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Abstract 2 Background

This section introduces the basics in order to understand
The redFIR2 project at the Fraunhofer Institute the aim of the paper.
for Integrated Circuits is a tool that provides op-
timised Finite Impulse Response structures. The 2.1 The redFIR2 system
generation process of these structures is based TheredFIR2 system(see Figure 1) is a web-based service
on a component library containing seven scalable  for generation of optimised FIR Structures. This genetic
basismodules. Depending on the chosen Inte-  algorithm-based system generates optimised FIR struscture

grated Circuit technology and on the 1/O word- with respect to the user-defined FIR structure- and configu-
lengths the resource utilisation of the modules ration data. These structures are then translated intada har
differ considerably. A fast, a priori estimation ware description language as the input for the synthesis and

of resources during the system-level design is of implementation processes.
crucial importance for the generation of resource
optimised (adjusted to an Integrated Circuit tech-
nology) Intellectual Property cores. The objec-
tive of this work is to develop a flexible, adaptive
resource estimation methodology.
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1 Introduction

For automated design of integrated circuits it is essen-
tial to estimate the resource usage of Intellectual Prgpert
(IP) cores during the system-level design. In the redFIR2
project at the Fraunhofer Institute for Integrated Cirguit
the automated generation of Finite Impulse Response (FIR)
structure IP cores is based on a library containing scalable
basismodules. Depending on the chosen Integrated Circuit
(IC) technology (diverse Field-Programmable Gate Array

and Application Specific Integrated Circuit technologies) L
and on the I/O word lengths the resource usage of the mod-

ules differ considerably. Figure 1: The redFIR2 system

A fast estimation of the necessary IC resources is, how-

ever, an important bgsw principle in order to be able to 2 Characteristics of the desired framework

generate optimal (adjusted to a chosen IC technology) IA read ioned. th ) f FIR .

cores. In the scientific field several methods exist to pref*S @lréady mentioned, the generation ot structures Is
based on user-defined information: besides filter config-

dict the utilisation of individual IC resources, like roody, . - -
ong Aration the description of the target technology and opti-

area and power consumption. Nevertheless, their estim ; idel q 4 weigh included
tion methods are based on dedicated algorithms for certajff!!sation guidelines (qrea and speed weig ts) are included,
t0o0. These optimisation guidelines provide a balance for

technologies (that is, arbitrarily chosen by the develaber o U L9 =L ;
the method, for example Xilinx XC4000E [Enzleretal, 1€ multi-objective optimisation in the redFIR2 engine{ bu
h-they are not able to indicate measures of individual re-

200d), and they could only be adapted to different tec sources. The web interface should be extended with the

nologies with great effort ossibility of giving hard constraints regarding to theikva
This paper presents our approach, a flexible, adaptive eg y orgiving g 9

L e . .~ ~Able resources including the following limitations:

timation of resource usage. This is a nonlinear optimisa- ;

tion problem as our aim is to determine the (local) extreme ® Aréa: ~ Unoccupied surface and technology-
of nonlinear functions of many unknowns (number, type ~ dependents resources, like the available embedded
and word-length of modules). Our optimisation process ~ Multipliers, shift registers, etc.

is based on neural networks trained by resource measurese Speed:The circuitry must be able to run on a specified
yielded from automated design flows. frequency (if it is reachable anyway).

2P PRI MMMYZST1Y

HDL Description
Simulation Model




e Power consumption: the circuitry should not con- Field-Programmable Gate Arrays
sume more power as indicated by the user. A typical FPGA[Oldfield and Dorf, 1995; Wannemacher,

In order to be able to fulfil these constraints the resourcelggg dlevige t():loniistsCT‘Ba prefabricgte(;j S”ay Off cong(ig-
usage of FIR structures must be predicted during the geH’-Ira e logic blocks ( s) surrounded by configurable

eration process. The task of this work is to provide the redfouting. Each logic block consists of resources which can
FIR2 engine with estimations of the resources mentione®® configured to define discrete logic, registers, mathemat-

above not only for FIR structures, but for components (add',Cal functions and even Random Access Memory (RAM).

shift, etc.), too A periphery of configurable pads (I/O ports) provides con-
If ’no e.s’timaiions are made we could not know whethe€ction to other electronic devices. Figure 2 illustrates t
a specific FIR structure meets the requirements until iclassical FPGA architecture. The function of all of these

is generated, synthesised and implemented. After imple(_:onﬂgurable resources can be defined at any time during

mentation the necessary information about the resource ug'e operation of the device to form a large logic circuit.

age are at hand and they can be compared to the requir onfigurable logic and routing can be formed together to

ments. In the case of insufficiency, the whole filter hasEnsure the exact function of a digital processing algorithm

to be redesigned, resynthesised and reimplemented (desi@"f"a"el and pipelined data ﬂO.WS are pqssmle, prowdyng an

respin). This results in longer computation times and super xcellent resource for execution of a signal processing al-

fluous use of Electronic Design Automation (EDA) tools. 9°Mthm.

These tools are rather expensive and have limited licenceResources of Integrated Circuits

which infers that we might prohibit the other users from In general resources are the collectivity of the availabte f

using them. Another issue is that while an estimation coulctilities solving a certain problem. In case of integratee ci

be provided in matters of seconds, the implementation o€uits we focused on the following resources of interest:

the FIR structures can take hours or even days, depending; = The termarea reflects the size of the circuitry but it

on their complexity. ) ) differs greatly on the chosen technology. The core ac-
To quickly summarise the requirements, this framework  tjve area, the periphery active area and interconnect

must provide a quick estimation of resources on the level  area determine the required chip size (measured in

of components and structures, too. Furthermore, it has to mm?2) for a standard-cell design. In the case of FP-

be able to learn new teChnOlOgieS without requiring great GAs area is measured in terms of number of |ogic

effqrt from the designer and it must improve itself by vali- blocks and embedded components (like multipliers,
dating the already generated, but not measured components memories, shift registers, etc.). Routing, powering
and FIR StrUCtUreS_ dUring the nlght-Shlft, when all the li- and the clock network are exc|uded, because they are
cences are accessible. pre-fabricated on the FPGA board.
2.3 Integrated Circuits Design 2. Rropagation delayis the @ime required for a digital

) ] i o signal to travel from the input(s) of a component to
In this section the basics of Cell-Based Application Spe- its output. Propagation delay is important because it

cific Integrated Circuits (CBICs) and Field-Programmable has a direct effect on the speed at which a digital de-
Gate Arrays (FPGAs) are introduced. Furthermore, the re-  yjice can operate. The frequercyneasured in Hertz
sources of integrated circuits will be described highiigdt (which means cycles per second) of an oscillator used
the differences between CBICs and FPGAs. to time or synchronise the operations of a circuitry.

Cell-Based Application Specific Integrated Circuits The higher the clock frequency, the faster the opera-

A CBIC [John and Smith, 199Tises predesigned, prechar- _tlotnh oft_the f'rlfu't't The pelrli)d of the CIIOCITéeT“’tdg .
acterized and pretested logic cells known as standard cells 1/Sersz ()I][Tk?e E;eerbe%g?p 9 € Sni C‘IX(r:\:n?ar\]xir:]Sume n-
(the generic standard cell layout is shown in Figure 2, q period = -

where the 1/0 ports surround the logic core containing the ~ ¢lock frequencyof the circuitry depends on the com-
rows of standard cells and their connections). The ASIC ~ Ponents’propagation delay and on their routing delay:
designer defines only the placement of the standard cells ~ the slowest componentand the wiring delays limit the
and the interconnect in a CBIC. The advantage of CBICs ~ maximum frequency.

(compared to other ASIC approaches) is that designers save3. Power consumptionis in general the energy over
time, money, and reduce risk by using standard-cell li- time (P = %) that is supplied to a system to main-
braries. tain its operation. Power consumption can be com-
puted byP = %CUQfeff, that means, that power is
proportional to the capacitanc€), operating voltage
(U) and effective frequencyf(s ). Reducing any one

of these variables reduces power dissipation. In the
case of integrated circuits there are two main compo-
nents of power consumption: dynamic and static con-
sumption:

i ] . e Static power is the minimum power required to

. . . . . G — = keep the device 'powered-up’ with the clock in-
I o ecs F R puts not switching and the 1/Os drawing minimal

. Routing .

T Configurable Logic Block (CLB) ] Switch matrix pOWe r.
_ _ e Dynamic power is the power consumed when
Figure 2: Generic standard cell layout of a CBIC and clas- both the 1/Os and logic cells are switching. Dy-
sical FPGA architecture namic power is a function of the switching fre-

guency and operating temperature.



2.4 Digital Filters ' LT Mode
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A main field of application of Digital Signal Processing L S ———
[Porat, 1997 (DSP) is digital filtering. The enormous par-

allel computation performance of digital filters made DSP @/\ |
so popular. Filtering is commonly used in two basic cases: —anj
signal separatiorandrestoration Separation is needed if P
either the signal must be separated from other received data Qe -

or it is presented together with some signals which are in- 7@;

significant in the given task. Signal restoration can be a
demand if the signal is damaged or distorted.

A digital filter transforms a discrete sequence of number
(the input) into another discrete sequence of numbers (th
output) having a modified frequency domain spectrum. i

In the field of DSP two alternatives are know: non- [N order to make the redFIR2 engine capable of gener-
recursive (Finite Impulse Response) and recursive (Jefinit ating optimal, resource-limited FIR structure IP-cores an
Impulse Response) filtefPorat, 1997, The extensions of estimator subengine must be developecj to support it with
FIR filters are the FIR structures which are widely used forfast and accurate models of resource utilisation of compo-
the design of digital filters as integrated circuits, esplgi nents and FIR structures, too (see Figure 3). The subengine

in case of DSP systems dealing with enormous data rategaintains a database storing resource measurements and,
and a high bandwidth in order to realize series expansioRased on these measurements it creates models of resource

in combination with hysteresis functions. utilisation on the component and FIR structure level.

As mentioned, the models must Eest and accurate
These requirements are opposite to each other, an improve-
3 Related work mentin one of them generally yields the deterioration of the
There already exist several approaches in the field of reother. Therefore a balance between them must be found.
source estimation. IfEnzleret al,, 2004 a high-level esti- Another desired feature of the estimator subengine is
mation methodology is proposed for area and performanceost-efficientself-improvement, therefore it has to work
estimation of FIR filters. This methodology is based onin two modes:

very subtle constants acquired by thorough analysis of the ¢ during the normal work-hours it provides the redFIR2

target technology as the investigation concerned only one  engine with estimations for both components and FIR
platform-FPGA. For all resources equations have been es-  structures.

tablished using observed constants. The pitfall of this ap-
proach is its inflexibility:

Figure 3: System overview: estimation of components and
tructures

e after work-hours it improves its estimation by auto-
matically measuring arbitrary components and FIR

o if the basic modules change, then some (or all) con-  structures. Similarly, during this period the changes
stants must be re-investigated, which needs a greatef-  in the component libraries and the introduction of
fort from the engineers. additional technologies are learnt and adapted. Our

system, being an adaptive framework, does not re-
quire great effort from its designers: they only have
to define the VHDL description of the additional,
technology-specific component libraries and imple-
_In[Bilavarnet al, 2004 a general performance estima- ment the design flows for the new technologies.
Lo e rEScriec Hore e hehaiour SeSC12” it moes of the comporens' esource usage no
a graph. For each node the functional units are determinegeas'onably accurate) FIR structure resource predlcapn .
: e made. For that reason the estimation process is split

and their resource usage is retrieved from a library, which . )
has the characterisation of these units. These resource U2 _t_mtot_two sr(]apara_terarts. ?)component and FIR structure
ages are combined afterwards, in case of area they are si >imation .(S lown In Figure ): : '

lv summed up without correc;tion Timing estimation is The basic idea is to characterise the components first,
Py P : 9 then based on these component models, characterise the

into account. This approach is not applicable today, in threhR structures afterwards reflecting a bottom-up model of

e The same holds for the programs used to implement
the filter on the FPGA: substituting some of these pro-
grams may result in significant changes.

deep submicron era, as interconnect has an enormous infigStimation.
ence on tming. 4.1 Component estimation

These two approfaches are not applicable for our IOrOb"I'he components are the basic building blocks of FIR struc-
lem, as they are neither dynamic nor reasonably accuratE%I

The system must react to the changes of the componen res, hence their resource usage characteristics give a

without requiring areat effort from endineers and it must ideline for the FIR structures’ prediction. The resource
q 99 g ; utilisation of components is influenced by many circum-
be capable of learning new technologies by itself.

stances:

. G . e It depends on the chosen technology (FPGA vs.
4 Learning of resource utilisation of Finite ASIC). Furthermore, the capability of the used EDA
Impulse Response Structures tools also affects it.

This section clarifies the communication between the e Different types of components have different resource
redFIR2 engine and the estimator subengine, how the mod-  utilisation characteristics (for example, a simple delay
els of resource estimations are provided and the schematic element utilises less resources like a complex multi-
design of the system. plier).



e The different I/O word-lengths and component- Another practical issue that the training vectors must be
specific parameters also make a considerable differalso analysed and modified on demand. An obvious exam-
ence. ple is that an adder never utilises an embedded multiplier

« Within a component, many different implementationsor a shift register, therefore these means of area should not
can be realized leading to discontinuities in the re-bfa estimated by the neural network and therefqre the.s‘? at-

tributes must be removed from the corresponding training

source utilisation characteristic. For example, one

could use a simple adder implementation up to a cerexamples. In some cases the results of a neural network

tain 1/0 word-length and then a more sophisticatedhave to be post-processed also. In case of area prediction

one. These implementations utilise the resources dif—Of FPS.AS ttrr:e r:eﬁ,UI:,S must tbe :counded, ?S ho component
ferently, therefore there will be a break in the resource-@n Ulllise the hait of a register, for example.

usage characteristic of the component. Component measurement

The problem is function approximation with finite num- In order to provide our learning methods with sufficient
ber of discontinuities. After investigating several Maghi  training data, training structures must be generated looth f
Learning algorithms we decided to use neural networksComponents and FIR structures.

The structure of the neural networks is built up using: The generation of component structures is easy as their
VHDL [Rajan, 1999 sources are available in the compo-

e two hidden layers containing sigmoid units with the nent |iprary. For each structure a VHDL description is
assumption that the extra hidden layer should be capg;enerated by instantiating the corresponding component
ble of extracting the features (behaviour) of the com-iih arbitrary parameters: 1/0 word-lengths and other,
ponent's resource usage characteristics which are NQbmponent-specific properties like the number of clock cy-
contained implicitly in the input representatié@y-  ¢les to delay (delay elements) and the shift value (shjiters
benko., 1988; Mitchell, 1997 That means we only have to know the necessary parameters

e an output layer built up by linear units of each component, but nothing about their functionality

Given the number of layers, the number of neurons inand hQW they are |mplemen.te(.:1. ‘o

each layer must be decided: ' Having the VHDL description, the training structure

: must be implemented by technology- and vendor-specific
e The number of neurons in the input layer is EDAtools. As the result of this implementation flow the re-

component-specific (for example, the input vector ofports of each stages are generated containing the necessary

an adder contains the word-length of the two operandinformation about the resource utilisation of the testestru

and the result) and therefore determined a priori. ture. These reports must be parsed to acquire this informa-
tion followed by storing them in the components’ database
to ensure their availability at training: the parameterhef
component serve as the inputs and their measured resource
usage constitute the outputs of the neural networks which

e From the estimators point of view there is only a are supposed to learn the dependency between them.
set of components and the estimator does only know

their names and parameters, but not their functionality4.2 ~System estimation

Therefore the number of neurons in the hidden layersthe problem is solved by using a bottom-up approach
vary for different components, some components areyased on our background knowledge of physics and FIR
more difficult to characterise than others, hence theystructures: we investigate the effect of the individual eom
need more neurons in the hidden layers for accuratgonents resource usage for predicting the resource usage
estimations. Therefore the structure of the networksf a structure. The strategy is to "learn” a decision tree
must be modified dynamically during the training pe- (shown in Figure 4). Actually, the structure of the tree is
riods: similarly to Cascade-Correlatiffiahlman and  not learnt (and therefore the "decision tree” denotaticm is
Lebiere, 199)) if the starting network’s perforgnance bit strong), but it is based on our intuition:

does noL[each an accepta?lge level (whichais* for e at the root we split our tree based on the technology
area,10~= for delay and10—* for power) we keep being FPGA or ASIC)

adding neurons (based on an increment value) to the ( g b .
second hidden layer until the network converges. On ¢ afterwards, we descend into the tree, specifying the
the other hand, if the network has converged we try  target platform more precisely at every step and

to minimise the number of neurons (to avoid overfit- e in the end, in one of the leaves the corresponding
ting) in the second hidden layer by removing some  stored neural networks of components and correction
(tnerement) of them. The training process is then re- terms together with the resource equations are found.
peated until convergence is obtained. Thus the resource usage of a FIR structure can be ap-

Instead of Backpropagation, the chosen training method is ~ Proximated combining the components’ resource util-

Resilient Propagation providing faster convergence ghuse  'Sation.

by the direct adaptation of the weight steps. To explain our assumptions, the effects between the com-
Another issue is to predict the different resources (areaponents’ and the FIR structures’ resource usage are clari-

propagation delay and power) on the component-basis sefiied now for the resource-classes (area, delay and power).

arately, thus for each component we have as many neurdirea of a structure is computed by

networks as the number of resource-classes. The reason for

that separation is that different resources require differ Area = Z Ac* Ca + Cao 1)

accuracy in their prediction, which means there are distinc ceC

neural networks for area, power and speed estimation fowhereC is the set of components contained in the current

each component with customised performance criterion. FIR structure. The area terms of the individual components

e The number of neurons in the output layer is given by
the vector-length of the target function: we know in
advance, how many resources we want to estimate.



| e Area: The input vector contains the summed up com-
Technology ponent area estimations and the number of compo-

| ::;r ] Ve::: | nents in the FIR structure. In the output vector the ar-
i Acte eas of 1/0 pads(,o) and the proportions of the mea-
o | ""’“:’LLHL [[platform | eee surement of the structures’ area and the summed up
O (5 6 N component estimationsgs=teucuce),

Components NN

/[ o )
i | Correction term NN

v\ (NN ] (NN (NN
[N [NN] [NN] [NN]

e Delay: The input vector contains the numbers of lines
in the structures and the delay of the slowest compo-
nents, in the output vector there are the proportions
of the structures measured delay and the delays of the
slowest componenl%%).

Figure 4: Decision tree of FIR structure estimation e Power consumption: The input vector contains the
summed up component dynamic power consumption
estimations and the number of components in the FIR
structure. In the output vector there are the propor-
tions of the measurement of the structures’ dynamic
power consumption and the summed up component
power estimations. Qowe"-dzyn“m“*‘m”w). For

(A.) are summed up and corrected ®y representing the
effects of the optimisations during synthesis and placing.
The correction tern’,,o represents the area of /O pads.
Power consumptionis given by

cec fde
Power = Z Pe # Cp 4 Cpo (2) FPGAs the estimation of staticEpower consumption is
ceC not needed, because it is constant, but for ASICs it

Power consumption has two components, namely, static ~ Must be also estimated.
and dynamic consumption. The power consumption isHaving the neural networks of component estimations, cor-
computed by summing the dynamic power of each com+ection term estimations and resource equations (Equgation
ponent ;). The correction factof’, smooths out the 1 - 3) the estimations of structures can be provided. The es-
effect of optimisationC,, is the static power term both for timation flow (shown in Figure 6 for area) starts by parsing
FPGAs and ASICs. the VHDL description in order to retrieve the components
Delay of a structure is determined by of the structure. Based on the technology description the
corresponding component and correction term neural net-
Delay = %%{(DJ *Cy G works Fia)re retﬁeved f‘)rom the decision tree. The component
IJ_\le are then activated and their estimations are accumu-
lated defining the first part of the equation. After that, by

2::)60'kp;fee(::'S:ng;'tSTtr?: csé)r?:gti(?; tfgitg;ruigutjrzg geag(ljmal activating the correction term NNs the whole equation is
. d - . . . .
degradation term caused by the delays of the routing Wiresc_ompleted and the siructure estimation is provided.

This reflects the fact that the slowest componentin the pa

Ca  Cao VHDL * Retrieve components
@ @ description
ST Technology _ Retrieve component &
@ description " correction term NNs
P .
p redFIR engine ;
__________________ Activate component NNs

T > & accumulate estimations
mambersl XA Ser Pac pumber mip(D) o Giﬂvate correction ferm
Figure 5: Neural networks for constants A=3 4a°C,+C,
It can be clearly seen that for the estimation of FIR struc- Figure 6: Flow of FIR structure estimation

tures we need to determine these correction terms for each
technology. The problem is that these correction terms ar
not really constants but functions. For example, in the re
lated work[Enzleret al, 2004 the areas of the individ-

ual components has been summed up and in the evaluati
results it can be seen that they observed overestimation e
fects for little FIR filters and underestimation effect fagb

8ystem measurement

Having the set of components of a given technology, the

FIR structures can be created by valid combinations of
ese building blocks. Actually, these generated strestur

Ire not optimised and we are not interested in their func-

filt Therefore f h tiont it valuetn tionality. However, creating such "dummy” structures help
gerhiters. Theretore loreacn correction term IS valueImus, o+, ayract the components’ impact on the structures re-

be approximated using dedicated neural networks (ShOWQource utilisation: we expect that this impact is the same

in Figure 5). These networks are simpler than the ones fofor real” EIR structures

Lhe COTE)_OH?HISi they hag/e aIS(_) two (;‘.'fqd?.n Iay]fatrhbut they The generation of the training structures must be driven
ave static structure, no dynamic modification of the numy, o .o eters limiting

ber of neurons is needed. In order to train these networks, _— )
FIR structures have to be implemented and measured. Fur- ® the depth (number of levels, limiting the size of the
thermore, the estimation of components are also needed. Structure) and

Our correction networks need the following structure of e the width (humber of components on a level, reflecting
training instances: the degree of parallelism)



e word-length of the structure’s input signal: we limit  In this work we concerned only the Xilinx Virtexll
either the input or the output word-length, but not both FPGA technology so far, therefore one of the further de-
of them velopment tasks of the system should involve the investiga-

Given a relatively few parameters, the structure is gen-t'or? of cher technologies. Another task is to improve _the
erated and translated into a VHDL description, which jsestimation process (at least .fo.r power consumption) either
by restructuring both the training instances and the neural

then implemented on the specified technology. As the re- atworks or by investiaating and adopting another promis.
sult of the implementation, the generated reports are darsé1 y galing pting P

and the necessary information about the resource utilis Dcﬂigﬂlhrgertgsggr(]l)'ke ggpg?é}r:/eigorszﬁ%ﬁsfé?lgrig?“sm‘é
tion, together with the VHDL description are stored in a 9 : 9 9 P '

database. These structure measurements are then useoc%\struption of training sets should be done de!iberately
depending on the performance of the corresponding neural

create the training instances for the neural networks of COr atworks. Our roach was validated on EIR structur
rection constant estimation. etworks. Lur approach was valiaated on FIR SlrUCtures,
but in our opinion it supposed to be a promising way to

estimate other, component-based digital structures.
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6 Conclusion & Future Work

In this paper we presented our novel approach of IC re-
source estimation based on Neural Networks. Our aim was
to provide estimations with a mean relative error bettentha
25 percents which is the half of the error that the current
redFIR2 engine uses. We developed a bottom-up strategy
by reasoning from the resource usage of components to the
structures’ resource utilisation.



