
tial. These two sequential phases are very short as they
take only about 5 of 958 seconds. The rest of the algorithm
can, in principle, be done in parallel, except for synchro-
nization requirements. When the cost of synchronization
is ignored, Amdahl’s law [4] predicts a potential speedup3

of about 11 on 12 CPUs. A closer look at the benchmark
results showed that too many workers were idle too often.
The lack of work at the beginning has already been men-
tioned above. Since molecular datasets contain only a few
frequent atom types (mainly carbon, nitrogen, oxygen, sul-
fur and sometimes chloron) the search starts with the em-
beddings of these four or five nodes into the whole dataset.
Consequently, more than half of the workers are idle at the

3According to Amdahl, the maximum achievable speedup is
bounded by the amount of sequential activities during the execu-
tion: smax = 1

F+(1−F )/N
. F is the percentage of the algorithm

that cannot be parallelized, 1 − F is the parallelizable fraction
and N is the number of processors. Thus if N tends to infinity
the maximum achievable speedup converges to 1

F
.

beginning. Only after extensions for the single-node frag-
ments have been found, enough work will be available for
all workers. Additionally during the search workers runs
out of work. With the donation approach, such a worker
has to wait until another worker finishes the extension of a
fragment and can donate parts of its stack to the idle worker.
Fig. 5 shows the sum of these idle times over all threads. It

1000

1500

2000

2500

3000

3500

4000
Gesamtlaufzeit

Wartezeiten (für alle 
Threads)

1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

0%

5%

10%

15%

20%

25%

30%

35%

40%

H23 on Altix, 700 molecules minimum support

Total time

Idle time

Idle time/total 
time

threads

ti
m
e
 i
n
 s
e
c
o
n
d
s

Figure 5: Idle times on the H23 dataset

can be clearly seen that the idle times rise steeply as more
and more parallel workers are used. But keep in mind that
this is the sum over all the idle times of all workers. With
twelve threads almost forty percent of the total time could
be saved if the idle times could have been avoided. This is
a strong indication, that (a) better load balancing heuristics
are needed that avoid workers becoming idle in the first
place and (b) that the additional complexity of the work
stealing approach might be worthwhile. We will further
explore these issues in future.

With respect to Java’s performance, it might be a reason-
able idea to just wait a bit. From Java 1.1.5 to current Java
1.5 the SciMark benchmark [1] has seen an improvement
by about a factor of 400 over the last 5 years. Since multi-
core platforms will make their way into the mainstream,
it is very likely that JVM technology for shared-memory
architectures will improve significantly in the near future.

6 Conclusions and Outlook
In this paper we presented a parallel implementation of the
MoFa-algorithm for finding frequent fragments in graph
databases. We used several independent workers that were
represented by Java-threads. The results show that this ap-
proach scales linearly at least up to 12 parallel threads,
where a speedup of 7 can be achieved. With current Java
technology on shared-memory multiprocessors, significant
workarounds are required to reach acceptable performance
at all. However, the main performance problems are caused
by too many workers being idle too often. Better load bal-
ancing is needed and it can be expected that work stealing
will perform better than the simpler donation approach. In
future, we will also study whether other algorithms for fre-
quent subgraph mining that use less memory (like gSpan)
might perform better.

References
[1] SciMark 2.0. http://math.nist.gov/scimark2/.
[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami.

Mining Association Rules between Sets of Items in Large
Databases. In Peter Buneman and Sushil Jajodia, editors,
Proc. 1993 ACM SIGMOD Int’l Conf. on Management of
Data, pages 207–216, Washington, D.C., USA, 1993. ACM
Press.



[3] Rakesh Agrawal and John C. Shafer. Parallel Mining of
Association Rules. IEEE Trans. on Knowledge And Data
Engineering, 8(6):962–969, December 1996.

[4] Gene Amdahl. Validity of the single processor approach
to achieving large-scale computing capabilities. In AFIPS
Conference Proceedings, pages 483–485, 1967.

[5] Christian Borgelt and Michael R. Berthold. Mining
Molecular Fragments: Finding Relevant Substructures of
Molecules. In Proc. IEEE Int’l Conf. on Data Mining
ICDM, pages 51–58, Maebashi City, Japan, November
2002.

[6] Christian Borgelt, Thorsten Meinl, and Michael R. Berthold.
Advanced Pruning Strategies to Speed Up Mining Closed
Molecular Fragments. In Wil Thissen, Peter Wieringa, Maja
Pantic, and Marcel Ludema, editors, Proc. of the 2004 IEEE
Conf. on Systems, Man and Cybernetics, SMC 2004, pages
4565 – 4570, Den Haag, The Netherlands, October 2004.

[7] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vu-
granam C. Sreedhar, and Sam Midkiff. Escape analysis
for java. In OOPSLA ’99: Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 1–19, New York,
NY, USA, 1999. ACM Press.

[8] D. J. Cook, L. B. Holder, G. Galal, and R. Maglothin.
Approaches to parallel graph-based knowledge discovery.
Journal of Parallel and Distributed Computing, 61(3):427–
446, 2001.

[9] Yongqiao Xiao David W. Cheung, Sau D. Lee. Effect of
data skewness and workload balance in parallel data min-
ing. IEEE Transaction on Knowledge and Data Engineer-
ing, 14(3):498–514, May/June 2002.

[10] Tamar Domani, Gal Goldstein, Elliot K. Kolodner, Ethan
Lewis, Erez Petrank, and Dafna Sheinwald. Thread-local
heaps for Java. SIGPLAN Not., 38(2 supplement):76–87,
February 2003.

[11] Giuseppe Di Fatta and Michael R. Berthold. Distributed
Mining of Molecular Fragments. In Stat Matwin, editor,
IEEE Int’l Conf. on Data Mining, Workshop on Data Mining
and the Grid, pages 1–9, Edinburgh, UK, November 2004.

[12] Ingrid Fischer and Thorsten Meinl. Subgraph Mining. In
J. Wang, editor, Encyclopedia of Data Warehousing and
Mining, pages 1059–1063. Idea Group Reference, Hershey,
PA, USA, July 2005.

[13] Eui-Hong Han, George Karypis, and Vipin Kumar. Scalable
Parallel Data Mining for Association Rules. In Proc. 1997
ACM SIGMOD Int’l Conf. on Management of Data, pages
277–288, Tucson, AZ, USA, May 1997.

[14] Heiko Hofer, Christian Borgelt, and Michael R. Berthold.
Large Scale Mining of Molecular Fragments with Wild-
cards. In Advances in Intelligent Data Analysis, number
2810 in Lecture Notes in Computer Science, pages 380–389.
Springer, 2003.

[15] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of fre-
quent subgraphs in the presence of isomorphism. In Proc. of
the 3rd IEEE Intl. Conf. on Data Mining ICDM, pages 549–
552, Melbourne, FL, USA, November 2003. IEEE Press.

[16] Vipin Kumar and V. Nageshwara Rao. Parallel Depth–First
Search. Int’l J. of Parallel Programming, 16(6):501–519,
December 1987.

[17] Michihiro Kuramochi and George Karypis. An efficient al-
gorithm for discovering frequent subgraphs. IEEE Trans.
on Knowledge and Data Engineering, 16(9):1038–1051,
September 2004.

[18] Brendan McKay. Practical Graph Isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[19] Thorsten Meinl, Christian Borgelt, and Michael R. Berthold.
Mining Fragments with Fuzzy Chains in Molecular
Databases. In Joost N. Kok and Takashi Washio, editors,
Proc. of the Workshop W7 on Mining Graphs, Trees and Se-
quences (MGTS ’04), pages 49–60, Pisa, Italy, September
2004.

[20] Joseph D. Mocker. A collection of JVM options.
http://blogs.sun.com/roller/resources/watt/jvm-options-
list.html, May 2005.

[21] NCI. National Cancer Institute, DTP AIDS Antivi-
ral Screen. http://dtp.nci.nih.gov/docs/aids/aids data.html,
March 1999.

[22] Siegfried Nijssen and Joost N. Kok. A Quickstart in
Frequent Structure Mining can Make a Difference:. In
Ronny Kohavi, Johannes Gehrke, William DuMouchel, and
Joydeep Gosh, editors, Proc. of the 10th ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining
(KDD2004), pages 647–652, New York, NY, USA, August
2004. ACM Press.

[23] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. Efficient
parallel data mining for association rules. In CIKM ’95:
Proc. of the fourth international conference on Information
and knowledge management, pages 31–36, New York, NY,
USA, 1995. ACM Press.

[24] K. Kuiper R. Dimpsey, R. Arora. Java server performance:
A case study of building efficient, scalable JVMs. IBM SYS-
TEMS JOURNAL, 39(1):151–175, 2000.

[25] Silicon Graphics, Inc. SGI Altix 3000.
http://www.sgi.com/products/servers/altix/index.html,
July 2005.

[26] Sun Microsystems, Inc. Frequently asked
questions about the Java HotSpot VM.
http://java.sun.com/docs/hotspot/PerformanceFAQ.html#15,
July 2005.

[27] Sun Microsystems, Inc. Threading.
http://java.sun.com/docs/hotspot/threads/threads.html,
July 2005.

[28] Xifeng Yan and Jiawei Han. gSpan: Graph–Based Substruc-
ture Pattern Mining. In Proc. IEEE Int’l Conf. on Data Min-
ing ICDM, pages 721–723, Maebashi City, Japan, Novem-
ber 2002.

[29] Mohammed J. Zaki. Parallel and Distributed Association
Mining: A Survey. IEEE Concurrency, 7(4):14–25, Decem-
ber 1999.

[30] Mohammed J. Zaki, Srinivasan Parthasarathy, and Wei Li.
A Localized Algorithm for Parallel Association Mining. In
ACM Symp. Parallel Algorithms and Architectures, pages
321–330, Newport, RI, USA, June 1997.

[31] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori
Ogihara, and Wei Li. New Algorithms for Fast Discovery
of Association Rules. In David Heckerman, Heikki Man-
nila, Daryl Pregibon, Ramasamy Uthurusamy, and Menlo
Park, editors, Proc. of 3rd Int’l Conf. on Knowledge Discov-
ery and Data Mining, pages 283–296. AAAI Press, August
1997.


