From Agent-based Solutions to SOA Architectures in Industry 4.0

Vladimír MAŘÍK

www.ciirc.cvut.cz

CIIRC
Czech Technical University in Prague
CIIRC, ČVUT

Czech Institute of Informatics, Robotics and Cybernetics (CIIRC)

- Based on experience – a new Institute of CTU established in 2013
- CIIRC should play the role of the national center of excellence in the subject fields

8 research programs - departments:
- Robotics (Prof. Václav Hlaváč)
- Intelligent Systems (Prof. Vladimír Mařík)
- Industrial Informatics (Prof. Zdeněk Hanzálek)
- Industrial Production Control (Prof. Michael Valášek)
- Cyber-Physical Systems (Prof. Michael Šebek)
- Cognitive Science and Biomedical Eng. (Dr. Lenka Lhotská)
- Assistive Technologies (Prof. Olga Štěpánková)
- Research Platforms: Center of Applied Cybernetics (Prof. Vladimír Kučera)

The goal: State-of-the-art, competitive and self-sustainable institution
New Building of CIIRC

- Completed in November 2016
- Investment 50 mil. EUR – 85% funded by the Czech government
New Building of CIIRC – situation of December 2, 2016
Department of Intelligent Systems
of CIIRC- CTU

Some of the Capabilities and Results
Holonic Agent Architecture – experience from the past

- **Low-level control (LLC) layer**
 - real-time control on PLC
 - still IEC61131 preferred (ladder logic, structured text, ...)
 - promising successor – IEC 61499

- **High-level control (HLC)**
 - software agent (C++/Java)
 - agent runtime environment (e.g. JADE)
 - usually running on PC or a general-purpose module in PLC chassis

- **HLC↔LLC control interface**
 - agents get notifications from LLC about important events (diagnostics data, task completion, ...)
 - agents send commands to LLC
 - different technologies: COM/DCOM, OLE, blackboard, IEC 61499 interface FBs, direct access to PLC data table (Rockwell patented)
Agent-based Control System Development - experience

- **Agent Development Environment**
 - supports complete agent-based control system development
 - library of control component templates
 - design of specific control application (facility editor)
 - code generation, download and run

- **PLC-based Agent Runtime Environment**
 - agents distributed over multiple controllers (e.g. ControlLogix)
 - message transport layer – various protocols (CIP, TCP/IP, HTTP)
 - compliant with FIPA specifications, can interact with JADE

- **Debugging and visualization (Sniffer)**

- **Simulation in industrial control domain**
 - Smooth shift to physical control
Ontologies in Agent-based Manufacturing

- **OWL ontology for discrete manufacturing**
 - customer order (product, parameters, ...)
 - production process (steps, operations, ...)
 - workstations and transportation

- **Integration of ontologies in agents**
 - agent knowledge – semantic representation of current state
 - agent communication – content of messages compatible with ontology
 - agent behavior – reasoning and acting on semantically-described data

- **Use in dynamic scheduling and production control**
 - automated generation of production plans based on order parameters
 - automated processing of plan by product agent (active product)
 - dynamic scheduling of production steps execution
 - negotiation with workstations agents about providing operations
A Reference Architecture & Exploration of Ontologies

- Aircraft Assembly process Optimization:
 - Pilot project ARUM
ARUM Project – Basic Facts

- **ARUM – Adaptive Production Management**
 - Large-scale European project (2012-2015)
 - 14 partners from Europe
 - Czech Republic (2x), Germany, England, Portugal, Greece, Russia
 - Total budget: 11,5 M€
 - EU contribution: 8,5 M€
- Main coordinators
 - Project coordinator: AIRBUS
 - Technical coordinator: Certicon a.s./CTU
- External advisory board
Airbus use-case

- **Airplane assembly ramp-up**
 - Assembly of highly complex and individualized products
 - 3-5 millions of parts – mainly manual assembly
 - Focus: production scheduling in ramp-up
 - Ramp-up usually takes 2-3 years
 - Frequent disturbances halt production
 - Missing resources (delayed deliveries of parts)
 - Non-conformities (defects, quality issues, wrong dimensions,....)

- **Airbus A350 XWB fuselage assembly line in Hamburg**
 - Several assembly stations organized in a line
 - Semi-finished product equipped with different components
 - Thousands of workorders, jobs and dependencies, hundreds of resources
 - Movement of products must be synchronized across the whole line
Overall ARUM Solution

- **Following the Service Oriented Architecture (SOA)**
 - functionality wrapped in interoperable services
 - Enterprise Service Bus (ESB)

- **Key services**
 - internally implemented using multi-agent systems (MAS)

- **Developed MAS-ESB Gateway**
 - Enables agents residing inside a service to communicate with other services

- **FIPA-based extension of ESB communication**
 - adding FIPA-ACL attributes to ESB messages
 - Support for various conversation protocols
Ontologies in ARUM

- **Ontologies used as a “common vocabulary”**
 - Providing semantic description/abstract model of the manufacturing domain
- **Designed set of ontologies**
 - Core ontology – modeling of assembly processes (resources, jobs, dependencies, ...)
 - Scene ontology – modeling flow of products
 - Events ontology – modeling various expected/unexpected events and disruptions
- **All services use “ontological” format for communication**
 - Data transformed from legacy ERP system into RDF format according to ontology
 - Ontology service provides data to schedulers and planners
 - Results also represented in RDF
- Participation @ CDL-Flex Research Laboratory at the Vienna University of Technology

- **Engineering Service Bus (EngSB):**
 - ESB Technology
 - Interface – tool independent – unifying access to various SW tools
 - **Objects shared** across various domains
 - Knowledge stored in **ontology structures** for model-based knowledge engineering purposes
 - AutomationML used for modelling and meta-modelling
SOA architecture in the SCADA system

- Piping & Instrumentation
 - Tool Data

- Electrical Plans
 - Tool Data

- Mechanical Plans
 - Tool Data

- Engineering Workflow Rules

- Engineering Knowledge Base (EKB)

- Simulation
 - Tool Data

- SCADA HMI
 - Tool Data

- Runtime Data

- Parameters

- Engineering Cockpit
Project DIGICOR: Decentralized Agile Coordination Across Supply Chains

- Horizon 2020 project (11 partners)
 - running: 2016 – 2019, total budget: 8 M€
- Project goals
 - To develop **governance rules and procedures for the collaboration in production networks** and the knowledge protection model for ad-hoc collaboration and SME cluster
 - To develop an **open ICT platform** and tools and services **to support management and control of collaboration networks** using Industry 4.0 methods and means
 - To develop **novel business models** for operation and further maintenance and improve the collaboration platform and tools and services
 - To demonstrate the **improved efficiency and speedy setup** and operation of the open collaboration platform
DIGICOR: Architecture

Service discovery tool
- Tools Registry and Look-up
- Semantic-based matchmaking

Tools store
- Tools management and distribution
 - Tool 1
 - Tool 2
 - Tool 3
 - Tools upload
 - Tools download

Semantic information models
- Planning
- Supply-chain
- Scheduling

Middleware (OPC UA based communication platform)

Security and governance

Tool 1: Market place
 (instantiated tool from Tools store)

Tool 2: Production Planning
 (instantiated tool from Tools store)

Tool 3: Operative support
 (instantiated tool from Tools store)

Tool 4: Risk evaluation
 (instantiated tool from Tools store)

Gateway Service
 (access to legacy systems data)
 - Data mapping and transformation

Legacy information system
 - SAP, XLS, ...

Legacy control system
 - PLC, sensors, ...

Big Data in Industry

- In collaboration with Rockwell Automation
- Big Data within the industrial domain
 - 3Vs of Big Data
 - Volume / Velocity / Variety
 - the “Big” in “Big Data” is not the major problem
 - it is about variety, not volume
 - Our focus – Big-data historian
 - Integration of heterogeneous automation data using ontologies
 - data flow from sensors, MES/ERP systems
 - external sources (surveillance systems, energy, weather, ...)
 - Data storage
 - Decision making in real-time
 - pattern recognition, clustering, trends, ...
- **Data Analytics** – KNIME, MAHOUT
Semantic Big Data Historian Architecture

- **Analytic layer**
 - *Knime*

- **Storage layer**
 - Big Data Storage
 - *Apache Hadoop*, *Jena Elephas*

- **Data transformation layer**
 - Data transformation into OWL format

- **Data acquisition layer**
 - Data gathering
 - Sensors
 - MES/ERP
 - Simulations
 - External data

Data sources are connected via OPC UA, WS, …
• Smart devices contain their definition in the form of RDF triples
• **Semantic metadata** are stored in the variable of the corresponding object from OPC UA address space
• **User can** immediately (after device connection) query triple store by SPARQL and conduct analytic tasks
• Previously **unknown devices** can be connected if their semantic metadata comply with SHS ontology
- **Processing and transformation of required information sources** for process automation in automotive industry
 - **Detection of required elements** (e.g. in 3rd party spare part database)
 - **Subsequent matching of elements on FORD Motor Comp. ontology concepts**
 - Matching with **external dictionaries (wordnet)** and other similarity measures (e.g. n-gram, etc.)
 - Measures are **aggregated by means of neural nets** (in cooperation with NII Tokyo)
Performance Analysis of Distributed Systems

- **Problem** – performance of large-scale, distributed systems
 - high number of asynchronously interacting components
 - emergent behavior patterns
 - performance is hardly predictable at design-time
- **Solution** – Architectural Performance Models (APM)
 - simulating the design software system prior deployment
 - usually done manually – time consuming
- **Our focus** – automatic creation of APM
 - input: semantically integrated event logs
 - output: Queueing Network (QN)
 - reaching QN steady state → estimation of performance indicators
 - waiting times, resource utilization, throughput, ...
Future - Key Research Topics

- **Self-Organizing Production**
 - Production planning
 - Automatic design of robotic operations

- **Production Data Analysis**
 - Data-Driven simulation model generation and validation
 - Predictive maintenance

- **Real-Time communication in flexible systems**
 - Time sensitive networking