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Abstract

We address the challenging task of processing partial
multimodal utterances in a mixed-initiative dialogue
system for multiple applications such as information
seeking, device control etc. Based on four different
types of expectations computed by our action plan-
ner (aka dialog manager), we distinguish between
expected utterances, various degrees of unexpected
but plausible utterances, and uninterpretable utter-
ances. We include a description of the backbone ar-
chitecture and the representation formalisms used.

1 Introduction

An important characteristic of mixed-initiative di-
alogue are partial utterances that can only be in-
terpreted in the context of the previous dialogue.
The setting in which we investigate the interpreta-
tion of partial utterances is the multimodal, mixed-
initiative dialogue system SMARTKOM. However, it
is our larger goal to develop a core dialog back-bone.
In fact, some of the modules described here have al-
ready been used in other projects. In SMARTKOM,
communicative actions include spoken utterances
and two-dimensional gestures (pointing, encircling
etc.) by the user and also by an animated presen-
tation agent. Since the analyses of both modali-
ties are integrated into a common representation,
our processing mechanisms are actually modality-
independent. In the following we will use utterance
to include communicative actions in all modalities.

There are a number of phenomena that occur nat-
urally in such dialogues and systems, including the
need for robustness against fairly common recogni-
tion errors. In this paper, we focus on partial utter-
ances: Those in the context of user-initiative, usu-
ally additions to or changes of the current discourse
context and those in the context of user-response,
usually a reaction to a system request.

This paper first presents the dialog system
SMARTKOM, its discourse and domain representa-
tion language and the data flow of processing. Sec-

* The research within SMARTKOM presented here is funded
by the German Ministry of Research and Technology under
grant 01 IL 905.

tion 2.2 presents the discourse modeler and 2.3 goes
into more detail about planning a system action and
supplying expectations for the next user utterance.
The central sections are 3 and 4 which describe the
details of interpretation as the integration of partial
utterances into a coherent dialog context. Before
we conclude our paper we discuss and compare our
approach in the light of QUD in section 5.

2 Architecture

Our back-bone is divided into different modules (see
figure 1), each specialized on a different task. A
multi-blackboard architecture (see, e.g., (Wahlster,
2000)) is used for communication where different
modules publish or subscribe to indicate read or
write permission for so-called data pools. All mod-
ules within the back-bone exchange information us-
ing a common representation: the domain model
(see below). For the analysis part of the back-bone,
either a single application object or one or more sub-
objects are wrapped into a hypothesis, containing
additional information, like syntactic information,
scores, dialogue acts etc. A sequence of hypothe-
ses forms a hypotheses sequence and finally several
(alternate) hypotheses sequences form a hypothesis
lattice.

2.1 Domain Model

The processing of discourse information is not in-
dependent of the representation formalism. Thus
we will briefly characterize the approach taken in
SMARTKOM, see (Gurevych et al., 2002) and also
section 4. The representation is similar to frame-
based approaches (Minsky, 1975). It is based on
an ontology of application objects and subobjects.
Application objects, e.g., a movie_ticket_reservation
event, contain subobjects, e.g., movie_theater,
show_time, and movie_information. Subobjects are
recursively composed of other subobjects, e.g., the
movie_theater subobject contains contact informa-
tion which includes an address which includes a
street_name etc. The list of top-level objects, i.e.,
application objects is of course determined by the
set of applications. In SMARTKOM, there are cur-
rently about 10 different application objects. In ad-
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Figure 1: Architecture of the back-bone

dition to an application object, an analyzed utter-
ance will contain a goal, e.g., info or reserve for a
movie. However, the objects cannot be combined
freely, as in logical frameworks such as those used
for natural language semantics. Instead, the entire
ontology is predefined for the given applications.

We call the position of a subobject in an appli-
cation object a path. Some paths are called slots.
These are paths within an application object that
are meaningful for the action planner, e. g., the path
leading to a (begin) time expression in a movie ap-
plication object.

Furthermore, the application objects and subob-
jects are represented as typed feature structures with
an inheritance tree! for the types. The type hierar-
chy is used to express relations — especially shared
substructures — between objects.

2.2 Discourse Modelling

In a system where the user communicates with, e. g.,
spoken language and gestures, the recognition mod-
ules produce many hypotheses in addition to the se-
mantic ambiguities arising while analyzing. We have
chosen to tackle this challenge by letting all analy-
sis components compute a score for each hypothesis.
These scores form the decision base for the selection
of a most probable hypothesis sequence.

Modality hypotheses are brought together by the
modality fusion module into an intention hypothesis
lattice (see (Johnston et al., 1997) for a similar ap-
proach) and are passed on to the discourse modeller.
Before selecting a hypotheses sequence? the dis-
course modeller performs two tasks: First, it scores
(see (Pfleger et al., 2002)) each hypothesis based on
how well it fits into the current discourse context
(validation). Second, appropriate contextual infor-
mation (see section 3) is added to the hypothesis

L Although the implementation in SMARTKOM is based on
an inheritance tree, our approach is general enough to handle
inheritance lattices.

2SMARTKOM features two additional modules for intention
selection and, e.g., incorporating default information to the
hypotheses. The former may also take other factors into ac-
count; however, it is not an integral part of our core back-
bone.

(enrichment). Important here is that although the
input hypothesis may contain subobjects represent-
ing partial analyses, the output from the discourse
modeller should contain only an application object
(see also section 2.3). The enrichment is ensured
using one simple and robust processing mechanism.
In the case of a hypothesis containing an applica-
tion object, the application object is compared with
the discourse context using a non-monotonic opera-
tion we call OVERLAY (Alexandersson and Becker,
2001; Pfleger et al., 2002). The overlay operation
is based on unification and works on two structures
we denote covering and background where the for-
mer represents new and the latter old information.
In case of conflicting information, i.e., unification
would fail, overlay overwrites the conflicting infor-
mation in the background. Important is that in case
of a type clash, the background is first assimilated
to the type of the covering thus making it possible
to inherit parts of the background despite a type
clash. The assimilation is computed via the least
upper bound of the covering and the background?.
If the hypothesis contains one or more subobjects, in
a first step the most probable meaning of the subob-
ject(s) is determined. Here, the expectations from
the action planner give the expected/possible/filled
paths which represent possible interpretations of the
subobject(s). These paths are used to construct a
new instance of the appropriate application object,
an operation we call bridging. We call the result
of the bridging operation the interpretation of the
subobject(s). In the next step, the interpretation
is overlayed over the appropriate background. Dur-
ing the overlay operation, a score is computed which
represents how well the hypothesis fits the context
(Pfleger et al., 2002). Finally, the hypothesis with
the best overall score is selected and passed to the
action planner which plans and triggers actions like
questioning a data base or operating on an external
device (see section 2.3) and/or appropriate presen-
tations.

In case the subobjects could not be integrated into

3...which might result in no inherited information. THis

is the case if the least upper bound is top
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an application object, fallback processing is respon-
sible for resolving the meaning of this particular in-
tention.

2.3 Action Planning
As an example consider the following user utterance:

(1) User: I want to record a film on channel two.

It would result in an intention hypothesis contain-
ing a goal to be reached in the VCR application,
that of recording a film on the VCR, and provide
an application object identifying the channel to be
recorded.

If a hypothesis sequence arrives, the action plan-
ner processes the hypotheses in turn and devises a
sequence of steps to establish the goals of the user.
In the example task, the system needs some addi-
tional information. Minimally, this would be start
time and end time. To reach the goal, a sequence of
steps — a plan — is devised to accomplish completion
of the task. This may involve actions on external
functionalities like databases or abstract devices as
well as seizing the dialogue initiative to request ad-
ditional information from the user.

Figure 2 schematically depicts the plan for the
goal VCR_record. The boxes indicate plan operators
with their pre- and postconditions, as well as the ac-
tions and presentations generated during execution.
The arrows indicate the (partial) plan execution or-
dering. To reach the goal, several “tracks” must be
followed, each one ultimately establishing conditions
needed by the goal. Since the channel was already
provided in the utterance, no VCR_getChannel oper-
ation needs to be part of this plan.

To execute the plan, its tracks can be followed in
arbitrary order. One possibility is to start with the
plan operator VCR_getStartTime. The action plan-
ner seizes the dialogue initiative and triggers a pre-
sentation asking for the start time as specified in
the plan operator, then halts since the postcondi-
tion does not hold (VCR_startTime is not known). It
then waits for a message providing needed informa-
tion — in this case, new user input in response to the
presented request — then tries to proceed with plan
execution.

In the example, two pieces of information of type
“time specification” are needed to complete the over-
all task, a start and an end time. If it can be inferred
from the form of the user utterance alone whether
it is about start or end time, the data can be in-
tegrated at the correct position in the application
object unambiguously. This is not always the case,
though. In the example, an answer giving a time
could be about a start or end time, but an end time
is not really plausible because the system just asked
for a start time. The discourse modeller will try to
use discourse context to resolve ambiguities and in-
sert subobjects at the correct positions. The action

planner tries to help this resolution by publishing its
expectations regarding user input.

2.4 Expectations

An expectation is a data structure providing predic-
tions about anticipated user input. When the sys-
tem has seized the initiative and the user is expected
to react, an expectation is published to support the
scoring of different interpretation alternatives for the
reaction by specifying context information. Most
importantly it divides the slots into four classes, de-
pending on the current context:

1. A list of expected slots: Typically, application
subobjects that the user has just been asked to
provide.

2. A list of possible slots: application subobjects
that are not filled and not focused on by the di-
alog at the moment, but of which it is in princi-
ple possible that they may be filled even if not
asked for, e. g., the user may specify a recording
time when asked to insert a medium.

3. A list of filled slots: subobjects that already
have been assigned a value in the course of the
dialogue. If the user utterance is about retract-
ing or changing already present information, it
should be interpreted with regard to filled slots.

4. All remaining slots implicitly belong to the class
other slots which cannot be interpreted in the
current context and are either misinterpreta-
tions or must be considered un-cooperative user
behavior.

The expectation contains some additional infor-
mation like the type of the application object that is
currently active and/or talked about.

3 Integration of Partial

As discussed in section 2.2, the major tasks of the
discourse modeler are validation and enrichment of
the user utterance. For partial utterances which are
analysed as subobjects, this includes the integration
into the preceding context to achieve a coherent dis-
course.

The general procedure for this, see also section
2.2, is to integrate the subobjects into a new appli-
cation object of the same type as the object of the
focused application. Enrichment is achieved by ap-
plying the OVERLAY-operation (see (Alexandersson
and Becker, 2001)) to the new application object and
the application object in focus. We consider three
cases of partial utterances with respect to their in-
terpretability:

1. the system has the initiative and the user re-
sponds elliptically to a system request
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Figure 2: A schematic plan for “I want to record a film on channel two”

2. an elliptical user utterance does not correspond
immediately to a request but can be interpreted
in context

3. an elliptical user utterance cannot be inter-
preted, caused either by misinterpretation by
the analysis module or non-cooperative user be-
havior.

In case 1 the answer uttered by the user contains
the requested subobject (i.e. the user skips the con-
stituents that are already mentioned in the ques-
tion). The identification of an elliptical answer to
the system request is based on the presence of an
expected slot of the same type as the incoming sub-
object. Additionally, it is possible that the user is
providing other relevant information, as in case 2.
This can be interpreted via possible or filled slots.
Section 3.2 describes the processing of user responses
and an example is given in section 4.1.

In case 2 the user might provide unasked-for infor-
mation that still fits into the discourse history, e. g. a
restriction of “only channel two” upon presentation
of an overview over the current TV program. An-
other possibility is that the user intends to change
the value of an already set slot of an application ob-
ject by uttering only the changed subobject, e.g.,
“and tonight?” in the same context.

The correct interpretation of such a subobject is a
replication of the request from context including the
new or changed subobject. This requires the pres-
ence of possible or filled slots. Either there are no
expected slots or the subobject is incompatible with
all of them. Section 3.3 describes the identification
and processing of such partial utterances and in sec-
tion 4.2 an example is given.

Case 3 is met when the discourse modeller is not
able to integrate the subobject into an application
object; this might occur in case of non-cooperative
user behaviour or recognition errors. In such cases,
supplemental recovery strategies are used.

Given these three classes of partial utterances and
the four classes of slots as defined for our expecta-
tions, we can summarize the possible combinations
(of which more than one can occur in the same ut-
terance) in the table 1.

| | User Initiative [ System Initiative |
Expected || NA expected,
slot unify,
plan continues
Possible || plausible, plausible,
slot unify, unify,
replanning replanning
Filled plausible, plausible,
slot overlay, overlay,
replanning replanning
Other implausible — recover strategies

Table 1: Possible combinations of partial utterances
and different expectations given user or system ini-
tiative.

Note that if the user retains the initiative, no ex-
pected slots are available as marked by NA in the
upper left cell. If the initiative remains with the
system and the user supplies an expected answer
(upper right cell), the action plan continues as in a
simple system-initiative dialog system.

The processing of possible and filled slots does not
depend on the status of initiative. Also, both are
handled by a single mechanism, using the OVERLAY-
operation. However, in the case of possible slots,
OVERLAYreduces to pure unification. The special
properties of overwriting are only used for already
filled slots. These differences are reflected in dif-
ferent scores, see (Pfleger et al., 2002). The (re-
)setting of filled and possible slots can give rise to
the need to adapt the current plan, reflecting the
mixed-initiative situation.

To illustrate the process of integrating a partial
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user utterance in the context preceding it, we now
take a brief look at the underlying structures and
operations of the discourse modeller.

3.1 Context Representation

Our approach to context representation (Pfleger,
2002) is based on a three-tiered context represen-
tation (LuperFoy, 1991) and mental representation
as in (Salmon-Alt, 2000).

For the work presented here, we focus on the three
layers of the context representation. In the discourse
layer, a discourse object (DO) represents a concept
which can be referred to. It is introduced into the
discourse either by means of language (user and sys-
tem) or graphics (system). A DO keeps information
about each mentioning depending on the manner of
presentation. Additionally, each DO has access to its
corresponding application object or subobject. Ac-
cess to DOs in the discourse layer is restricted by
a local focus stack. In the Modality Layer there are
three types of objects: Linguistic Objects (LO), Ges-
ture Objects (GO), and Visual Objects (VO). The
third layer consists of domain objects are instances
of our domain model, including, e.g., the applica-
tion objects. Figure 3 shows how the three-tiered
context representation and the local focus stack are
connected. For each turn there exists exactly one
application object or at least one subobject repre-
senting the current user or system intention. These
objects are stored in order of occurrence in the do-
main layer and provide the domain information for
the lower layers.

3.2 Processing User Responses

In the case of a user response to a system request,
the integration of subobjects is guided by the list
of expected slots which determine the paths of the
expected slot fillers within the current application
object. For the integration of the subobjects, first,
a new application object of the same type as the
current application is constructed. For each subob-
ject in the hypotheses its type is compared with the
types of the expected slots. In the case of a match,
the subobject is integrated into the new application
object using the path information of the matching
slot. Then, the newly created and extended appli-
cation object is OVERLAY-ed over the focused appli-
cation object for enrichment with previous discourse
information. If some subobjects do not match with
any of the expected slots, the integration continues
as described in the following section.

3.3 Processing Plausible Partial Utterances

In general, possible slots are processed just like ex-
pected slots. If the user tries to change a filled slot,
this is implemented by searching for a discourse ob-
ject of the same type in the local focus stack. Such a
matching discourse object will always be found since

the slot had been filled at some point in history. The
scoring, however, might be low, e. g., in case it was
mentioned a long time ago. A new application ob-
ject of the same type as the current application is
constructed. The subobject is integrated into this
application object using the path information of the
matching discourse object. Finally, the new appli-
cation object is OVERLAY-ed over the application
object of the previous user turn.

4 Two Examples

The first, shorter example shows the distinctions be-
tween expected and possible slots. The more elabo-
rate second example, dealing with a filled slot, gives
more details of the context representation.

4.1 Programming a VCR

On the basis of the following example we demon-
strate the process of integrating a subobject in the
case of system-initiative with a matching expected
slot:

(2) User: I want to record a film.
(3) System: When should I start recording?

(4) User: From 1:30pm on channel two.

Analysis of (2) produces an intention hypothesis
containing the setting of a goal VCR_record and an
empty application object for the VCR application.
The action planner accepts VCR_record as the cur-
rent goal and constructs a plan to acquire the nec-
essary data for a recording.

In this case, it decides that the time slot,
VCR_startTime, should be filled first, and the plan
operator that provides this slot takes the discourse
initiative by triggering presentation (3) that asks
for it. An expectation is published that contains
VCR as the type of the current application object,
VCR_startTime as the (only) expected slot, no filled
slots (save maybe for possible application defaults),
and, some possible slots, e.g., VCR_endTime and
VCR_channel.

When the user answers (3) by (4), an intention
containing two subobjects is passed from the modal-
ity fusion to the discourse modeller, which then uses
the expectation to determine how to integrate the
new information into a single application object. In
(4), the expected slot is filled by “1:30pm,” but also
one of the possible slots by “channel two.” The
two subobjects are integrated into a new applica-
tion object which is afterwards OVERLAY-ed over the
current application object stored from the previous
turn. The resulting application object is passed on
to the action planner, which will store the slot set-
tings and continue the dialogue to reach the goal of
programming the VCR.
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Figure 3: Two sample configurations of the context representation

4.2 Watching TV

With this example we demonstrate in some more de-
tail the process of integrating a subobject in the case
of user-initiative with no matching expected-slot:

(5) User: What is currently running on TV?

(6) System: The following (SMARTAKUS points
at a list of programs) programs are currently
running.

(7) User: And tonight?

The left part of figure 3 shows an excerpt of the
configuration of the context representation after (5)
has been processed. For example, the discourse ob-
ject DOy, introduced by the user’s uttering of “cur-
rently,” points to the slot TV_beginTime in the cur-
rent application object stored in the domain layer.
It is also accessible through the focus stack.

The right part of figure 3 shows the situation af-
ter (7) has been analyzed. DOs is introduced by
the user‘s utterance of “tomight.” There is no ex-
pected slot and DOs5 does not match any of the pos-
sible slots. This triggers a search in the local focus
stack for a discourse object corresponding to a filled
slot. During this search, DOy is found. Then, a new
application object containing the subobject of the
user utterance (7) under the path for the filled slot
(TV_beginTime) is created and enriched with the re-
maining information of the application object of (5),
using the OVERLAY-operation. Finally, the resulting
application object is passed on.

5 Discussion

We characterize our approach in the light of
(Ginzburg, 1996). In (Ginzburg, 1996), his Dialogue
Score Board (DSB) keeps track of:

e The set of currently accepted FACTS.

e The syntax and semantics of the LATEST-
MOVE.

e QUD: A partially ordered repository that spec-
ifies the currently discussable questions.

Although Ginzburg’s work on QUD aims for a more
general framework than ours, there are some simi-
larities between our approaches. Our notion of filled
slots seems to correspond the the facts in the DSB.
There is a close relation between the QUD and our
exptected and maybe also our possible slots.

Amongst the differences between our approaches
we have meta-talk. Instead of allowing for meta-talk
we specialize on narrow but multiple domains and
tasks, such as information search, device control, etc.
In these scenarios, however, we consider our entire
context for resolution of partial utterances. Another
difference is the absence of traditional semantics in
our approach. Instead we use an ontology-based do-
main model.

The salient feature of our frame work comes out
clear in table 1. There we show a fine grained charac-
terization of possible short utterances (which we call
partial utterances) in different situations and their
corresponding consequences. For all different cases,
we use one robust and simple mechanism which
treats all different expectations (expected, possible
and filled slots): OVERLAY. Our scoring function
distinguishes the different exptectations in such a
way that unifiability is rewarded whereas overwrit-
ing is not (see (Pfleger et al., 2002; Pfleger, 2002)
for more details).

6 Conclusion

We have shown how partial (multimodal) utterances
can be interpreted by integrating them into an ap-
propriate dialog context. While our approach hinges
on a frame-like representation of dialog context and
corresponding processing operations, some of the de-
tails have proven very helpful but are not essential
to the core approach, e.g., the use a three-tiered
discourse history, typed feature structures and the
OVERLAY operation.
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We have shown how in such an approach action
planning can provide expectations to make sense
of partial utterances in various situations. Espe-
cially for the interpretation unexpected (partial) ut-
terances, a complex discourse history and focus stack
are necessary to find the most plausible context for
their integration. The approach is general enough to
handle system expectations with the same process-
ing mechanism.
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