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Word-in-Context Dataset (Pilehvar and Camacho-Collados,
2019)

Task: determine whether a word (the “focus word”) is being used in
the same sense in two different contexts.

Around 7,500 examples in total.
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ELMo Benchmark

Obtain contextualized embeddings for the focus words in the two
contexts by taking hidden states from the ELMo BiLSTM language
model (Peters et al., 2018).

Two methods of making predictions:

Calculate cosine similarity between the two embeddings and predict
based on a threshold.
Feed embeddings into a MLP.

Best configurations are:

ELMo1 (hidden states of first LSTM layer) + cosine similarity: 57.7%.
ELMo3 (weighted combination of all three LSTM layers) + MLP:
57.2%.
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Our System

Simple system which makes a few improvements over the ELMo
baseline.

Exploits bidirectionality more deeply.

Better choice of contextual embedding.

Better similarity measure.
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Bidirectionality in ELMo

ELMo essentially trains forward and backward LSTMs independently.

In a task like WiC, we want to be able to exploit both sides of the
context more effectively.
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Bidirectionality in Our Model

Rather than predicting the next word given a left side context or the
previous word given the right side context, predict the missing word
given a left and right context.

Predict the missing word using the concatenation of the forward
representation of the left context and the backward representation of
the right context.
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Choice of Contextual Representation

The hidden states of an LSTM language model for a word of interest
contain information which will be useful for predicting future/previous
words.

Some of this information may not be relevant to the sense the word is
being used.

Instead we will use the output from the final layer which is used to
predict the word of interest, since this representation contains
information solely related to this word.
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Similarity Measure

ELMo benchmarks use cosine distance between the contextual
representations of the focus words or a MLP.

Cosine distance is very simple and doesn’t exploit the availability of
training data.

MLP seems prone to overfitting on a dataset of this size.
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Similarity Measure

We use a weighted dot product

s(x1, x2) = w>(x1 ◦ x2),

where ◦ denotes element-wise product and w is a weight vector trained on
the training set. L2 regularisation is applied with a coefficient tuned on
the dev set.
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Results

States Similarity measure Dev. Test

Predictor Weighted dot product 67.4 61.2
Predictor Unweighted dot product 60.2 59.1
Predictor Cosine similarity 60.5 59.1
Hidden Cosine similarity 55.2 54.9
Hidden Weighted dot product 54.1 53.1
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Conclusions

”Predictor” states provide a better contextualized representation for
the purposes of the WiC task than hidden states when forward and
backward LSTMs are trained jointly.

Weighted dot product is a better similarity measure than cosine
distance.

3.5% improvement over ELMo baseline without looking at the focus
word.
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Parameters

Embedding size: 256

LSTM hidden state size: 2048, downprojected to 256 dimensional
output.

Training corpus: Wikipedia 2018

Vocabulary size: approx. 100k
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