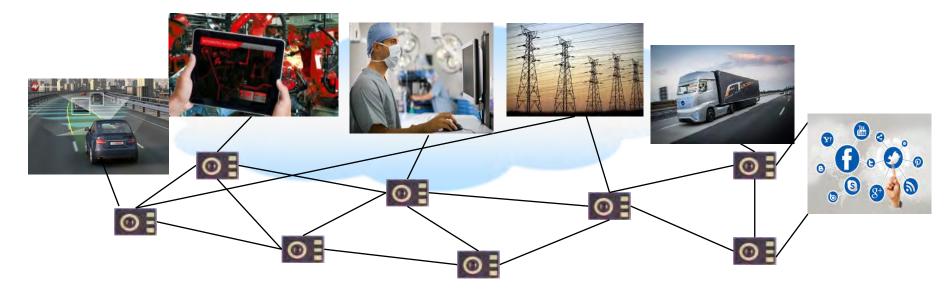
IT-SECURITY FOR INDUSTRIE 4.0

Claudia Eckert Fraunhofer-Institute for Applied and Integrated Security (AISEC)

TU Munich, Chair for IT Security

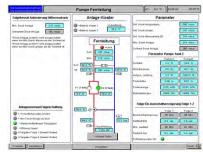


Industrie 4.0: Connected Eco-System

- Connected: from Sensors into the Cloud
- Cross-Enterprise, cross-domain
- Software-driven, sensor intelligence
- Every device is network enabled, runs IP
- Remote access, maintenance & administration

Connected Eco-Systems:

New security risks and threats!


Security Risks

- Growing number of Vulnerabilities:
 - Sensors, Embedded Software, Apps, Networks,
- Increased damages
 - Networked systems: IT-problems impair Industrial IT (OT) and vice versa, e.g. safety problems
- Targeted attacks: Cyber Attacks are Big Business!
 - E.g. Ransomeware: increased by113%

Examples

- (1) Attack on a power station via Internet access
- (2) Attack on Jeep Cherokee via WiFi interface
- (3) Attack on industrial robots via Web-Browser

Cyber Security Threats

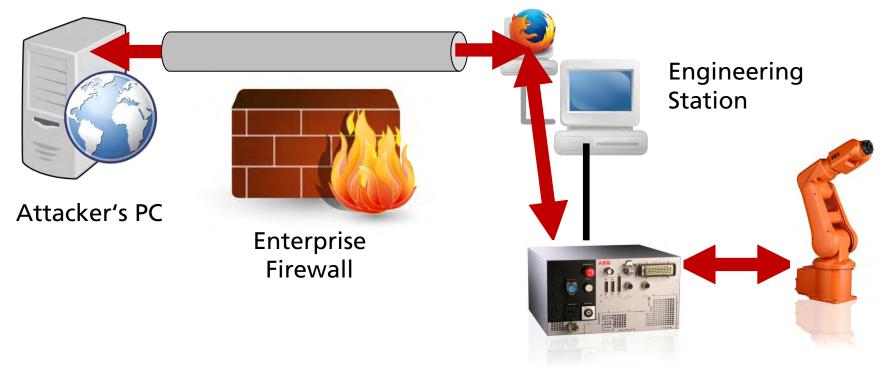
Example: Attack on Jeep Cherokee of Fiat Chrysler (2015)

Remote hacking of the car while it was driving!

Remote control over safety critical components!

Approach:

- Gaining WiFi access to entertainment unit:
 Basis: weak password based authentication
- Access on CAN bus using V850 Controller
 Basis: load malicious firmware on controller, no authentication, updates without control
- Sending commands over CAN bus: Remote control over steering wheel, brakes, door locks



Cyber Security Threats

Example: Hacking a standard industrial robot at FhI AISEC

- Exploiting classical Web-vulnerabilities (IT problems!) to connect the attacker PC and engineering station
- Activation of debug-interface of VxWorks: no authentication
- Gaining full remote control of robot! Safety implications ...

Office IT Security versus Operational IT

	Operational IT	Office IT
Component Lifetime	Up to 20 years	3-5 years
Availability requirement	Very high	Medium, delays accepted
Real time requirement	Critical	Delays accepted
Physical Security	Very much varying	High (for critical IT)
Application of patches	Slow, certification, liability	Regular / scheduled
Anti-virus	Uncommon / hard to deploy	Common / widely used
Security testing / audit	Occasional	Scheduled and mandated
Security Awareness	Increasing	High
Security Standards	Under development	Existing

 Risk- and Threat Assessments methods are required: e.g. be aware of dependencies

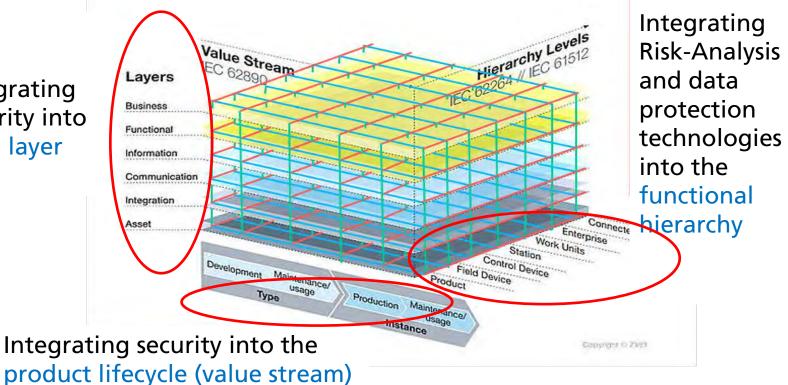
- Risk- and Threat Assessments methods are required: e.g. be aware of dependencies
- Security Technology must be integrated appropriately: avoid isolated measures
- Security within Life-Cycles: e.g. secure updating

- Risk- and Threat Assessments methods are required: e.g. be aware of dependencies
- Security Technology must be integrated appropriately: avoid isolated measures
- Security within Life-Cycles: e.g. secure updating
- Adapted and new Technologies are required: risk-based, tailored to individual needs

- Risk- and Threat Assessments methods are required: e.g. be aware of dependencies
- Security Technology must be integrated appropriately: avoid isolated measures
- Security within Life-Cycles: e.g. secure updating
- Adapted and new Technologies are required: risk-based, tailored to individual needs
- Privacy preserving personal assistance systems are required: e.g. aggregation, anonymization

Security for I4.0: Selected German Activities

- Integrating security into RAMi4.0 models
- Addressing major R&D challenges: joint forces
 Academia, Security Industry, Application Industry (e.g. OEMs)
- Developing reference architectures, appropriate technology, best practices and guide-lines for SMEs



Integrating Security into RAMI4.0

Towards a holistic approach

Integrating security into each layer

Example: Security within the different layers R&D Challenges

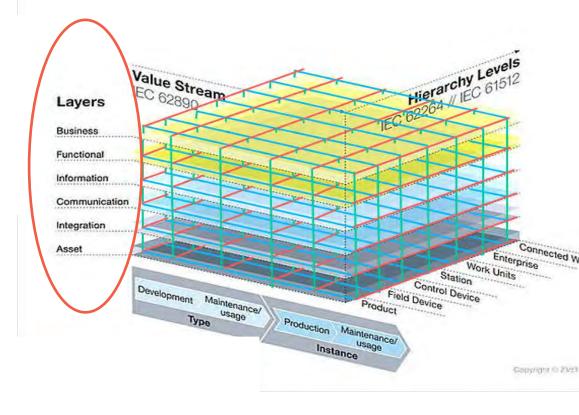
Business Layer : e.g.

• Transaction Integrity: across value chains

Functional Layer: e.g.

 Identity Management: cross domain

Information Layer: e.g.


• Data Ownership

Integration Layer: e.g.

Indrusion Detection

Asset-Layer:

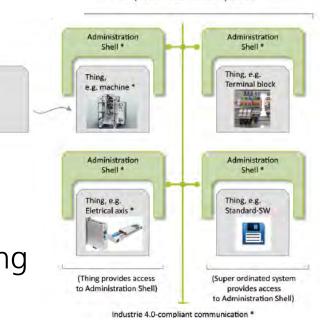
- Object identities,
- Secure communication

Assets: Security for I4.0 Components

I4.0 Component

Unified model to describe assets (sensor, machine, plant)

Thing

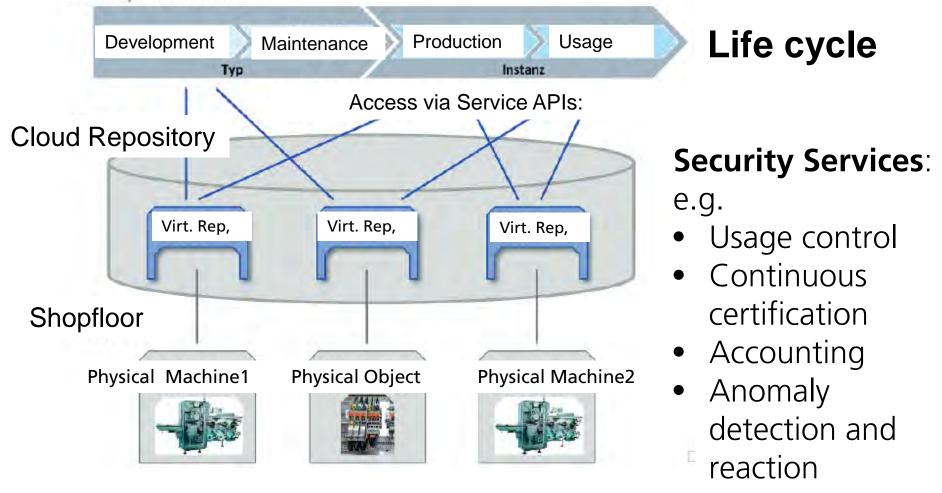

- Asset enriched with administration shell
 - Virtual representation of the real asset

Security for I40 Components:

- Protecting physical object
- Protecting administration shells

Means to protect physical objects: e.g.

- Increase attack resilience: Hardening (e.g. security chips), monitoring
- Security and privacy by design
 Object Identity, Know-how protection, encryption, ...


Examples for Industrie 4.0 Components

Security for I4.0 Components (cont.)

Protecting administration shells: e.g.

Secure Cloud-based collaboration, cross-domain:

IUNO National Reference Project Security in Industrie 4.0

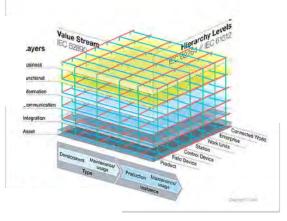
BMBF funded, 21 Partners: Industrie, Academia, 2015 - 2018

IUNO Planned Contributions

- Toolbox with new and adapted technology:
 - Secure Hardware-Token, Object Identity & Management, Access control, Anomaly Detection, Know-how Protection
- Security Engineering Methods:
 - Risk and Threat Assessments with tool supprt
- Best Practices: e.g. supporting migration paths for SMEs
 - Use-Cases, Guide-Lines, Blue Prints
- Demonstrators (with industrial leads)
 - Trustworthy data market place (Trumpf)
 - Secure remote updates (Bosch)
 - Security control center for OT (VW)

Take home Message

Industrie 4.0, Digital Transformation:


- Open, connected, cross enterprise boundaries **New dependencies & attack surfaces occur:**
 - Office-IT and Industrial IT and embedded IT and physical objects
 - IT-Security flaws impair Safety

Holistic Approach to IT-Security for Industrie 4.0 is key!

- Security in RAMI4.0: Standardization
- Technology and Method Toolboxes
 - Trustworthy security technology
 - Best practices, use-cases, blue prints
- Testbeds, Demonstrators

Thank you for your attention

Claudia Eckert

TU München, Lehrstuhl für Sicherheit in der Informatik Fraunhofer-Institut AISEC, München

E-Mail:	claudia.eckert@sec.in.tum.de	
Internet:	http://www.sec.in.tum.de	
	http://www.aisec.fraunhofer.de	
Twitter:	@FraunhoferAISEC	