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Sense Embeddings

Exploiting the latest Neural Language Models (NLMs) for sense-level 

representation learning.

• Beat SOTA for Word Sense Disambiguation (WSD).

• Full WordNet in NLM-space (+100K common sense concepts).

• Concept-level analysis of NLMs.
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Sense Embeddings

Exploiting the latest Neural Language Models (NLMs) for sense-level 

representation learning.

• Beat SOTA for English Word Sense Disambiguation (WSD).

• Full WordNet in NLM-space (+100K common sense concepts).

• Concept-level analysis of NLMs. [ACL 2019 – LMMS Paper]
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Related Work

Bag-of-Features
Classifiers

(SVM)

Deep Sequence
Classifiers

(BiLSTM)

Sense-level 
Representations

(k-NN)
(over NLM reprs.)

[Iacobacci et al. (2016)]
[Zhong and Ng (2010)]

[Luo et al. (2018b)]
[Luo et al. (2018a)]
[Vial et al. (2018)]

[Raganato et al. (2017)]

[Loureiro and Jorge (2019)]
[Peters et al. (2018)]

[Melamud et al. (2016)]
[Yuan et al. (2016)]
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Contextual k-NN

Matching Contextual Word Embeddings:

• Produce Sense Embeddings from NLMs (averaging).

• Sense embs. can be compared with contextual embs.

• Disambiguation = Nearest Neighbour search (1-NN).

• Annotations have limited coverage (16% of WordNet).

• Promising, but early attempts.

[Ruder (2018)]
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Our Approach

• Expand the k-NN approach to full-coverage of WordNet.

• Matching senses becomes trivial, no MFS fallbacks needed.

• Full-set of sense embeddings in NLM-space is useful beyond WSD.
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Challenges
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Challenges

• Overcome very limited sense annotations (covers 16% senses).

• Infer missing senses correctly so that task performance improves.

• Rely only on sense embeddings, no lemma or POS features.*

Reinforce*EnrichPropagateBootstrap

Annotated Dataset WordNet Ontology WordNet Glosses Morphological Embeddings

*Covered on our ACL 2019 Paper
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Bootstrapping Sense Embeddings

Can  your  insurance company  aid  you  in  reducing  administrative  costs ?

Would  it  be  feasible  to  limit  the  menu  in  order  to  reduce  feeding  costs ?
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Bootstrapping Sense Embeddings

Can  your  insurance company aid you  in  reducing administrative costs ?

insurance_company%1:14:00::

aid%2:41:00::

reduce%2:30:00::

administrative%3:01:00::

cost%1:21:00::

Would  it  be  feasible to  limit the  menu in  order  to  reduce feeding costs ?

cost%1:21:00::

feasible%5:00:00:possible:00

limit%2:30:00::

menu%1:10:00::

reduce%2:30:00::

feeding%1:04:01::
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Bootstrapping Sense Embeddings

insurance_company%1:14:00::

aid%2:41:00::

reduce%2:30:00::

administrative%3:01:00::

cost%1:21:00::

cost%1:21:00::

feasible%5:00:00:possible:00

limit%2:30:00::

menu%1:10:00::

reduce%2:30:00::

feeding%1:04:01::

𝑐1
𝑐1

𝑐1
𝑐1

𝑐1

𝑐2
𝑐2

𝑐2
𝑐2

𝑐2
𝑐2
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Bootstrapping Sense Embeddings

reduce%2:30:00:: cost%1:21:00::

cost%1:21:00::reduce%2:30:00::

𝑐1 𝑐1

𝑐2 𝑐2
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Bootstrapping Sense Embeddings

𝑣 reduce%2:30:00::
reduce%2:30:00::𝑐1 reduce%2:30:00::𝑐2+

n

reduce%2:30:00::𝑐n+ +…
=

𝑣 cost%1:21:00::
cost%1:21:00::𝑐1 cost%1:21:00::𝑐2+

n

cost%1:21:00::𝑐n+ +…
=
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Bootstrapping Sense Embeddings

𝑣 reduce%2:30:00::
reduce%2:30:00::𝑐1 reduce%2:30:00::𝑐2+

n

reduce%2:30:00::𝑐n+ +…
=

𝑣 cost%1:21:00::
cost%1:21:00::𝑐1 cost%1:21:00::𝑐2+

n

cost%1:21:00::𝑐n+ +…
=

Outcome: 33,360 sense embeddings (16% coverage)
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Propagating Sense Embeddings

WordNet’s units, synsets, represent concepts at different levels.
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Propagating Sense Embeddings

WordNet’s units, synsets, represent concepts at different levels.

Sensekey Sensekey

Synset Synset

Synset

Synset

Lexname

Sensekey Sensekey
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Propagating Sense Embeddings

WordNet’s units, synsets, represent concepts at different levels.

kid%1:18:00:: Sensekey

child.n.01 Synset

juvenile.n.01

Synset

noun.person

Sensekey Sensekey
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Propagating Sense Embeddings

hamburger%1:13:01::

burger%1:13:00::

hotdog%1:18:00::

potato_chip%1:13:00::

wrap%1:13:00::

sandwich%1:13:00::
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Propagating Sense Embeddings

hamburger%1:13:01::

burger%1:13:00::

hotdog%1:18:00::

potato_chip%1:13:00::

wrap%1:13:00::
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Propagating Sense Embeddings

hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

Retrieve Synsets, Relations and Categories
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Propagating Sense Embeddings

hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

1st stage: Synset Embeddings
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Propagating Sense Embeddings

hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

2nd Stage: Hypernym Embeddings (ind. Synsets)
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Propagating Sense Embeddings

hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

3rd Stage: Lexname Embeddings
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Propagating Sense Embeddings

hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

But XX != __ …

Introduction Related Work Our Approach Performance Conclusions



Enriching Sense Embeddings

Leverage Synset Definitions and Lemmas for Differentiation
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Enriching Sense Embeddings

Leverage Synset Definitions and Lemmas for Differentiation

sandwich:%1:13:00:: (sandwich.n.01)
Definition: two (or more) slices of bread with a filling between them
Lemmas: sandwich

wrap:%1:13:00:: (wrap.n.02)
Definition: a sandwich in which the filling is rolled up in a soft tortilla
Lemmas: wrap, tortilla
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Enriching Sense Embeddings

Compose a new context

sandwich:%1:13:00:: (sandwich.n.01)
sandwich - two (or more) slices of bread with a filling between them

wrap:%1:13:00:: (wrap.n.02)
wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla
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Enriching Sense Embeddings

Make the context specific to sensekey (repeat lemma)

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla
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Enriching Sense Embeddings

Obtain contextual embeddings for every token

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap – wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla

𝑐 𝑐 𝑐 𝑐

𝑐 𝑐

…

𝑐 𝑐 …
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Enriching Sense Embeddings

Sentence Embedding from avg. of Contextual Embeddings

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

𝑣𝑑 =

𝑣𝑑 =

𝑑 = 1024
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Enriching Sense Embeddings

Merge Sentence Embedding with previous Sense Embedding

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

𝑣𝑑 =

𝑣𝑑 =

sandwich:%1:13:00::
𝑣𝑠 =

wrap:%1:13:00::
𝑣𝑠 =
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sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

Merge Sentence Embedding with previous Sense Embedding

Enriching Sense Embeddings

𝑣𝑠 =

𝑣𝑠 =

𝑑 = 2048
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Matching Sense Embeddings

The glasses are in the cupboard.
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Matching Sense Embeddings

The glasses are in the cupboard.

Ԧ𝑐

Introduction Related Work Our Approach Performance Conclusions



Matching Sense Embeddings

The glasses are in the cupboard.

Ԧ𝑐

Ԧ𝑐 Ԧ𝑐𝑣𝑡 =
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Matching Sense Embeddings

The glasses are in the cupboard.

Ԧ𝑐

𝑣𝑡 =

𝑣𝑑𝑣𝑠
𝑣𝑑𝑣𝑠

𝑣𝑑𝑣𝑠
spectacles%1:06:00::

glass%1:27:00::drinking_glass%1:06:00::

Ԧ𝑐 Ԧ𝑐
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WSD Performance
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WSD Performance

60

65

70

75

80

MFS IMS
(Zhong and
Ng, 2010)

IMS + Emb.
(Iacobacci et

al. 2016)

BiLSTM
(Raganato et

al. 2017)

BiLSTM VR
(Vial et al.

2018)

context2vec
(Melamud et

al. 2016)

ELMo k-NN
(Peters et al.

2018)

BERT k-NN
(Adapted

Peters et al.)

LMMS-BERT
(Ours)

Standard English WSD Evaluation
F1 on ALL set of the WSD Evaluation Framework (Raganato et al. 2017)
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Sentence Tokens: Marco makes ravioli Apple makes iPhones

Contextual Embeddings:

Sense Embeddings:

Classifying Embedding Similarities
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Sentence Tokens: Marco makes ravioli Apple makes iPhones

Contextual Embeddings:

Sense Embeddings:

(cook.v.02) (produce.v.02)

Classifying Embedding Similarities
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Sentence Tokens: Marco makes ravioli Apple makes iPhones

Contextual Embeddings:

Sense Embeddings:

(cook.v.02) (produce.v.02)

sim1

sim2

sim3 sim4

Classifying Embedding Similarities

Now, we classify different similarity combinations
using Binary Logistic Regression
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Sentence Tokens: Marco makes ravioli Apple makes iPhones

Contextual Embeddings:

Sense Embeddings:

(cook.v.02) (produce.v.02)

sim1

sim2

sim3 sim4

Classifying Embedding Similarities

62

63

64

65

66

67

68

69

Baseline M0 M1 M2 M3 M4 SuperGlue

BERT-Large WSD
(no train/dev)

sim1 sim2 sim1,2 sim1,2,3,4
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Conclusions

• Systems designed for WSD, without being trained for the WiC task, 
can perform competitively.

• Sense Embeddings can still benefit from information captured by 
contextual embeddings, as shown by similarities classifier.

• In future work, progress on the WiC task could lead to better semi-
supervised annotations for WSD.
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Thanks
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Code and Sense Embeddings:
github.com/danlou/LMMS

@danielbloureirodloureiro@fc.up.pt


