Using hyperbolic large-margin classifiers for biological link prediction SemDeep-5 @ IJCAI 2019

Asan Agibetov, Georg Dorffner, Matthias Samwald

Institute für Artificial Intelligence and Decision Support - Medical University of Vienna, Austria

Aug 12, 2019

Representing biological knowledge¹

¹ "Shared hypothesis testing", Agibetov et al., J. Biomed. Sem., 2018

Biological link prediction

Link prediction as distance based inference in embedding space

Representation learning in Hyperbolic space

Nickel and Kiela. NIPS 2017

Hierarchical relationship from hyperbolic embeddings

Clusters of proteins and age groups from hyperbolic coordinates

Lobato et al. Bioinformatics 2018

Hyperbolic embeddings

Same as in Euclidean case we try to learn a *link estimator* $Q(u, v) \mapsto [0, 1]$ (*u*, *v* node pairs) with MLE

Pr(G) = ∏_{(u,v)∈Etrain} Q(u, v) ∏_{(u,v)∉Etrain} 1 − Q(u, v)
If Q perfect estimator then Pr(x) = 1 iff x = G (i.e., graph can be fully reconstructed)

Embeddings are parameters Θ of link estimator Q; trained with cross-entropy loss \mathcal{L} and negative sampling

►
$$\mathcal{L}(\Theta) = \sum_{(u,v)} \log \frac{e^{-d(u,v)}}{\sum_{v' \in nee(u)} e^{-d(u,v')}}$$

But we perform all computations in hyperbolic space

Backpropagation to learn embeddings

(a) Intermediate embedding after 20 epochs

(b) Embedding after convergence

Nickel and Kiela. NIPS 2017

Link prediction for multi-relational biological knowledge graphs

Flatenning knowledge graphs ²

Turn KG into unlabelled directed graph, s.t., no pair of nodes is connected with more than one arc (directed edge)

Dataset	# pairs connected with > 1 relation types
WN11	124/93003 (0.133%)
FB15-237	23700/310116 (7.642%)
UMLS	1343/6527 (20.576%)
BIO-KG	0/1619239 (0%)

²Agibetov, Samwald. SemDeep-4@ISWC 2018

Hyperbolic Large-Margin classifier (SVM)

Agibetov, Samwald. SemDeep-4@ISWC 2018

Cho et al. arxiv 2018

Performance evaluation

Dataset	# relation types	# entities	max # links per relation type	min # links per relation type	mean # links per relation type	# pairs connected with > 1 relation types
UMLS	46	137	1021	1	142	1343/6527 (20.576%)
BIO-KG	9	346225	554366	6159	179915	0/1619239 (0%)

		Euclidean ei	nbeddings	Hyperbolic embeddings	
	$\dim d$	Euc SVM	Hyp SVM	Euc SVM	Hyp SVM
UMLS					
	2	0.661 ± 0.023	0.616 ± 0.019	0.695 ± 0.026	0.703 ± 0.018
	5	0.780 ± 0.023	0.743 ± 0.024	0.735 ± 0.030	0.743 ± 0.024
	10	0.793 ± 0.025	0.754 ± 0.022	0.767 ± 0.031	0.742 ± 0.026
BIO-KG					
	2	0.692 ± 0.010	0.691 ± 0.010	0.613 ± 0.006	0.676 ± 0.009
	5	0.776 ± 0.010	0.771 ± 0.011	0.697 ± 0.008	0.756 ± 0.011
	10	0.732 ± 0.009	0.723 ± 0.008	0.711 ± 0.010	0.763 ± 0.010

Lessons learned

Benefit of learning hyperbolic embeddings

- fewer dimensions to capture latent semantic and hierarchical information
- scalability and interpretability (easier to visualize 2 or 3 dimensions)

From our preliminary results

- hyperbolic embeddings learn hierarchical relationships in UMLS better than Euclidean embeddings (lower dimensions)
- For complex and big graphs (BIO-KG) train hyperbolic embeddings for longer periods (> 500 epochs)

Open issues and future directions

- even with recent advances in Riemannian SGD optimization ³, learning hyperbolic embeddings still much slower than in the Euclidean case
- next steps should be focused on end-to-end hyperbolic embedding training (hyperbolic large-margin classifier loss is directly incorporated during the training process)
- code available at https://github.com/plumdeq/hsvm
- contact: asan.agibetov@meduniwien.ac.at

³"Gradient descent in hyperbolic space". Wilson and Leimeister, 2018

Why non-Euclidean space - (low-dim) manifolds

- Computing on a lower dimensional space leads to manipulating fewer degrees of freedom
- Non-linear degrees of freedom often make more intuitive sense
 - cities on the earth are better localized giving their longitude and latitude (2 dimensions)
 - instead of giving their position x, y, z in the Euclidean 3D space

Learning graph embeddings

Learn link estimate Q(u, v) → [0, 1] (u, v node pairs) and approximate graph structure (connectivity) with MLE (maximum likelihood estimation)⁴

$$\blacktriangleright Pr(G) = \prod_{(u,v) \in E_{train}} Q(u,v) \prod_{(u,v) \notin E_{train}} 1 - Q(u,v)$$

⁴ "Graph likelihood", Haija, ... Perozzi, ..., CIKM17, NeurIPS 2018

Similar principle as word2vec ⁵

⁵ "word2vec", Mikolov et al., NIPS 2014

What's so special about Riemannian geometry - curvature

Negative Curvature

Zero Curvature

Positive Curvature

Model of hyperbolic geometry

Properties of hyperbolic geometry

Computing lengths in hyperbolic geometry

Radius 1

Radius 3

Objects
ID: line-1 Start: (0.649, 0.746) End: (0.609, 0.706) Hyperbolic Length:1.791
ID: line-2

Start: (0.074, 0.166) End: (-0.536, -0.319) Hyperbolic Length:1.783

Approximation of graph distance

