
Quick Estimation of Resources of FPGAs and ASICs Using Neural Networks

Ádám Monostori and Hans Holm Frühauf and Gabriella K ókai
Fraunhofer Institute for Integrated Circuits, Erlangen, Germany

Department of Computer Science 2 University of Erlangen-Nuremberg
{mno,fhf}@iis.fraunhofer.de, kokai@informatik.uni-erlangen.de

Abstract

The redFIR2 project at the Fraunhofer Institute
for Integrated Circuits is a tool that provides op-
timised Finite Impulse Response structures. The
generation process of these structures is based
on a component library containing seven scalable
basismodules. Depending on the chosen Inte-
grated Circuit technology and on the I/O word-
lengths the resource utilisation of the modules
differ considerably. A fast, a priori estimation
of resources during the system-level design is of
crucial importance for the generation of resource
optimised (adjusted to an Integrated Circuit tech-
nology) Intellectual Property cores. The objec-
tive of this work is to develop a flexible, adaptive
resource estimation methodology.

1 Introduction

For automated design of integrated circuits it is essen-
tial to estimate the resource usage of Intellectual Property
(IP) cores during the system-level design. In the redFIR2
project at the Fraunhofer Institute for Integrated Circuits
the automated generation of Finite Impulse Response (FIR)
structure IP cores is based on a library containing scalable
basismodules. Depending on the chosen Integrated Circuit
(IC) technology (diverse Field-Programmable Gate Array
and Application Specific Integrated Circuit technologies)
and on the I/O word lengths the resource usage of the mod-
ules differ considerably.

A fast estimation of the necessary IC resources is, how-
ever, an important basic principle in order to be able to
generate optimal (adjusted to a chosen IC technology) IP
cores. In the scientific field several methods exist to pre-
dict the utilisation of individual IC resources, like routing,
area and power consumption. Nevertheless, their estima-
tion methods are based on dedicated algorithms for certain
technologies (that is, arbitrarily chosen by the developerof
the method, for example Xilinx XC4000E in[Enzleret al.,
2000]), and they could only be adapted to different tech-
nologies with great effort.

This paper presents our approach, a flexible, adaptive es-
timation of resource usage. This is a nonlinear optimisa-
tion problem as our aim is to determine the (local) extreme
of nonlinear functions of many unknowns (number, type
and word-length of modules). Our optimisation process
is based on neural networks trained by resource measures
yielded from automated design flows.

2 Background
This section introduces the basics in order to understand
the aim of the paper.

2.1 The redFIR2 system
TheredFIR2 system(see Figure 1) is a web-based service
for generation of optimised FIR Structures. This genetic
algorithm-based system generates optimised FIR structures
with respect to the user-defined FIR structure- and configu-
ration data. These structures are then translated into a hard-
ware description language as the input for the synthesis and
implementation processes.

Figure 1: The redFIR2 system

2.2 Characteristics of the desired framework
As already mentioned, the generation of FIR structures is
based on user-defined information: besides filter config-
uration the description of the target technology and opti-
misation guidelines (area and speed weights) are included,
too. These optimisation guidelines provide a balance for
the multi-objective optimisation in the redFIR2 engine, but
they are not able to indicate measures of individual re-
sources. The web interface should be extended with the
possibility of giving hard constraints regarding to the avail-
able resources including the following limitations:
• Area: Unoccupied surface and technology-

dependents resources, like the available embedded
multipliers, shift registers, etc.

• Speed:The circuitry must be able to run on a specified
frequency (if it is reachable anyway).

• Power consumption: the circuitry should not con-
sume more power as indicated by the user.

In order to be able to fulfil these constraints the resource
usage of FIR structures must be predicted during the gen-
eration process. The task of this work is to provide the red-
FIR2 engine with estimations of the resources mentioned
above not only for FIR structures, but for components (add,
shift, etc.), too.

If no estimations are made we could not know whether
a specific FIR structure meets the requirements until it
is generated, synthesised and implemented. After imple-
mentation the necessary information about the resource us-
age are at hand and they can be compared to the require-
ments. In the case of insufficiency, the whole filter has
to be redesigned, resynthesised and reimplemented (design
respin). This results in longer computation times and super-
fluous use of Electronic Design Automation (EDA) tools.
These tools are rather expensive and have limited licences,
which infers that we might prohibit the other users from
using them. Another issue is that while an estimation could
be provided in matters of seconds, the implementation of
the FIR structures can take hours or even days, depending
on their complexity.

To quickly summarise the requirements, this framework
must provide a quick estimation of resources on the level
of components and structures, too. Furthermore, it has to
be able to learn new technologies without requiring great
effort from the designer and it must improve itself by vali-
dating the already generated, but not measured components
and FIR structures during the night-shift, when all the li-
cences are accessible.

2.3 Integrated Circuits Design
In this section the basics of Cell-Based Application Spe-
cific Integrated Circuits (CBICs) and Field-Programmable
Gate Arrays (FPGAs) are introduced. Furthermore, the re-
sources of integrated circuits will be described highlighting
the differences between CBICs and FPGAs.

Cell-Based Application Specific Integrated Circuits
A CBIC [John and Smith, 1997] uses predesigned, prechar-
acterized and pretested logic cells known as standard cells
(the generic standard cell layout is shown in Figure 2,
where the I/O ports surround the logic core containing the
rows of standard cells and their connections). The ASIC
designer defines only the placement of the standard cells
and the interconnect in a CBIC. The advantage of CBICs
(compared to other ASIC approaches) is that designers save
time, money, and reduce risk by using standard-cell li-
braries.

Figure 2: Generic standard cell layout of a CBIC and clas-
sical FPGA architecture

Field-Programmable Gate Arrays
A typical FPGA[Oldfield and Dorf, 1995; Wannemacher,
1998] device consists of a prefabricated array of config-
urable logic blocks (CLBs) surrounded by configurable
routing. Each logic block consists of resources which can
be configured to define discrete logic, registers, mathemat-
ical functions and even Random Access Memory (RAM).
A periphery of configurable pads (I/O ports) provides con-
nection to other electronic devices. Figure 2 illustrates the
classical FPGA architecture. The function of all of these
configurable resources can be defined at any time during
the operation of the device to form a large logic circuit.
Configurable logic and routing can be formed together to
ensure the exact function of a digital processing algorithm.
Parallel and pipelined data flows are possible, providing an
excellent resource for execution of a signal processing al-
gorithm.

Resources of Integrated Circuits
In general resources are the collectivity of the available fa-
cilities solving a certain problem. In case of integrated cir-
cuits we focused on the following resources of interest:

1. The termarea reflects the size of the circuitry but it
differs greatly on the chosen technology. The core ac-
tive area, the periphery active area and interconnect
area determine the required chip size (measured in
mm2) for a standard-cell design. In the case of FP-
GAs area is measured in terms of number of logic
blocks and embedded components (like multipliers,
memories, shift registers, etc.). Routing, powering
and the clock network are excluded, because they are
pre-fabricated on the FPGA board.

2. Propagation delay is the time required for a digital
signal to travel from the input(s) of a component to
its output. Propagation delay is important because it
has a direct effect on the speed at which a digital de-
vice can operate. The frequencyf measured in Hertz
(which means cycles per second) of an oscillator used
to time or synchronise the operations of a circuitry.
The higher the clock frequency, the faster the opera-
tion of the circuit. The period of the clock (Tperiod)
is the time taken to complete one cycle and is the in-
verse of the frequencyf : Tperiod = 1

f
. Themaximum

clock frequencyof the circuitry depends on the com-
ponents’ propagation delay and on their routing delay:
the slowest component and the wiring delays limit the
maximum frequency.

3. Power consumption is in general the energy over
time (P = E

t
) that is supplied to a system to main-

tain its operation. Power consumption can be com-
puted byP = 1

2CU2feff , that means, that power is
proportional to the capacitance (C), operating voltage
(U) and effective frequency (feff). Reducing any one
of these variables reduces power dissipation. In the
case of integrated circuits there are two main compo-
nents of power consumption: dynamic and static con-
sumption:

• Static power is the minimum power required to
keep the device ’powered-up’ with the clock in-
puts not switching and the I/Os drawing minimal
power.

• Dynamic power is the power consumed when
both the I/Os and logic cells are switching. Dy-
namic power is a function of the switching fre-
quency and operating temperature.

2.4 Digital Filters
A main field of application of Digital Signal Processing
[Porat, 1997] (DSP) is digital filtering. The enormous par-
allel computation performance of digital filters made DSP
so popular. Filtering is commonly used in two basic cases:
signal separationandrestoration. Separation is needed if
either the signal must be separated from other received data
or it is presented together with some signals which are in-
significant in the given task. Signal restoration can be a
demand if the signal is damaged or distorted.

A digital filter transforms a discrete sequence of numbers
(the input) into another discrete sequence of numbers (the
output) having a modified frequency domain spectrum.

In the field of DSP two alternatives are know: non-
recursive (Finite Impulse Response) and recursive (Infinite
Impulse Response) filters[Porat, 1997]. The extensions of
FIR filters are the FIR structures which are widely used for
the design of digital filters as integrated circuits, especially
in case of DSP systems dealing with enormous data rates
and a high bandwidth in order to realize series expansion
in combination with hysteresis functions.

3 Related work
There already exist several approaches in the field of re-
source estimation. In[Enzleret al., 2000] a high-level esti-
mation methodology is proposed for area and performance
estimation of FIR filters. This methodology is based on
very subtle constants acquired by thorough analysis of the
target technology as the investigation concerned only one
platform-FPGA. For all resources equations have been es-
tablished using observed constants. The pitfall of this ap-
proach is its inflexibility:

• if the basic modules change, then some (or all) con-
stants must be re-investigated, which needs a great ef-
fort from the engineers.

• The same holds for the programs used to implement
the filter on the FPGA: substituting some of these pro-
grams may result in significant changes.

In [Bilavarnet al., 2000] a general performance estima-
tion technique is presented. Here the behavioural descrip-
tion is given in the C language which is then translated into
a graph. For each node the functional units are determined
and their resource usage is retrieved from a library, which
has the characterisation of these units. These resource us-
ages are combined afterwards, in case of area they are sim-
ply summed up without correction. Timing estimation is
worse: the effect of interconnection delays are not taken
into account. This approach is not applicable today, in the
deep submicron era, as interconnect has an enormous influ-
ence on timing.

These two approaches are not applicable for our prob-
lem, as they are neither dynamic nor reasonably accurate.
The system must react to the changes of the components
without requiring great effort from engineers and it must
be capable of learning new technologies by itself.

4 Learning of resource utilisation of Finite
Impulse Response Structures

This section clarifies the communication between the
redFIR2 engine and the estimator subengine, how the mod-
els of resource estimations are provided and the schematic
design of the system.

Figure 3: System overview: estimation of components and
structures

In order to make the redFIR2 engine capable of gener-
ating optimal, resource-limited FIR structure IP-cores an
estimator subengine must be developed to support it with
fast and accurate models of resource utilisation of compo-
nents and FIR structures, too (see Figure 3). The subengine
maintains a database storing resource measurements and,
based on these measurements it creates models of resource
utilisation on the component and FIR structure level.

As mentioned, the models must befast and accurate.
These requirements are opposite to each other, an improve-
ment in one of them generally yields the deterioration of the
other. Therefore a balance between them must be found.

Another desired feature of the estimator subengine is
cost-efficientself-improvement, therefore it has to work
in two modes:

• during the normal work-hours it provides the redFIR2
engine with estimations for both components and FIR
structures.

• after work-hours it improves its estimation by auto-
matically measuring arbitrary components and FIR
structures. Similarly, during this period the changes
in the component libraries and the introduction of
additional technologies are learnt and adapted. Our
system, being an adaptive framework, does not re-
quire great effort from its designers: they only have
to define the VHDL description of the additional,
technology-specific component libraries and imple-
ment the design flows for the new technologies.

Without models of the components’ resource usage no
(reasonably accurate) FIR structure resource prediction can
be made. For that reason the estimation process is split
up into two separate parts: component and FIR structure
estimation (shown in Figure 3).

The basic idea is to characterise the components first,
then based on these component models, characterise the
FIR structures afterwards reflecting a bottom-up model of
estimation.

4.1 Component estimation
The components are the basic building blocks of FIR struc-
tures, hence their resource usage characteristics give a
guideline for the FIR structures’ prediction. The resource
utilisation of components is influenced by many circum-
stances:

• It depends on the chosen technology (FPGA vs.
ASIC). Furthermore, the capability of the used EDA
tools also affects it.

• Different types of components have different resource
utilisation characteristics (for example, a simple delay
element utilises less resources like a complex multi-
plier).

• The different I/O word-lengths and component-
specific parameters also make a considerable differ-
ence.

• Within a component, many different implementations
can be realized leading to discontinuities in the re-
source utilisation characteristic. For example, one
could use a simple adder implementation up to a cer-
tain I/O word-length and then a more sophisticated
one. These implementations utilise the resources dif-
ferently, therefore there will be a break in the resource
usage characteristic of the component.

The problem is function approximation with finite num-
ber of discontinuities. After investigating several Machine
Learning algorithms we decided to use neural networks.
The structure of the neural networks is built up using:

• two hidden layers containing sigmoid units with the
assumption that the extra hidden layer should be capa-
ble of extracting the features (behaviour) of the com-
ponent’s resource usage characteristics which are not
contained implicitly in the input representation[Cy-
benko., 1988; Mitchell, 1997]

• an output layer built up by linear units

Given the number of layers, the number of neurons in
each layer must be decided:

• The number of neurons in the input layer is
component-specific (for example, the input vector of
an adder contains the word-length of the two operands
and the result) and therefore determined a priori.

• The number of neurons in the output layer is given by
the vector-length of the target function: we know in
advance, how many resources we want to estimate.

• From the estimators point of view there is only a
set of components and the estimator does only know
their names and parameters, but not their functionality.
Therefore the number of neurons in the hidden layers
vary for different components, some components are
more difficult to characterise than others, hence they
need more neurons in the hidden layers for accurate
estimations. Therefore the structure of the networks
must be modified dynamically during the training pe-
riods: similarly to Cascade-Correlation[Fahlman and
Lebiere, 1990], if the starting network’s performance
does not reach an acceptable level (which is10−3 for
area,10−4 for delay and10−3 for power) we keep
adding neurons (based on an increment value) to the
second hidden layer until the network converges. On
the other hand, if the network has converged we try
to minimise the number of neurons (to avoid overfit-
ting) in the second hidden layer by removing some
(increment

2) of them. The training process is then re-
peated until convergence is obtained.

Instead of Backpropagation, the chosen training method is
Resilient Propagation providing faster convergence caused
by the direct adaptation of the weight steps.

Another issue is to predict the different resources (area,
propagation delay and power) on the component-basis sep-
arately, thus for each component we have as many neural
networks as the number of resource-classes. The reason for
that separation is that different resources require different
accuracy in their prediction, which means there are distinct
neural networks for area, power and speed estimation for
each component with customised performance criterion.

Another practical issue that the training vectors must be
also analysed and modified on demand. An obvious exam-
ple is that an adder never utilises an embedded multiplier
or a shift register, therefore these means of area should not
be estimated by the neural network and therefore these at-
tributes must be removed from the corresponding training
examples. In some cases the results of a neural network
have to be post-processed also. In case of area prediction
of FPGAs the results must be rounded, as no component
can utilise the half of a register, for example.

Component measurement
In order to provide our learning methods with sufficient
training data, training structures must be generated both for
components and FIR structures.

The generation of component structures is easy as their
VHDL [Rajan, 1999] sources are available in the compo-
nent library. For each structure a VHDL description is
generated by instantiating the corresponding component
with arbitrary parameters: I/O word-lengths and other,
component-specific properties like the number of clock cy-
cles to delay (delay elements) and the shift value (shifters).
That means we only have to know the necessary parameters
of each component, but nothing about their functionality
and how they are implemented.

Having the VHDL description, the training structure
must be implemented by technology- and vendor-specific
EDA tools. As the result of this implementation flow the re-
ports of each stages are generated containing the necessary
information about the resource utilisation of the test struc-
ture. These reports must be parsed to acquire this informa-
tion followed by storing them in the components’ database
to ensure their availability at training: the parameters ofthe
component serve as the inputs and their measured resource
usage constitute the outputs of the neural networks which
are supposed to learn the dependency between them.

4.2 System estimation
The problem is solved by using a bottom-up approach
based on our background knowledge of physics and FIR
structures: we investigate the effect of the individual com-
ponents resource usage for predicting the resource usage
of a structure. The strategy is to ”learn” a decision tree
(shown in Figure 4). Actually, the structure of the tree is
not learnt (and therefore the ”decision tree” denotation isa
bit strong), but it is based on our intuition:

• at the root we split our tree based on the technology
(being FPGA or ASIC),

• afterwards, we descend into the tree, specifying the
target platform more precisely at every step and

• in the end, in one of the leaves the corresponding
stored neural networks of components and correction
terms together with the resource equations are found.
Thus the resource usage of a FIR structure can be ap-
proximated combining the components’ resource util-
isation.

To explain our assumptions, the effects between the com-
ponents’ and the FIR structures’ resource usage are clari-
fied now for the resource-classes (area, delay and power).
Area of a structure is computed by

Area =
∑

c∈C

Ac ∗ Ca + Cao (1)

whereC is the set of components contained in the current
FIR structure. The area terms of the individual components

Figure 4: Decision tree of FIR structure estimation

(Ac) are summed up and corrected byCa representing the
effects of the optimisations during synthesis and placing.
The correction termCa0 represents the area of I/O pads.
Power consumptionis given by

Power =
∑

c∈C

Pdc ∗ Cp + Cpo (2)

Power consumption has two components, namely, static
and dynamic consumption. The power consumption is
computed by summing the dynamic power of each com-
ponent (Pdc). The correction factorCp smooths out the
effect of optimisation.Cp0 is the static power term both for
FPGAs and ASICs.
Delayof a structure is determined by

Delay = max
c∈C

(Dc) ∗ Cd (3)

This reflects the fact that the slowest component in the par-
allel pipeline limits the speed of the structure (maximal
clock frequency). The correction factorCd is the speed-
degradation term caused by the delays of the routing wires.

Figure 5: Neural networks for constants

It can be clearly seen that for the estimation of FIR struc-
tures we need to determine these correction terms for each
technology. The problem is that these correction terms are
not really constants but functions. For example, in the re-
lated work[Enzleret al., 2000] the areas of the individ-
ual components has been summed up and in the evaluation
results it can be seen that they observed overestimation ef-
fects for little FIR filters and underestimation effect for big-
ger filters. Therefore for each correction term its value must
be approximated using dedicated neural networks (shown
in Figure 5). These networks are simpler than the ones for
the components, they have also two hidden layer but they
have static structure, no dynamic modification of the num-
ber of neurons is needed. In order to train these networks,
FIR structures have to be implemented and measured. Fur-
thermore, the estimation of components are also needed.
Our correction networks need the following structure of
training instances:

• Area: The input vector contains the summed up com-
ponent area estimations and the number of compo-
nents in the FIR structure. In the output vector the ar-
eas of I/O pads (Ca0) and the proportions of the mea-
surement of the structures’ area and the summed up
component estimations. (areastructure

P

c∈C
Ac

).

• Delay: The input vector contains the numbers of lines
in the structures and the delay of the slowest compo-
nents, in the output vector there are the proportions
of the structures measured delay and the delays of the
slowest component (delaystructure

maxc∈C(Dc)
).

• Power consumption: The input vector contains the
summed up component dynamic power consumption
estimations and the number of components in the FIR
structure. In the output vector there are the propor-
tions of the measurement of the structures’ dynamic
power consumption and the summed up component
power estimations. (Power dynamicstructure

P

c∈C
Pdc

). For

FPGAs the estimation of static power consumption is
not needed, because it is constant, but for ASICs it
must be also estimated.

Having the neural networks of component estimations, cor-
rection term estimations and resource equations (Equations
1 - 3) the estimations of structures can be provided. The es-
timation flow (shown in Figure 6 for area) starts by parsing
the VHDL description in order to retrieve the components
of the structure. Based on the technology description the
corresponding component and correction term neural net-
works are retrieved from the decision tree. The component
NNs are then activated and their estimations are accumu-
lated defining the first part of the equation. After that, by
activating the correction term NNs the whole equation is
completed and the structure estimation is provided.

Figure 6: Flow of FIR structure estimation

System measurement
Having the set of components of a given technology, the
FIR structures can be created by valid combinations of
these building blocks. Actually, these generated structures
are not optimised and we are not interested in their func-
tionality. However, creating such ”dummy” structures help
us to extract the components’ impact on the structures re-
source utilisation: we expect that this impact is the same
for ”real” FIR structures.

The generation of the training structures must be driven
by parameters limiting
• the depth (number of levels, limiting the size of the

structure) and

• the width (number of components on a level, reflecting
the degree of parallelism)

• word-length of the structure’s input signal: we limit
either the input or the output word-length, but not both
of them

Given a relatively few parameters, the structure is gen-
erated and translated into a VHDL description, which is
then implemented on the specified technology. As the re-
sult of the implementation, the generated reports are parsed
and the necessary information about the resource utilisa-
tion, together with the VHDL description are stored in a
database. These structure measurements are then used to
create the training instances for the neural networks of cor-
rection constant estimation.

5 Test results
During the tests we used the Xilinx VirtexII[Xil, 2004]
platform FPGA as validation technology. For the valida-
tion of the correctness of component estimations around
100-120 instances have been implemented for each com-
ponent. Furthermore, the input word-lengths were limited
up to 90 bits, therefore instances having wider inputs might
not be estimated accurately. Ninety percent of the instances
represent the training set (the set of instances used to train
the neural networks) and the remaining ten percent consti-
tute the test set. During the validation, the neural networks
are put into operation having the test set as their input. The
validation results of components are shown in Table 1: as
it can be seen, on the component-level the neural networks
provide very good estimations for area, maximum clock
frequency and dynamic power consumption (even though
that for power the error is significantly larger). For the in-
stances that were constituting the training set of the net-
works the error is negligible, the estimations and measure-
ments are nearly the same.

accuracy (mean relative error) [%]
type of resource components structures
Area 3.5 18.99
Maximum
Frequency [MHz] 5.5 22.22
Dynamic power
consumption [mW] 17 72.1

Table 1: Validation results of the components and FIR
structure estimation

For the validation of the FIR structure estimations 250
structure instances have been implemented. The depth has
been limited to 7 levels and the maximal width of a level
was restricted to maximum 8 components, the input word-
lengths were limited up to 20 bits. From the structures
ninety percent were used for training and ten percent for
the validation. The validation results of FIR structures are
shown in Table 1: the estimations of area and maximum
clock frequency are quite satisfactory, but for power con-
sumption we encountered a high relative error.

6 Conclusion & Future Work
In this paper we presented our novel approach of IC re-
source estimation based on Neural Networks. Our aim was
to provide estimations with a mean relative error better than
25 percents which is the half of the error that the current
redFIR2 engine uses. We developed a bottom-up strategy
by reasoning from the resource usage of components to the
structures’ resource utilisation.

In this work we concerned only the Xilinx VirtexII
FPGA technology so far, therefore one of the further de-
velopment tasks of the system should involve the investiga-
tion of other technologies. Another task is to improve the
estimation process (at least for power consumption) either
by restructuring both the training instances and the neural
networks or by investigating and adopting another promis-
ing ML methods (like Support Vector Regression and Sym-
bolic Regression). Regarding to self-improvement, the
construction of training sets should be done deliberately
depending on the performance of the corresponding neural
networks. Our approach was validated on FIR structures,
but in our opinion it supposed to be a promising way to
estimate other, component-based digital structures.

References
[Bilavarnet al., 2000] Sébastien Bilavarn, Guy Gogniat,

and Jean Luc Philippe. Area time power estimation for
fpga based designs at a behavioral level. InThe 7th IEEE
International Conference on Electronics, Circuits and
Systems, pages 524–528. IEEE, 2000.

[Cybenko., 1988] George Cybenko. Continuous valued
neural networks with two hidden layers are sufficient.
Technical report, Department of Computer Science,
Tufts University, Medford, MA, 1988.

[Enzleret al., 2000] Rolf Enzler, Tobias Jeger, Didier Cot-
tet, and Gerhard Troster. High-level area and perfor-
mance estimation of hardware building blocks on FP-
GAs. In Field-Programmable Logic and Applications,
volume 1896 ofLecture Notes in Computer Science,
pages 525 – 544, 2000.

[Fahlman and Lebiere, 1990] Scott E. Fahlman and Chris-
tian Lebiere. The cascade-correlation learning architec-
ture. pages 524–532, 1990.

[John and Smith, 1997] Michael John and Sebastian
Smith. Application-Specific Integrated Circuits. VLSI
Design Series. Addison-Wesley Publishing Company,
1997.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning.
McGraw-Hill International Editions, New York, 1997.

[Oldfield and Dorf, 1995] John V. Oldfield and Richard C.
Dorf. Field-programmable gate arrays: reconfigurable
logic for rapid prototyping and implementation of digi-
tal systems. Wiley-Interscience publication, 1995.

[Porat, 1997] Boaz Porat.A course in digital signal pro-
cessing. John Wiley & Sons, Inc., 1997.

[Rajan, 1999] Sundar Rajan.Essential VHDL: RTL Syn-
thesis Done Right. S & G Publishing, 1999.

[Wannemacher, 1998] Markus Wannemacher.Das FPGA-
Kochbuch. International Thomson Publishing GmbH,
Bonn, 1998.

[Xil, 2004] Xilinx, Inc. VirtexII Platform FPGA User
Guide, April 2004.

