
Abstract 
Object oriented source code occurs in diverse 
programming languages with documentation us-
ing miscellaneous standards, comments in indi-
vidual styles, or associated test cases that are 
hard to exploit through information retrieval or 
knowledge discovery techniques. Typically, the 
information about object-oriented source code 
for a software system is distributed across several 
different sources, which makes processing com-
plex. In this paper we describe the morphology 
of object-oriented source code and how we pre-
process it to improve the retrieval of source code 
for further reuse. Results from two studies 
showed that the preprocessed index increases the 
precision of the search by at least 13% for que-
ries encompassing a whole class and 33% for 
queries consisting of the class name. 

1 Introduction 
Traditionally, databases storing software artifacts were 
used to store manually classified components from in-
house software systems. But as the manual classification 
of source code is time-consuming and costly, automated 
techniques for software retrieval and reuse are required to 
efficiently and effectively process large amounts of source 
code. 

Today, we use code warehouses to store many software 
systems in different versions for further processing, which 
are based on the data warehouse framework described by 
Inmon [Inmon 1996]. Operational software configuration 
management systems (SCMS), similar to data marts, are 
tapped to integrate software artifacts into the code ware-
house. Well-known representatives are CVS, Subversion, 
or SourceSafe. Typically, these software repositories con-
sist of a vast quantity of different files with interconnected 
source code and additional information associated with 
the source code (e.g., documentation). Extraction, trans-
formation, and loading processes (ETL) are used to ex-

tract the source code from different software repositories 
into the code warehouse. Due to the astonishing success 
and propagation of open source software (OSS) and large 
OSS repositories such as Sourceforge (cf. 
http://www.sourceforge.net), many SCMS are freely 
available in different shapes and sizes.  By tapping these 
operational code marts, large amounts of reusable soft-
ware artifacts in diverse languages, formats, and with ad-
ditional information are available for further reuse, analy-
sis, and exploration. 

The infrastructure of the code warehouse as illustrated 
in Fig. 1 depicts the flow of complex data such as source 
code from a CVS into our code warehouse. As shown in 
Fig. 1, we extract source code via wrappers from a CVS, 
parse the code to extract structural information (e.g., 
classes, methods, attributes) and associated documents 
(e.g., license information), to finally integrate and store 
them in the code warehouse. 

In this paper we describe the data our system is using 
and processing (i.e., object-oriented source code) and pre-
sent the techniques to preprocess this data. The goal of our 
approach is the accumulation of large amounts of source 
code in a processable format to build a reuse engine and a 
knowledge discovery (KD) engine on top of it. While the 
KD engine will be used to identify potential libraries or 
defects in and between software projects the reuse engine 
is used to learn about what part of a software system is 
more likely to be reused and how we have to characterize 
code in order to improve its retrieval. This might be used 
in the (far) future for the automated assembly of simple 
services to build more complex services either via rule-
based, learning, evolutionary, or agent-based systems. 

After a section about relevant background concerning 
software reuse, a section is used to describe the morphol-
ogy of the used data. Thereafter, we present the tech-
niques of how we preprocess the data, and how we use it 
in software engineering for source code retrieval. Finally, 
we describe the evaluation of our approach in two studies 
using queries encompassing a whole class and queries 
consisting of terms from the class name.  

Fig. 1 Data flow in the Code Warehouse 

Preprocessing of Object-Oriented Source Code for Code Retrieval 

Jörg Rech 
67663 Kaiserslautern, Germany 

Joerg.Rech@gmail.com 



2 Background  
The reuse of existing knowledge and experience is a fun-
damental practice in many sciences. Engineers often use 
existing components and apply established processes to 
construct complex systems. Without the reuse of well-
proven components, methods, or tools engineers have to 
rebuild and relearn these components, methods, or tools 
again and again. 

Today, reuse-oriented software engineering covers the 
process of development and evolution of software systems 
by reusing existing software components. The goal is to 
develop complex software systems in shorter periods of 
time or with a higher quality by reusing proven, verified, 
and tested components from internal or external sources. 
By the systematic reuse of these components and feed-
back about their application, their internal quality (e.g., 
reliability) is continuously improved. But reuse of com-
ponents is only appropriate if the cost of retrieving and 
adapting the component is either less costly or results in 
higher quality. 

2.1 Traditional Software Reuse 
Since the eighties the systematic reuse and management 
of experiences, knowledge, products, and processes was 
refined and named Experience Factory (EF) [Basili et al. 
1994]. This field, also known as Experience Management 
[Jedlitschka et al. 2002] or Learning Software Organiza-
tion (LSO) [Ruhe & Bomarius 1999], researches methods 
and techniques for the management, elicitation, and adap-
tation of reusable artifacts from SE projects. The Compo-
nent Factory (CF) as a specialization of the EF is con-
cerned with the capturing, managing, and reuse of soft-
ware artifacts [Basili et al. 1992] and builds the frame-
work in which further knowledge discovery and informa-
tion retrieval techniques are embedded. 

In the beginning only the reuse of source code was the 
focus of reuse-oriented software engineering. Today, the 
comprehensive reuse of all software artifacts and experi-
ences from the software development process increases in 
popularity [Basili & Rombach 1991]. Besides source code 
artifacts such as requirements, design document, test 
cases, process models, quality models, and best practices 
(e.g., Design Patterns) are used to support the develop-
ment and evolution of software systems. These artifacts 
are collected during development or reengineering proc-
esses and typically stored in specific artifact-specific re-
positories.   

2.2 Agile Software Development and Reuse 
Agile software development methods impose as little 
overhead as possible in order to develop software as fast 
as possible and with continuous feedback from the cus-
tomers. These methods (and especially extreme program-
ming (XP)) are based upon 12 principles [Beck 1999].  

Traditional software reuse initiatives and approaches 
that were developed for process-driven software devel-
opment are inadequate for highly dynamic and agile proc-
esses where the software cannot be developed for reuse 
and reuse cannot be planned in advance. Teams and or-
ganizations developing with agile methods need auto-
mated tools and techniques that support their work with-
out consuming much time. Therefore, agile software reuse 
is a fairly new area where minimally invasive techniques 

are researched to support software engineers [Cinneide et 
al. 2004]. 

2.3 Repositories for Software Reuse 
In the nineties research projects about software reposito-
ries were concerned with the development of software 
repositories with specific data models and interfaces for 
single organizations. For example, the Experience Factory 
of the SFB 501 [Feldmann 1999], the “Experience Man-
agement System” (EMS) of the University of Maryland 
[Basili et al. 2002], and the “Repository in a Box” of the 
University of Tennessee under direction by the National 
HPCC Software Exchange (NHSE) [Browne et al. 1998]. 
In-house products from software companies were, among 
others, ReDiscovery from IBM [IBM 1994], the Work-
station Software Factory (WSF) Repository from Bellcore 
[Shklar et al. 1994], the Semantic Hypertext Object Re-
pository (SHORE) from sd&m [Zündorf et al. 2001], or 
the SEEE from Fraunhofer IESE [Althoff et al. 1999]. 

All of these approaches are based on manual classifica-
tion of software artifacts and use either classification val-
ues or textual descriptions (e.g., manpages) for retrieval. 
A new approach is the Software Warehouse concept [Dai 
et al. 2004] that builds a framework for retrieval and min-
ing activities but has currently only presented the software 
cube (i.e., data cube for software) as an innovation and 
needs manual classification to describe software artifacts 
(e.g., domain features).  

Until now relatively few approaches have exploited the 
information hidden in source code on a large scale. The 
success of open source software and the resulting avail-
ability of massive amounts of source code enabled this 
development. Several systems related to our research are 
described in the following list: 

A commercial project similar to the code warehouse 
has recently been introduced. The free source-code search 
engine Koders and its commercial subproject KodeShare 
(http://www.koders.com/) offers the opportunity to search 
in source code of open source projects similar to the 
Google approach (i.e., a web search engine). Koders has 
indexed the sourcecode from tens of thousands of projects 
from free repositories in 15 different programming lan-
guages encompassing about 125 million lines of code. As 
no information was published about the inner working of 
Koders we can only assess its offered functionality. The 
results presented after a free-text search indicate that 
Koders not only indexes whole files containing classes but 
also parses their contents to identify methods and fields 
(a.k.a. attributes) as well as license information. 

The research project AMOS 
(http://www.clip.dia.fi.upm.es/~amos/AMOS/) follows a 
similar approach but uses a taxonomy (i.e., an ontology) 
for search terms defined by domain experts in order to 
enable the search over source code from predefined pro-
jects [Carro 2002]. The functionality of packages (e.g., 
source file, part of source file, or collection of source 
files) is described manually based on a predefined ontol-
ogy (i.e., a dictionary of related terms). Interestingly, the 
search engine is also capable of integrating several single 
packages in larger packages encompassing the whole 
search query. As it only searches over the signature of the 
code one can specify exact queries if the user knows what 
to look for. A more exploratory search based on code de-
scription, comments, or identifiers is not possible. 



Another commercial project is DevX Sourcebank 
(http://archive.devx.com/sourcebank/) that represents a 
directory of links to source code, scripts, and papers from 
several sources around the Internet similar to the yahoo 
approach (i.e., a web directory). It enables searching and 
browsing over these resources by a simple query interface 
and supports the restriction to a programming language. 
Results are viewable via a link to the original place (if it 
still exists) and typically include information such as title, 
author, description (e.g., the javadoc), language, URL, 
and the date it was added to the repository.  

Similar to the Sourcebank is DevDaily’s repository 
search engine called the Java Source Code Warehouse 
(http://www.devdaily.com/java/jwarehouse/). Currently, it 
has indexed source code from about 20 free java reposito-
ries and its search is based on the Google™ search engine. 
Besides java it supports six programming languages. The 
results presented after the Google-based search indicate it 
only indexes whole files containing classes as filed in 
their subdirectories. 

Finally, the project JDocs (http://www.jdocs.com/) is 
based on the open-source project Ashkelon 
(http://ashkelon.sourceforge.net/) and represents a type of 
repository that provides a knowledge base defined around 
the core Java API's (Application Programming Interfaces). 
It does not include source code but gives access to a col-
lection of 132 API’s from Java frameworks and libraries. 
While this approach is great for programmers wanting to 
search in API’s, two problems remain. First, one cannot 
directly access the source code described by an API ele-
ment, and second, even if the user finds a relevant class he 
has no information how to use it in a real context. 

3 Code Retrieval for Software Reuse 
In software reuse previously constructed source code is 
reused to save the time of redevelopment. Our goal is to 
support software developers, designers, analysts, or testers 
in deciding what to reuse, to increase their options what 
they could reuse, and augment their decisions in reusing 
(parts of) software systems. 

To support the reuse of complex information as source 
code we build a source code search component based on 
technology similar to Google™ but specialized for source 
code. The basic application is to find answers to questions 
such as “How does the quicksort algorithm looks like in 
C#?” or “How should the JDOM API be used?” By the 
integration of information about the inherited functional-
ity, used methods, or used licenses we can also support 
the user in the following questions: 
• May I reuse the source code found? Based on the li-

cense information attached to the source code and a 
definition of the license the user is informed if he or she 
might or might not directly copy the code. 

• What do I need to make the code work in my context? 
By seeing and browsing the associated relations (e.g., 
imports or method calls) the user can quickly oversee 
what libraries or functionalities has to be included in 
order to make the code work. Additionally, the docu-
mentation of the source code (e.g., javadoc) often de-
scribes the functionality and similar code fragments that 
might be used to decide over the adaptation effort. 

• What is the quality of the code? Based on the metrics 
data attached to the source code the user might deduce 
qualities about the code. In the future we will integrate 
the specification of quality models in order to, for ex-
ample, calculate the maintainability of the code.  

• How do I test the functionality? As test cases are asso-
ciated with the respective source code if they exist at all 
the user can easily get source code to test the reused 
functionality after appropriate adaptations. 

As depicted in Fig. 2 our system presents search results 
similar to Google and includes information such as the 
signature, license, type of language, project, version, or 
documentation. The score is calculated by the underlying 
search engine and is essentially based upon the term fre-
quency in the document and its length. Currently we also 
analyze techniques for the clustering of search results 
(e.g., see http://www.clusty.com) in order to give a better 
overview and discover similar elements. 

Fig. 2 Screenshots from the Code Warehouse 



4 Preprocessing of Object-Oriented Source 
Code 

Until today, the functionality or semantics of a code ele-
ment can not be extracted from the syntax of arbitrary 
source code. A computer does not understand what an 
algorithm like “quicksort” does. Nevertheless, valuable 
information can be extracted from associated and internal 
sources.  While source code is typically represented in a 
single file for every class of the system, inside these files 
additional blocks of information can be identified such as 
methods, attributes, comments, or documentation in 
JavaDoc. 

Fig. 3 Structure of object-oriented source code 

In Fig. 3, every box symbolizes an individual block of 
information, which can be seen as a self-containing (or 
relatively independent) set of features (i.e., a bag of words 
or data). 

In the following description of information associated 
to source code we refer to Java source code from open 
source projects and libraries found on the open source 
repositories Sourceforge (http://www.sourceforge.net/) 
and Freshmeat (http://www.freshmeat.net). 

4.1 Object-oriented Source Code 
Object-oriented software systems consist of objects that 
package data and functionality together into units that 
represent objects of the real world (e.g., a sensor or 
string). These objects can perform work, report on and 
change their internal states, and communicate with other 
objects in the system without revealing how their features 
are implemented. This ensures that objects cannot change 
the internal state of other objects in unexpected ways and 
that only the objects own internal methods are allowed to 
access their states. Similarly, more abstract building 
blocks such as packages and projects hide additional in-
formation that should not be visible to other resources in 
order to minimize maintenance effort if a unit has to be 
changed (e.g., if hardware such as a sensor is exchanged).  
In software reuse several of these units might be of inter-
est to a potential user. The user might want to reuse a 
whole database (e.g., mySQL or PostgreSQL) or need a 
solution to implement a fast sorting algorithm (e.g., quick-

sort).  Fig. 4 shows several blocks that might be of interest 
to the user that are returned on a query. Classes describe 
these objects and group their functionality (i.e., their 
methods) and attributes into a single file. While every 
class of the system is grouped 
into a package that, in general, 
represents a subsystem, these 
subsystems are not defined in 
the source code. Furthermore, 
software projects are typically 
developed and improved over 
longer periods of time and 
stored in builds after specific 
tasks are completed (e.g., a 
release is finalized). 
While most information blocks 
can be automatically extracted 
from the existing source code, 
several blocks might also be 
attached manually (e.g., subsys-
tem information or annotations 
by (re-) users). Associated in-
formation can be integrated into 
retrieval and mining processes 
in order to improve their preci-
sion and recall.  

Fig. 4 Source code related structure of software projects 

While it is possible to write multiple classes in one file 
or use internal classes (i.e., a sub-class in a class) source 
code is typically encoded in classes that are written in 
single file. These files contain the description of their 
membership in a specific package and define which addi-
tional classes (beside sub-classes or package-neighbors) 
are needed and have to be imported in order to compile 
this class. Other information such as method calls or in-
heritance relations that describe external links and re-
quirements of the code can be exploited with several tech-
niques (e.g., the Pagerank algorithm [Brin & Page 1998]). 
Beside these external links source code contains several 
internal information blocks. As depicted in Fig. 3 these 
blocks build the core information sources to describe 
classes in the following order: 
• Signature: The signature of a method, class or attribute 

defines it name (i.e., an identifier), visibility (e.g., pub-
lic), and inheritance relationships (i.e., used super-
classes and interfaces). All these blocks represent valu-
able information sources but require additional process-
ing to be useful. While relations and modifier (e.g., the 
visibility) are unambiguously defined for a software 
system, the name of a class is basically free text and en-
coded in camelcases (e.g., “StringBuffer”) that has 
to been parsed and normalized (e.g., into “string” and 
“buffer”).  

• Documentation: The description of the artifact in a 
specific markup language (here JavaDoc with text in 
HTML and special tags (e.g., the @author tag is used 
to associate multiple authors that created or modified 
(parts) of the code)). Other documentation markup lan-
guages exist for nearly every programming language 
(e.g., ePyDoc for Python or doxygen for multiple lan-
guages). As the documentation is based on a specific 
markup language the semantic of the text within is 
semi-structured and specific parsers for HTML or 



JavaDoc-Tag help to extract additional information 
(e.g., links to related documents). 

• Comments: Single or multiple line comments represent 
in general either notes of the developers to describe the 
specific code semantics or declare dead source code 
(that should not be executed but might be used in the fu-
ture). Typically, there is no structure in comments and 
they can be seen as free text fields. 

• Identifier: Names and types of variables, constants, or 
methods defined in a software system and used in a 
class represent additional information to characterize 

the semantics of the class or method. For example, the 
variable definition “public String authorName 
= ‘Erich Gamma’” includes the information that 
the name about an author is stored in a string. Typically, 
in programming languages these identifiers are encoded 
in camelcases (e.g., “MalformedMessageExcep-
tion”) or upper cases (e.g., “CLASS_NAME”). 

Fig. 5 shows parts of the original source code of the 
“String” Class from the standard Java libraries. 

Fig. 5 Java source code (String.java from the standard Java libraries) 

4.2 Processing of Source Code 
In order to use retrieval or mining techniques on source 
code, we recognized that the textual documents had to be 
further analyzed and processed. In programming lan-
guages such as Java, names and identifiers of classes or 
methods indicate their functionality and are written in so-
called camelcase (e.g., “QueryResultWrapper”; see 
http://en.wikipedia.org/wiki/CamelCase). To include the 
information enclosed in these and other word constructs, 
filters have to be use to extract additional words (i.e., fea-
tures) that characterize the document. 

Therefore, we developed and adapted several tech-
niques to preprocess source code. The preprocessing of 
source code in our code warehouse is partitioned in 9 
phases as described below: 
• First, we parse the textual data to identify tokens (i.e., 

everything that is not divided by whitespaces) and ob-
tain a stream of these tokens that are processed by the 
following filters.  

• The first filter decomposes identifier tokens 
java.sql.ResultSet into their subtokens java, 
sql, and ResultSet before returning them to the 
next filter.  

• The next Filter splits camelcased tokens like Result-
Set into the subtokens Result and Set as well as 
IOException into IO and Exception. It also has 
the task that uppercase abbreviations like URL are not 
splitted, titlecase tokens like DATA_DIRECTORY are 
broken into DATA and DIRECTORY, and that digits in 
tokens are associated with the previous subtoken (e.g., 
Index6pointer is broken into Index6 and 
pointer).  

• After the camelcase filter we change all uppercase char-
acters in a token to lowercase (e.g., DATA, data, or 
Data are all changed to data) in order to normalize 
different writing or coding styles (e.g., typically, con-
stants in Java are written in titlecase).  

package java.lang; 
import java.util.ArrayList; 
... 
/** The <code>String</code> class represents character strings. All 
 * string literals in Java programs, such as <code>"abc"</code>, are 
 * implemented as instances of this class. ... 
 * @author  Lee Boynton 
 * @version 1.152, 02/01/03 
 * @see     java.lang.StringBuffer 
 * @since   JDK1.0 
 */ 
public final class String implements java.io.Serializable, Comparable, 
CharSequence { 
  /** The offset is the first index of the storage that is used. */ 
  private int offset; 
 
  /** The count is the number of characters in the String. */ 
  private int count; 
  ... 
 
  /** Returns the index within this string of the first occurrence of 
   * the specified character, starting the search at the specified 
   * index. ... 
   */ 
  public int indexOf(int ch, int fromIndex) { 
 int max = offset + count; 
 char v[] = value; 
 
 if (fromIndex < 0) { 
   fromIndex = 0; 
 } else if (fromIndex >= count) { 
   // Note: fromIndex might be near -1>>>1. 
   return -1; 
 } 
 for (int i = offset + fromIndex ; i < max ; i++) { 
   if (v[i] == ch) { 
  return i - offset; 
   } 
 } 
 return -1; 
  } ... 
} 

Method signature 

Attribute (signature) 

JavaDoc documentation (for the method) 

JavaDoc documentation (for the attribute) 

Class signature 

JavaDoc documentation (for the class): 
includes HTML tags and JavaDoc tags (e.g. 
@author) 

Import information 

Identifier internal attribute (here: „max“) 

Comment 

Package information 



• Then we use the cleaning filter to remove unnecessary 
punctuation characters like commas or semicolons at 
the start or end of the token that might have been in-
serted at formulas or (for example, name= or ’rech’ 
from an expression like int name=‘rech’ are 
changed to name and rech). Special characters that 
represent multiplications, equals, additions, subtrac-
tions, or divisions from formulas should have been 
eliminated in this process (e.g., from a =b * c +d 
only a, b, c, and d should get through).  

• As detached numbers typically do not carry any mean-
ing the next filter identifies and removes tokens that, in 
the specified programming language, represents num-
bers like 0x000, .9, or -200 as well as Unicode char-
acters like \u0123.  

• After the cleaning we use a programming-language-
specific stopword filter to remove reserved words that 
are typically included in every code fragment of this 
language. For example, Java stopwords (a.k.a. reserved 
word) are abstract, package, or boolean.  

• After programming-language specific stopwords are 
removed we also remove natural-language-specific 
stopwords from the token stream. Currently, we only 
remove English stopwords (e.g., and, into, or will) 
as source code is almost exclusively written with Eng-
lish acronyms and comments. 

• Finally, we use the standard Porter stemmer [Porter 
1980] to stem the remaining tokens (i.e., removing end-
ings with ed or ing like in the words generated or 
billing) and reduce the number of available features 
with similar meanings 

5 Evaluation 
Open source repositories like Sourceforge consist of large 
amounts of data. Currently, the Sourceforge repository 
alone comprises of 103.094 projects of which 15.461 are 
using the Java programming language. Furthermore, every 
project consists of different versions and releases that rep-
resent the change and extension of the system over time.  

From this mass of information we only used 23 projects 
including the java standard libraries. These 23 projects 
with 748 packages, 13.869 classes, and 110.083 methods 
for one (i.e., the last) build of the software system. The 
data encompassed 78.4 MB stored in the class table.  
In the mean we have 30 packages per project, 18 classes 
per package and 8 methods per class. 

Based upon the data from this small extract of source-
forge we assume that the 15.461 Java projects consist of 
about 4,7 GB of data per version. If they are similarily 
distributed this would summarize to 500.000 packages, 
8.5 million classes, and 66 million methods for each ver-
sion and build. From our experience with software sys-
tems we assume roughly 10 releases and 100 versions per 
system in the mean. 

5.1 Experimental Design 
To evaluate the difference between unprocessed und pre-
processed source code we constructed two types of que-
ries from classes randomly drawn from the database. In 
order to spread the result we draw 100 classes and con-
structed 200 queries. The goal was to determine if a query 
on the preprocessed index will generate a result that lists 

the queried class with a lower rank than on the unproc-
essed index. 

Two different strategies were used to construct the que-
ries. First, we used the keywords from the name (i.e., 
identifier) of the class by extracting single words or ab-
breviations as described in section 4.2. This simulates a 
query where only few characteristics about a class (to be 
developed) are known. Second, we used all terms in a 
class and preprocessed them in the same way as described 
in section 4.2. That many characteristics about a class 
might be available if an already existing system is about 
to be re-engineered or if a class that is in development is 
incrementally extended. Examples for the named queries 
are stated in Table 1. 

Table 1 Preprocess examples for Name-Queries 
Name before pre-
processing DefaultGraphEdgeRenderer 

Name after pre-
processing default graph edge renderer 

To compare both approaches we applied the queries to 
search in a) an index based upon the unprocessed and b) 
an index based on the preprocessed data. The precision of 
the search is calculated as shown in Form. 1 using the 
position (i.e., rank) of the original class that was used to 
create the query in the result set. 

Form. 1 Calculation of the precision of query q 

As the definition of a function to decide if a class is 
relevant or similar to the query the recall is either 0 (class 
not in result list) or 1 (class in result list). 

5.2 Data Analysis and Interpretation 
In the following we present the results using the two que-
ries on the preprocessed and unprocessed index as de-
scribed above. The unprocessed index consists of 263.396 
terms from 13.869 classes in 116 MB while the preproc-
essed index consists of 17.365 terms from 13.869 classes 
in 86 MB. 

As shown in Fig. 6 with queries using the whole class 
and Fig. 7 with queries using only terms from the name 
the preprocessed index performs better than the unproc-
essed one. Only 5% of the code-queries were not found at 
all (i.e., were not elements of the resultset) using the pre-
processed index while 17% were not found using the un-
processed index.  

Fig. 6 Precision of queries based on class body 

If the name-queries are applied to the indexes 45% of 
the name-queries were not using the preprocessed index 
and 93% were not found using the unprocessed index. 

Precision of Code-Queries

0.0

0.2

0.4

0.6

0.8

1.0

1 11 21 31 41 51 61 71 81 91

Query

Pr
ec

is
io

n

indexP
indexU

)(
)(1)(

qhits
qrankqP −=



Fig. 7 Precision of queries based on class names 
If comparing the queries on the same indexes as de-

picted in Fig. 8 and Fig. 9 it clearly shows that the queries 
based on all terms of the class are far more efficient than 
queries only based on the class names.   

Fig. 8 Precision of preprocessed code queries vs. name 
queries 

Fig. 9 Precision of unprocessed code queries vs. name 
queries 

 
The comparison of the aggregated characteristics of 

precision from the studies are shown in Fig. 10. The mini-
mum precision is always 0 as in all studies some queries 
resulted in a result set without the original class. As many 
queries returned the searched class as the first element the 
maximum in all studies is 1. 

On average the precision of code-queries returned the 
best results while searching on the preprocessed data 
code-queries have a 13% higher precision than on the 
unprocessed index. The name-queries even have 33% 
higher precision on the preprocessed index than on the 
unprocessed index. Mode shows that the most common 
value using the name-queries is 0 and 1 using the code-
queries. The median for the code queries draws a similar 
picture – more than 50% of the code-queries have a preci-
sion of 1 while name-queries on the unprocessed index 
have a precision of 0 and on the preprocessed index a pre-
cision of 0.37. 

Fig. 10 Precision Characteristics 

6 Conclusion  
Recapitulating, we described the morphology and com-
plexity of object-oriented source code that we use in our 
approaches for preprocessing object-oriented source code 
for code retrieval. We showed that the preprocessed index 
increases the precision of the search by at least 13% for 
queries encompassing a whole class and 33% for queries 
consisting of the class name – even if the precision only 
reaches 37% in the last case.  

Although we can integrate and use the preprocessed in-
dex of this complex information for several applications 
we currently do not know if the system scales to large 
amounts of source code in terms of performance and 
space requirements and how we integrate additional in-
formation such as annotations, experiences, or inspection 
reports. Yet another obstacle is the maintenance of source 
code in our code warehouse as changes to software sys-
tems are common and they invalidate the meaning of ex-
periences or annotations to older versions of source code. 
In a typical text retrieval context (i.e., web search engine) 
this is similar to the question if old or defunct web pages 
should be integrated into the retrieval process for current 
pages.  

Furthermore, we plan to use the retrieval engine in or-
der to support software architects during software design 
so that information about the planned system (e.g., in a 
class diagram) will be used to synthesis a query in order to 
retrieve software systems (i.e., subsystems or classes) that 
can be reused.  

References 
[Althoff et al. 1999] K.-D. Althoff, A. Birk, S. Hartkopf, 
W. Muller, M. Nick, D. Surmann, and C. Tautz, "Manag-
ing software engineering experience for comprehensive 
reuse," presented at SEKE'99. Eleventh International Con-
ference on Software Engineering and Knowledge Engi-
neering., Skokie, IL, USA, 1999. 

[Basili et al. 2002] V. Basili, P. Costa, M. Lindvall, M. 
Mendonca, C. Seaman, R. Tesoriero, and M. Zelkowitz, 
"An experience management system for a software engi-
neering research organization," presented at Proceedings 
of the 26th Annual NASA Goddard Software Engineering 
Workshop, 2001, 2002. 

[Basili et al. 1992] V. R. Basili, G. Caldiera, and G. Can-
tone, "A reference architecture for the component fac-

Precision of Name-Queries

0.0

0.2

0.4

0.6

0.8

1.0

1 11 21 31 41 51 61 71 81 91

Query

Pr
ec

is
io

n

indexP
indexU

Precision of Unprocessed Code- vs. Name-Queries

0.0

0.2

0.4

0.6

0.8

1.0

1 11 21 31 41 51 61 71 81 91

Query

Pr
ec

is
io

n

code
name

Precision Characteristics

0.00 0.00 0.00 0.00

0.93

0.37

0.80

0.04

1.00

0.00

1.00

0.00

1.00

0.37

1.00

0.00

1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

code name code name

indexP indexP indexU indexU

Query

P
re

ci
si

on

Min
Mean
Mode
Median
Max

Precision of Preprocessed Code- vs. Name-Queries

0.0

0.2

0.4

0.6

0.8

1.0

1 11 21 31 41 51 61 71 81 91

Query

Pr
ec

is
io

n

code
name



tory," ACM Transactions on Software Engineering and 
Methodology, vol. 1, no. 1, pp. 53-80, 1992. 

[Basili et al. 1994] V. R. Basili, G. Caldiera, and H. D. 
Rombach, "Experience Factory," in Encyclopedia of 
Software Engineering, vol. 1, J. J. Marciniak, Ed. New 
York: John Wiley & Sons, 1994, pp. 469-476. 

[Basili & Rombach 1991] V. R. Basili and H. D. Rom-
bach, "Support for Comprehensive Reuse," Software En-
gineering Journal, vol. 6, no. 5, pp. 303-16, 1991. 

[Beck 1999] K. Beck, "eXtreme Programming eXplained: 
Embrace Change." Reading: Addison-Wesley, 1999. 

[Brin & Page 1998] S. Brin and L. Page, "The Anatomy of 
a Large-scale Hypertextual Web Search Engine," pre-
sented at 7th International World Wide Web Conference, 
Brisbane, Australia, 1998. 

[Browne et al. 1998] S. Browne, J. Dongarra, J. Horner, 
P. McMahan, and S. Wells, "Technologies for repository 
interoperation and access control," Proceedings of Digital 
Libraries '98, Pittsburgh, PA, USA, 23 26 June 1998 * 
New York, NY, USA: ACM, 1998, p 40 8, no., 1998. 

[Carro 2002] M. Carro, "The AMOS Project: An Ap-
proach To Reusing Open Source Code," presented at First 
CologNet Workshop on Component-Based Software De-
velopment and Implementation Technology for Computa-
tional Logic Systems, Madrid, Spain, 2002. 

[Cinneide et al. 2004] M. O. Cinneide, N. Kushmerick, 
and T. Veale, "Automated Support for Agile Software Re-
use," in ERCIM News, 2004. 

[Dai et al. 2004] H. Dai, W. E. I. Dai, and G. Li, "Soft-
ware Warehouse," International Journal of Software En-
gineering and Knowledge Engineering 14, vol. 04, no. 
395-406, 2004. 

[Feldmann 1999] R. L. Feldmann, "On developing a re-
pository structure tailored for reuse with improvement," 
presented at Workshop on Learning Software Organiza-
tions (LSO) co-located with the 11th International Con-
ference on Software Engineering and Knowledge Engi-
neering, SEKE'99, Kaiserslautern, Germany, 1999. 

[IBM 1994] IBM, "Software Reuse: Overview and ReDis-
covery," IBM, ISBN 0738405760, 1994. 

[Inmon 1996] W. H. Inmon, "The Data Warehouse and 
Data Mining," Communications of the ACM, vol. 39, no. 
11, pp. 49-50, 1996. 

[Jedlitschka et al. 2002] A. Jedlitschka, K.-D. Althoff, B. 
Decker, S. Hartkopf, M. Nick, and J. Rech, "The Fraun-
hofer IESE Experience Management System," KI, vol. 16, 
no. 1, pp. 70-73, 2002. 

[Porter 1980] M. F. Porter, "An algorithm for suffix 
stripping," Program, vol. 14, no. 3, pp. 130-137, 1980. 

[Ruhe & Bomarius 1999] G. Ruhe and F. Bomarius, 
"Proceedings of Learning software organizations (LSO): 
methodology and applications," presented at 11th Interna-
tional Conference on Software Engineering and Knowl-
edge Engineering, SEKE'99, Kaiserslautern, Germany, 
1999. 

[Shklar et al. 1994] L. Shklar, S. Thattle, H. Marcus, and 
A. Sheth, "The InfoHarness Information Integration Plat-
form," presented at The Second International WWW Con-
ference `94, Chicago, USA, 1994. 

[Zündorf et al. 2001] B. Zündorf, H. Schulz, and D. K. 
Mayr. SHORE – A Hypertext Repository in the XML 
World. Retrieved 3rd January, 2005, from 
http://www.openshore.org/A_Hypertext_Repository_in_th
e_XML_World.pdf, (2001). 
 


