How to Use Gazetteers for Entity Recognition with Neural Models

Simone Magnolini¹, Valerio Piccioni², Vevake Balaraman^{1,2}, Marco Guerini¹, **Bernardo Magnini**¹

Fondazione Bruno Kessler, Trento, Italy
 University of Trento

magnini@fbk.eu

Entity Recognition (1)

Prof.	B.	Magnini	teaches	Computational	Linguistics	at	University	of	Trento
0	B-PER	I-PER	0	0	0	0	B-ORG	I-ORG	I-ORG

• Named Entities (NER)

- Proper nouns: almost fixed expressions (e.g. no morphological variations)
- Common categories: PERSON, LOCATION, ORGANIZATION
- Several datasets available (e.g. CoNLL, OntoNotes)

Entity Recognition (2)

I	would	like	а	salami	pizza	and	two	cheese	sandwiches
0	0	0	0	B-FOOD	I-FOOD	0	0	B-FOOD	I-FOOD

Nominal Entities

• Noun phrases: compositional

pasta

pasta with pesto : + prepositional modifier

Italian pasta with pesto : + adjectival modifier

spaghetti with broccoli:

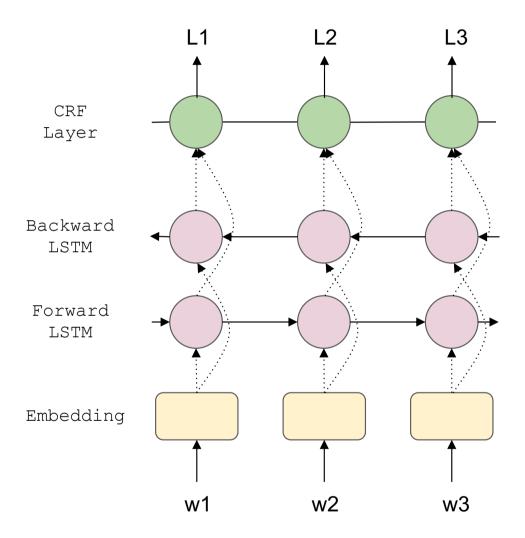
spaghetti with pesto : can be inferred

- Some categories: FOOD, FORNITURE, CLOTHES, etc.
- Few datasets available

Entity Recognition (3)

Neural models

- State of art performance
- Data-driven (typically few thousand labeled sentences)
- No need for hand-crafted features (e.g. capitalization)
- No need for external knowledge sources



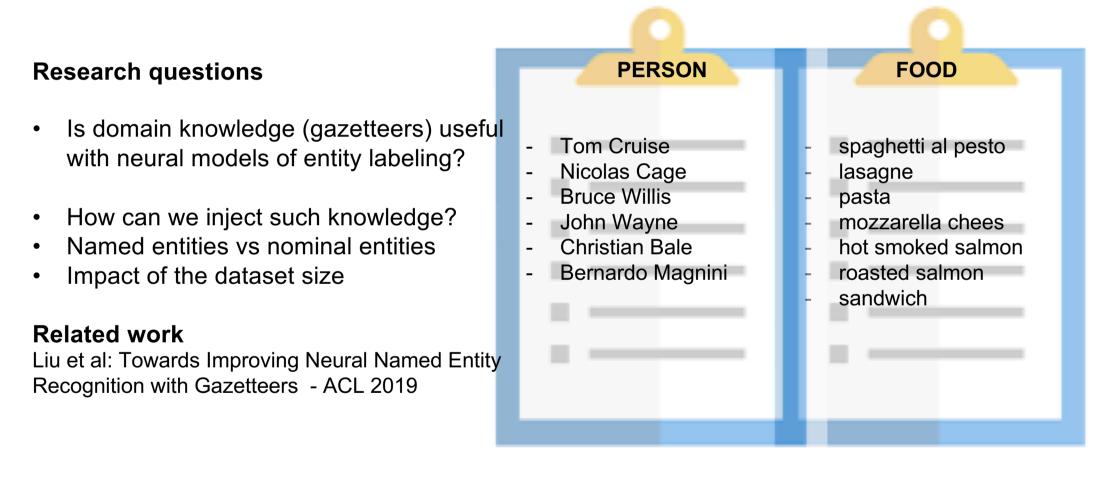
NeuroNLP2: Ma and Hovy, ACL 2016

Using Gazetteers with Neural Models

Gazetteers

- Lists of entity names for a certain category
- Rich source of domain knowledge
- Relatively cheap to obtain in large quantities (100K+)

Using Gazetteers with Neural Models

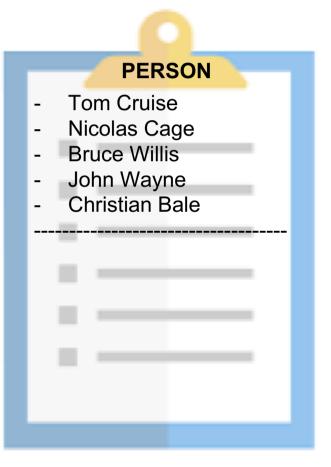


Experimental Method

1. Extract gazetteer features, three methods:

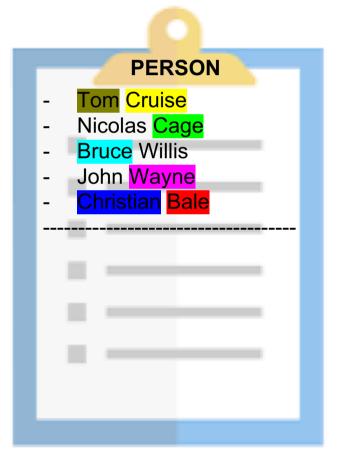
- Single token presence
- Multi-token presence
- Neural model of the gazetteer
- 2. Chose a neural sequence labeling system
 - **NeuroNLP2** (Ma and Hovy, ACL 2016) is used in this study
- 3. Integrate gazetteer features into the neural labeling system
 - As additional embedding dimension
 - As features for the classifier

Extract Gazetteer Features



Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane that throws him in a cage...

Gazetteer as feature: Single Token Presence

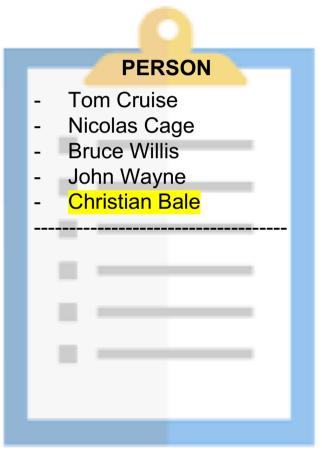


Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage...

A token has a positive value if it matches with a token present in the gazetteer.

Feature: 1-hot vector for each class to be labeled

Gazetteer as feature: Multi-token Presence



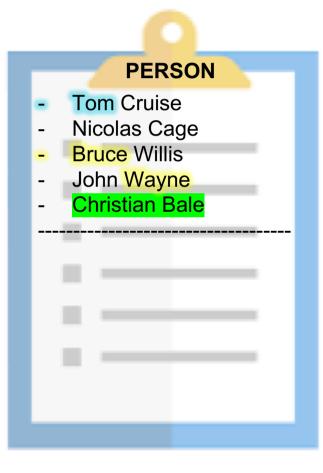
Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage...

Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage...

A token has a positive value if it is part of an entity name in the gazetteer.

Feature: 1-hot vector for each class to be labeled

Gazetteer as feature: Gazetteer Neural Model - NNg



Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage...

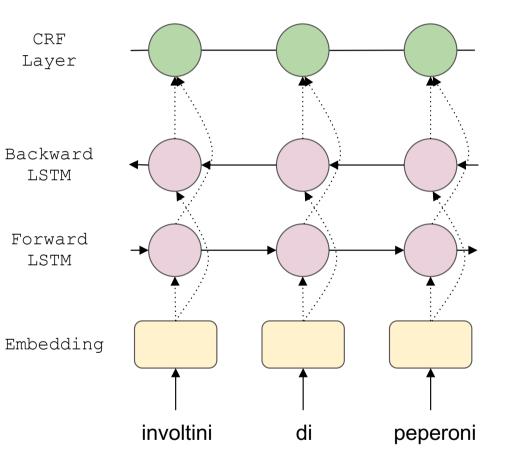
A token has a positive value if it is classified as part of a category entity by a gazetteer classifier (NNg).

- NNg is pre-trained on the Gazetteer (Guerini et al. SigDial 2018)
- The representation of the input sequence at the last layer before Softmax is used as the corresponding gazetteer representation for the sequence.

Feature: 1-hot vector for each class to be labeled

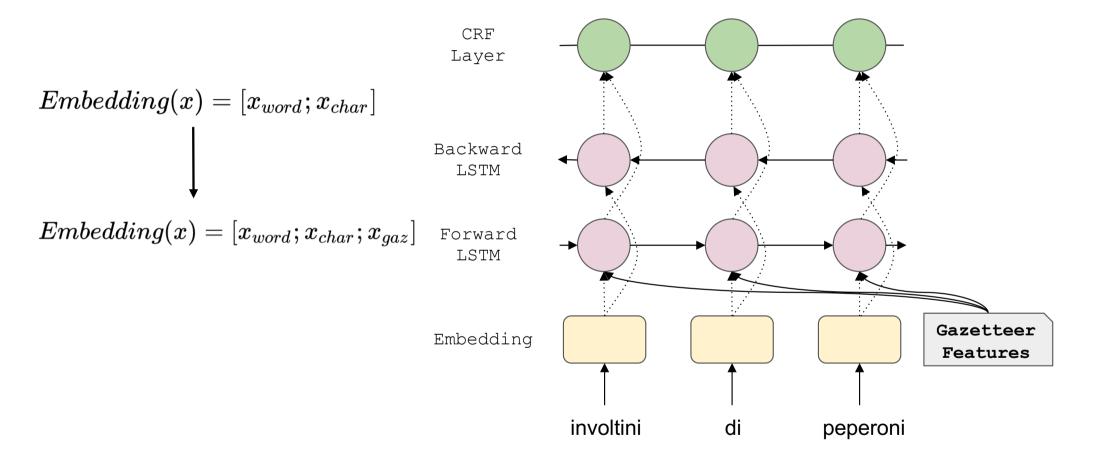
Reference Sequence Labeling Model: NeuroNLP2

- NeuroNLP2: Ma and Hovy, ACL 2016 – code availble
- Embedding
 - \circ Character \rightarrow CNN (30-d)
 - $\bigcirc \quad \text{Word} \rightarrow \text{GloVe (100-d)}$
- Recurrent NN
 - BiLSTM
- Output layer
 - CRF

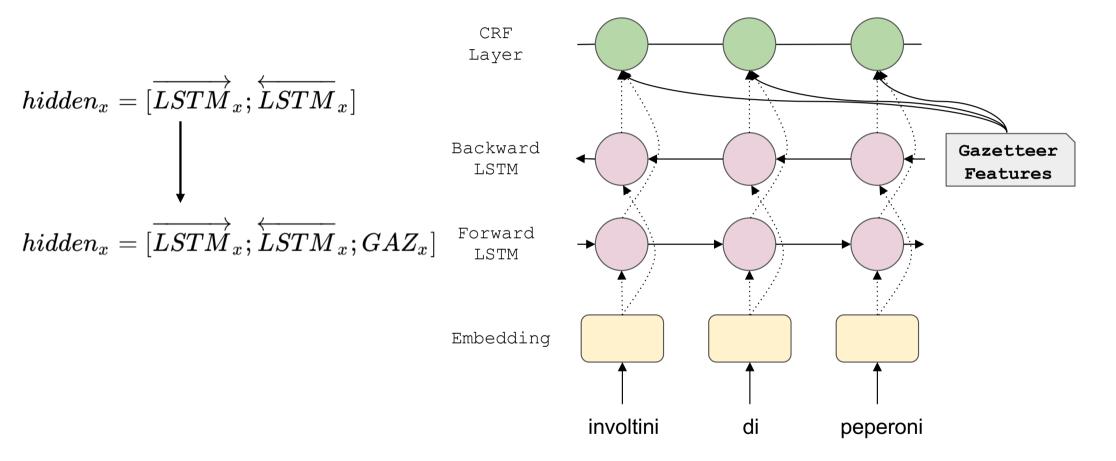


NeuroNLP2: Ma and Hovy, ACL 2016

Integration 1: Enriching Embeddings



Integration 2: CRF classifier



Experimental Setting: Two Datasets

	CoNLL-2003 – named entities (English, entities=23K)												
	Token	Types	Entities	Sentences									
Train	204567	23624	23499	14987									
Dev	51578	9967	5942	3466									
Test	46666	9489	5648	3684									
Diabetic Pa	tient Diary (DPD)	 nominal entities 	s (food, Italian, en	tities=1,7K)									
	Token	Types	Entities	Sentences									
Train	4748	636	1757	450									
Dev	296	138	122	49									
Test	2315	379	583	200									

Expe	rime	ntal S		Food gazetteer is much bigger that CoNLL gazetteers				
	entity	#entities	#tokens	length± SD	TTR	Tyr	Type2 (%)	Sub-entity (%)
	PER	3613	6454	1.79±0.54	0.90	.00	04.63	23.60
CoNLL	LOC	1331	1720	1.29±0.69	.57	04.66	04.33	10.14
gazetteers	ORG	2401	4659	1.94±1	0.91	09.35	15.06	19.44
	MISC	869	1422	+±0.94	0.89	08.61	08.73	19.85
DPD gazetteer	FOOD	23472	83264	3.55±1.87	0.75	17.22	22.97	11.27

Experimental Setting: Gazetteers												
	entity	#entities	#tokens	length± SD	TTR	Type1 (/pe2 (%)	Sub-entity (%)				
	PER	3613	6454	1.79±0.54	0.96	19.0	04.63	23.60				
CoNLL	LOC	1331	1720	1.29±0.69	0.97		04.33	10.14				
gazetteers	ORG	2401	4659	1.94±1.16	0.91	J .35	15.06	19.44				
	MISC	869	1422	1.64±0.94	0.8	08.61	08.73	19.85				
DPD gazetteer	FOOD	23472	83264	3.55±1.87	0.75	17.22	22.97	11.27				

Results: Gazetteers Integrated at Embedding Level

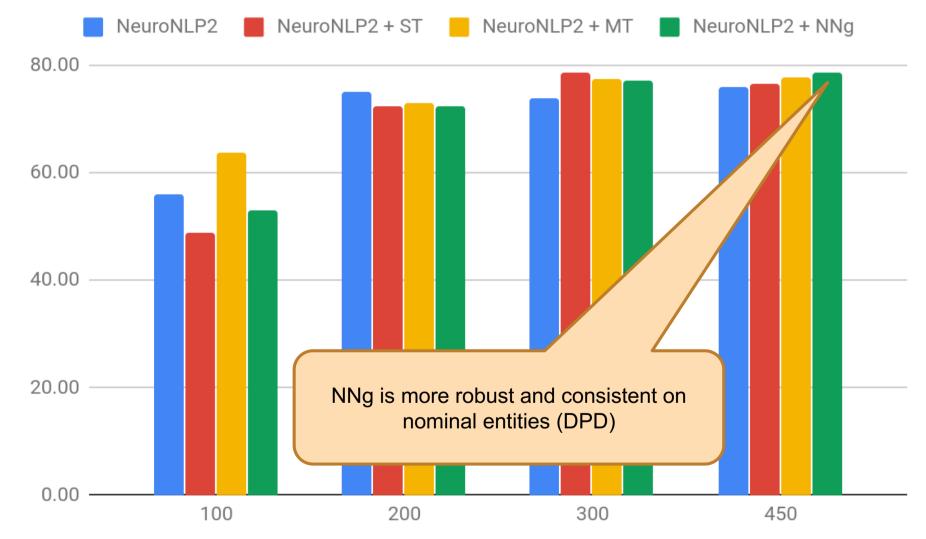
		Col	NLL	DPD				
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
NeuroNL P2	98.06	91.42	90.95	91.19	88.47	77.17	74.79	75.96
+ single token	98.06	91.53	90.51	91.02	88.29	75.63	77.19	76.40
+ multi token	98.08	91.41	90.76	91.08	88.98	78.90	76.33	77.59
+ NN _g	98.05	91.41	91.02	91.22	89.89	79.68	77.36	78.50

Adding gazetteer features at the embedding level works better than CRF integration

Res	ults: G	azette	provement w	ith named e		_evel			
		Col	NLL				DI	PD	
	Accuracy	Precision	Recall	F1		ccuracy	Precision	Recall	F1
NeuroNL P2	98.06	91.42	90.95	91.19		8.47	77.17	74.79	75.96
+ single token	98.06	91.53	90.51	91.02		88.29	75.63	77.19	76.40
+ multi token	98.08	91.41	90.76	91.08	\bigvee	88.98	78.90	76.33	77.59
+ NN _g	98.05	91.41	91.02	91.22		89.89	79.68	77.36	78.50

Results: Gazetteers Integ											
								- 4			
	Accuracy	Precision	Recall	F1	Accuracy	Precision		F1			
NeuroNL P2	98.06	91.42	90.95	91.19	88.47	77.17	74	75.96			
+ single token	98.06	91.53	90.51	91.02	88.29	75.63	77.19	76.40			
+ multi token	98.08	91.41	90.76	91.08	88.98	78.90	76.33	77.59			
+ NN _g	98.05	91.41	91.02	91.22	89.89	79.68	77.36	78.50			

Learning Curve: Nominal entities (DPD)

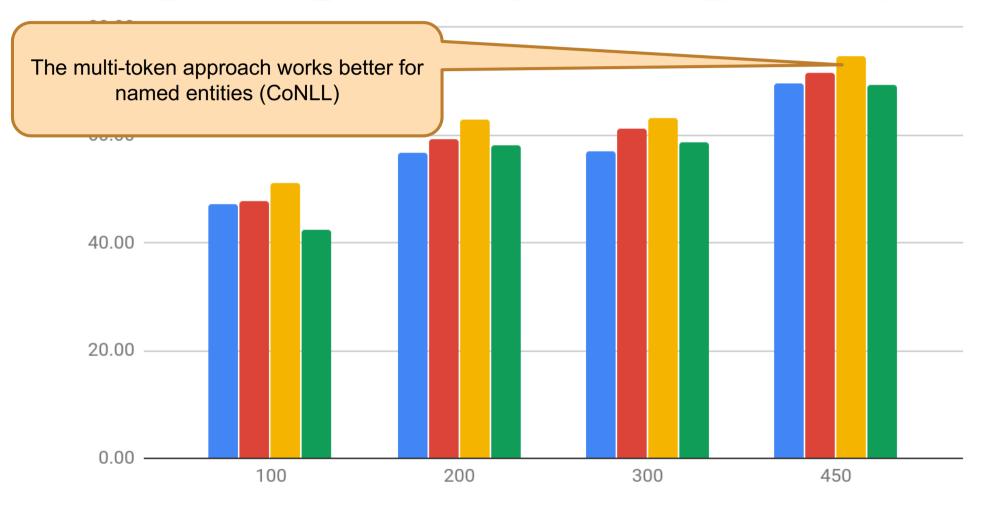


Learning Curve: named entities (CoNLL)

NeuroNLP2

NeuroNLP2 + ST NeuroNLP2 + MT

NeuroNLP2 + NNg



Conclusion

- Gazetteers are still useful for neural models, under certain conditions:
 - When are added as additional features with embeddings
 - When training data are limited
 - When nominal entities are addressed
- Best results are obtained with nominal entities and with a neural classifier built on top of the gazetteer