Jose Camacho-Collados

@SemDeep-5, IJCAI 2019 Macau, 12 August

#### Word-in-Context: Motivation

#### He withdrew money from the **bank**.

#### Word-in-Context: Motivation

#### He withdrew money from the **bank**.





#### Word-in-Context: Motivation

#### He withdrew money from the **bank**.





#### Word-in-Context: Motivation

I want to sit by the **bank** of the river, in the shade of the evergreen tree.

#### Word-in-Context: Motivation

I want to sit by the **bank** of the river, in the shade of the evergreen tree.





#### Word-in-Context: Motivation

I want to sit by the **bank** of the river, in the shade of the evergreen tree.





# Word-in-Context: Motivation (at large)

Benchmark to test an important property (i.e. ambiguity) of **human language understanding** in machine (deep) learning models.

Part of a **wider effort to test different linguistic phenomena** (e.g. language inference, common sense, question answering, co-reference, etc..).

All these tasks under a single **general-purpose language understanding benchmark**:



#### Word-in-Context: What is it?

It is a task to **evaluate context-sensitive representations of meaning** (e.g. sense/contextualized embeddings, WSD systems, etc.)

**Why?** Words are ambiguous, and there is no suitable benchmark to test the dynamic nature of words' semantics.

For this challenge we proposed a **dataset for English**, based on:

<u>WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations</u> M.T. Pilehvar and J. Camacho-Collados, Proc. of NAACL 2019 (Minneapolis, USA).

#### Word-in-Context: The task

| Label | Target  | Context-1                                                         | Context-2                                                                        |
|-------|---------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| F     | bed     | There's a lot of trash on the <u>bed</u> of the river             | I keep a glass of water next to my bed when I sleep                              |
| F     | land    | The pilot managed to <u>land</u> the airplane safely              | The enemy landed several of our aircrafts                                        |
| F     | justify | Justify the margins                                               | The end justifies the means                                                      |
| Т     | beat    | We <u>beat</u> the competition                                    | Agassi beat Becker in the tennis championship                                    |
| Т     | air     | <u>Air</u> pollution                                              | Open a window and let in some <u>air</u>                                         |
| Т     | window  | The expanded <u>window</u> will give us time to catch the thieves | You have a two-hour <u>window</u> of clear weather to finish working on the lawn |

#### Word-in-Context: Main features

1. It is suitable for evaluating a wide range of techniques, including **contextualized word and sense representation** and **word sense disambiguation**.

2. It is framed as a **binary classification dataset**, in which identical words are paired with each other (in different contexts).

3. It is constructed using **high quality annotations** curated by experts.

#### Word-in-Context: The dataset

Contextual sentences in WiC were extracted from example usages provided for words in three lexical resources: **WordNet**, **VerbNet** and **Wiktionary**.

We used **WordNet as the core resource**, exploiting **BabelNet's mappings as a bridge** between the resources.

Examples were compiled **semi-automatically**. **Pruning** and **manual verification** was performed as postprocessing.

#### Word-in-Context: Statistics

| Split    | Instances | Nouns | Verbs | Unique words |  |  |  |  |
|----------|-----------|-------|-------|--------------|--|--|--|--|
| Training | 5,428     | 49%   | 51%   | 1,256        |  |  |  |  |
| Dev      | 638       | 62%   | 38%   | 599          |  |  |  |  |
| Test     | 1,400     | 59%   | 41%   | 1,184        |  |  |  |  |

Statistics of different splits of WiC

## WiC Challenge: Details of the competition

It was run through March and April.

Participants had ~ three weeks since release of test data.

Over ten teams submitted results, **seven were officially considered** (not all wrote task description paper here).

#### WiC Challenge: Results

#### Participants

| Team       | Accuracy (best) |
|------------|-----------------|
| w4ngatang  | 68.36           |
| dloureiro  | 67.71           |
| aina.gari  | 66.71           |
| terachang  | 64.64           |
| AlanAnsell | 61.21           |
| nishnik    | 55.43           |
| gdls       | 51.93           |

#### Baselines

| Baseline    | Accuracy |
|-------------|----------|
| BERT-large  | 65.5     |
| Context2vec | 59.3     |
| DeConf      | 58.7     |
| SW2V        | 58.1     |
| Elmo-3      | 56.5     |
| JBT         | 53.6     |
| Random      | 50.0     |

#### Presentations

LIAAD at SemDeep-5 Challenge: Word-in-Context (WiC) Daniel Loureiro and Alípio Mário Jorge (next presentation)

An ELMo-inspired approach to SemDeep-5's Word-in-Context task Alan Ansell, Felipe Bravo-Marquez and Bernhard Pfahringer (presentation at 14:50)

LIMSI-MULTISEM at the IJCAI SemDeep-5 WiC Challenge: Context Representations for Word Usage Similarity Estimation Aina Garí Soler, Marianna Apidianaki and Alexandre Allauzen (I will briefly present this now)

# LIMSI-MULTISEM at the IJCAI SemDeep-5 WiC Challenge: Context Representations for Word Usage Similarity Estimation

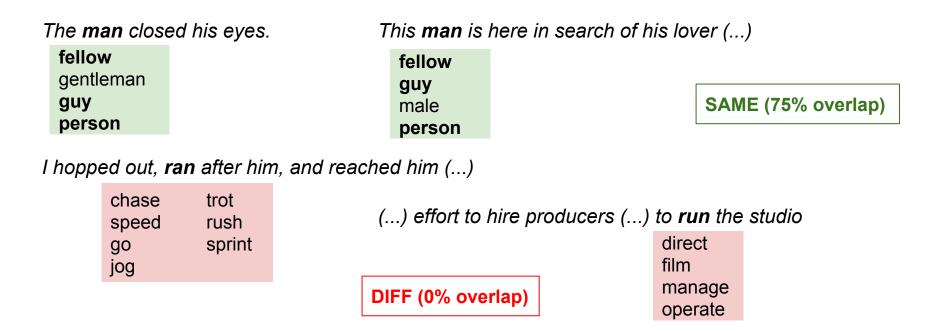
Aina Garí Soler<sup>1</sup>, Marianna Apidianaki<sup>1,2</sup>, Alexandre Allauzen<sup>1</sup>



#### Features used

Combined **cosine similarities** from (different layers of) contextualized representations:

Automatically annotated substitutes: (context2vec-based substitution)


- SIF (Arora et al., 2017)
- Context2vec (Melamud et al., 2016)
- ELMO (Peters et al., 2018)
- BERT (Devlin et al., 2018)
- USE (Cert et al., 2018)

- Proportion of common substitutes
- GAP score (Kishida, 2005)
- Substitute cosine similarity

Logistic regression classifier

# Training Data Augmentation

4,018 pairs from Concepts in Context (CoInCo) corpus (Kremer et al., 2014) with manual substitutes



### **Results and Analysis**

• Best approach (66.71): combining cosines from BERT (av 4), USE, and ELMo (top, cw=2), without data augmentation and without substitutes

➡ Why is CoInCo data not helping?

 It contains clear-cut distinctions and doesn't work for highly related but distinct (F) senses in WiC:



**Construction** is underway on the new bridge (process) The engineer marveled at his **construction** (result)

F

#### WiC Leaderboard

| Contextualised word embeddings | Implementation            | Accuracy %         |
|--------------------------------|---------------------------|--------------------|
| BERT-large                     | Wang et al (2019)         | 68.4               |
| WSD                            | Loureiro and Jorge (2019) | 67.7               |
| Ensemble                       | Gari Soler et al (2019)   | 66.7               |
| BERT-large                     | WiC's paper               | 65.5               |
| ELMo-weighted                  | Ansell et al (2019)       | 61.2               |
| Context2vec                    | WiC's paper               | 59.3               |
| Elmo                           | WiC's paper               | 57.7               |
| Sense representations          |                           |                    |
| DeConf                         | WiC's paper               | 58. <mark>7</mark> |
| SW2V                           | WiC's paper               | 58.1               |
| JBT                            | WiC's paper               | 53. <mark>6</mark> |
| Sentence level baselines       |                           |                    |
| Sentence Bag-of-words          | WiC's paper               | 58. <mark>7</mark> |
| Sentence LSTM                  | WiC's paper               | 53.1               |
| Random baseline                |                           | 50.0               |

#### Human performance: 80% (Acc)

#### WiC Leaderboard

| Contextualised word embeddings | Implementation            | Accuracy %         |
|--------------------------------|---------------------------|--------------------|
| BERT-large                     | Wang et al (2019)         | 68.4               |
| WSD                            | Loureiro and Jorge (2019) | 67.7               |
| Ensemble                       | Gari Soler et al (2019)   | 66.7               |
| BERT-large                     | WiC's paper               | 65.5               |
| ELMo-weighted                  | Ansell et al (2019)       | 61.2               |
| Context2vec                    | WiC's paper               | 59.3               |
| Elmo                           | WiC's paper               | 57.7               |
| Sense representations          |                           |                    |
| DeConf                         | WiC's paper               | 58.7               |
| SW2V                           | WiC's paper               | 58.1               |
| JBT                            | WiC's paper               | 53. <mark>6</mark> |
| Sentence level baselines       |                           |                    |
| Sentence Bag-of-words          | WiC's paper               | <u>58.7</u>        |
| Sentence LSTM                  | WiC's paper               | 53.1               |
| Random baseline                |                           | 50.0               |

### WiC in SuperGLUE

SuperGLUE is a benchmark consisting of a set of **challenging language understanding tasks**.

It includes tasks tackling different language phenomena such as **reading comprehension**, **question answering**, **language inference or co-reference**.

WiC is the task which measures the capacity of models for modeling **ambiguity**.

Room for improvement in SuperGLUE! BERT score 69.0 vs 89.8 Human baseline

# But, two days ago...

#### But, two days ago in SuperGLUE leaderboard...

| Rank | Name                      | Model                     | URL | Score | BoolQ             | CB        | COPA  | MultiRC   | ReCoRD    | RTE  | WiC  | WSC   | AX-g       | AX |
|------|---------------------------|---------------------------|-----|-------|-------------------|-----------|-------|-----------|-----------|------|------|-------|------------|----|
| 1    | SuperGLUE Human Baselines | SuperGLUE Human Baselines |     | 89.8  | <mark>89.0</mark> | 95.8/98.9 | 100.0 | 81.8/51.9 | 91.7/91.3 | 93.6 | 80.0 | 100.0 | 99.3/99.7  | 76 |
| 2    | Facebook AI               | RoBERTa                   | Z   | 84.6  | 87.1              | 90.5/95.2 | 90.6  | 84.4/52.5 | 90.6/90.0 | 88.2 | 69.9 | 89.0  | 91.0/78.1  | 5  |
| 3    | SuperGLUE Baselines       | BERT++                    |     | 71.5  | 79.0              | 84.8/90.4 | 73.8  | 70.0/24.1 | 72.0/71.3 | 79.0 | 69.6 | 64.4  | 99.4/51.4  | 3  |
|      |                           | BERT                      |     | 69.0  | 77.4              | 75.7/83.6 | 70.6  | 70.0/24.1 | 72.0/71.3 | 71.7 | 69.6 | 64.4  | 97.8/51.7  | 2  |
|      |                           | Most Frequent Class       |     | 47.1  | 62.3              | 21.7/48.4 | 50.0  | 61.1/0.3  | 33.4/32.5 | 50.3 | 50.0 | 65.1  | 100.0/50.0 |    |
|      |                           | CBoW                      |     | 44.5  | 62.2              | 49.0/71.2 | 51.6  | 0.0/0.5   | 14.0/13.6 | 49.7 | 53.1 | 65.1  | 100.0/50.0 | -  |
|      |                           | Outside Best              |     | -     | 80.4              | -         | 84.4  | 70.4/24.5 | 74.8/73.0 | 82.7 | -    | -     | -          |    |
| -    | Stanford Hazy Research    | Snorkel [SuperGLUE v1.9]  | 2   | -     | -                 | 88.6/93.2 | 76.2  | 76.4/36.3 |           | 78.9 | 72.1 | 72.6  | -          | 4  |

#### **RoBERTa (Facebook AI)**

| Rank | Name                      | Model                     | URL | Score | BoolQ | СВ        | COPA  | MultiRC   | ReCoRD    | RTE  | WiC  | WSC   | AX-g                    | AX-b |
|------|---------------------------|---------------------------|-----|-------|-------|-----------|-------|-----------|-----------|------|------|-------|-------------------------|------|
| 1    | SuperGLUE Human Baselines | SuperGLUE Human Baselines |     | 89.8  | 89.0  | 95.8/98.9 | 100.0 | 81.8/51.9 | 91.7/91.3 | 93.6 | 80.0 | 100.0 | 99.3/99.7               | 76.6 |
| 2    | Facebook AI               | RoBERTa                   | Z   | 84.6  | 87.1  | 90.5/95.2 | 90.6  | 84.4/52.5 | 90.6/90.0 | 88.2 | 69.9 | 89.0  | 91.0/78. <mark>1</mark> | 57.9 |
| 3    | SuperGLUE Baselines       | BERT++                    |     | 71.5  | 79.0  | 84.8/90.4 | 73.8  | 70.0/24.1 | 72.0/71.3 | 79.0 | 69.6 | 64.4  | 99.4/51.4               | 38.0 |
|      |                           | BERT                      |     | 69.0  | 77.4  | 75.7/83.6 | 70.6  | 70.0/24.1 | 72.0/71.3 | 71.7 | 69.6 | 64.4  | 97.8/51.7               | 23.0 |
|      |                           | Most Frequent Class       |     | 47.1  | 62.3  | 21.7/48.4 | 50.0  | 61.1/0.3  | 33.4/32.5 | 50.3 | 50.0 | 65.1  | 100.0/50.0              | 0.0  |
|      |                           | CBoW                      |     | 44.5  | 62.2  | 49.0/71.2 | 51.6  | 0.0/0.5   | 14.0/13.6 | 49.7 | 53.1 | 65.1  | 100.0/50.0              | -0.4 |
|      |                           | Outside Best              |     | -     | 80.4  | -         | 84.4  | 70.4/24.5 | 74.8/73.0 | 82.7 | -    | -     | -                       | -    |
| -    | Stanford Hazy Research    | Snorkel [SuperGLUE v1.9]  |     | -     | -     | 88.6/93.2 | 76.2  | 76.4/36.3 | -         | 78.9 | 72.1 | 72.6  | -                       | 47.6 |

**RoBERTa has outperformed BERT by over 13 overall points in SuperGLUE!** 



#### **RoBERTa (Facebook AI)**

| Rank | Name                      | Model                     | URL | Score | BoolQ | СВ        | COPA  | MultiRC   | ReCoRD    | RTE  | WiC  | WSC                | AX-g       | AX-b |
|------|---------------------------|---------------------------|-----|-------|-------|-----------|-------|-----------|-----------|------|------|--------------------|------------|------|
| 1    | SuperGLUE Human Baselines | SuperGLUE Human Baselines |     | 89.8  | 89.0  | 95.8/98.9 | 100.0 | 81.8/51.9 | 91.7/91.3 | 93.6 | 80.0 | 100.0              | 99.3/99.7  | 76.6 |
| 2    | Facebook AI               | RoBERTa                   |     | 84.6  | 87.1  | 90.5/95.2 | 90.6  | 84.4/52.5 | 90.6/90.0 | 88.2 | 69.9 | 89.0               | 91.0/78.1  | 57.9 |
| 3    | SuperGLUE Baselines       | BERT++                    |     | 71.5  | 79.0  | 84.8/90.4 | 73.8  | 70.0/24.1 | 72.0/71.3 | 79.0 | 69.6 | 64.4               | 99.4/51.4  | 38.0 |
|      |                           | BERT                      |     | 69.0  | 77.4  | 75.7/83.6 | 70.6  | 70.0/24.1 | 72.0/71.3 | 71.7 | 69.6 | 64.4               | 97.8/51.7  | 23.0 |
|      |                           | Most Frequent Class       |     | 47.1  | 62.3  | 21.7/48.4 | 50.0  | 61.1/0.3  | 33.4/32.5 | 50.3 | 50.0 | 65.1               | 100.0/50.0 | 0.0  |
|      |                           | CBoW                      |     | 44.5  | 62.2  | 49.0/71.2 | 51.6  | 0.0/0.5   | 14.0/13.6 | 49.7 | 53.1 | 65. <mark>1</mark> | 100.0/50.0 | -0.4 |
|      |                           | Outside Best              |     | -     | 80.4  | -         | 84.4  | 70.4/24.5 | 74.8/73.0 | 82.7 | -    | -                  | -          | -    |
| -    | Stanford Hazy Research    | Snorkel [SuperGLUE v1.9]  |     | -     | -     | 88.6/93.2 | 76.2  | 76.4/36.3 | ÷         | 78.9 | 72.1 | 72.6               | -          | 47.6 |

#### However, not so large improvement in WiC (still under 70% and far from human performance)

#### Thanks!

#### Download training data from:

http://pilehvar.github.io/wic/

#### Evaluate your model at:

https://competitions.codalab.org/competitions/20010

#### WiC is part of **SuperGLUE** benchmark!

https://super.gluebenchmark.com