
HyLEAR: Hybrid Deep Reinforcement Learning and Planning
for Safe and Comfortable Automated Driving

Dikshant Gupta1 and Matthias Klusch2

Abstract— We present a novel hybrid learning method, named
HyLEAR, for solving the collision-free navigation problem for
self-driving cars in POMDPs. HyLEAR leverages interposed
learning to embed knowledge of a hybrid planner into a
deep reinforcement learner to faster determine safe and com-
fortable driving policies of the car. In particular, the hybrid
planner combines pedestrian path prediction and risk-aware
path planning with driving-behavior rule-based reasoning such
that the determined safe trajectories also take into account,
whenever possible, the ride comfort and a given set of driving-
behavior rules. Our experimental performance analysis over
the CARLA-CTS benchmark of critical traffic scenarios re-
vealed that HyLEAR can significantly outperform the selected
baselines in terms of safety and ride comfort.

I. INTRODUCTION

The basic problem of collision-free navigation (CFN) of
a self-driving car is to navigate on a driveable path to a
given goal in minimal time and collisions with objects such
as other cars or pedestrians in a partially observable traffic
environment. This problem can be modeled as a partially
observable Markov decision process (POMDP) to be solved
by the car online and subject to the given car and pedestrian
model. An additional challenge is to compute driving policies
online that are not only safe but, whenever possible, also
passenger comfortable and driving-rule compliant.
Current CFN methods for self-driving cars leverage either
a deep reinforcement learner (DRL) [31], [16], [7], or an
approximate POMDP planner (APPL) [21], [1], or a hybrid
combination of thereof [23]. While a hybrid method of DRL-
assisted online planning such as HyLEAP in [23] can outper-
form its individual components for collision-free navigation
in terms of safety, it may suffer from long training and online
planning time. However, it is not known yet, whether some
hybrid method with opposite type of architecture, that is
hybrid planning-assisted deep reinforcement learning for the
same problem can be comparatively more efficient and safe.
The interposed learning framework in [29] was shown to en-
able faster training of vanilla deep reinforcement learning but
has not been applied to hybrid deep reinforcement learning
for CFN yet. On the other hand, many works and user studies
investigated the effect of various road and load disturbance
factors including smoothness and passenger-perceived risk
of driving actions [24], [15], [17] on ride comfort [27], [3],
[8]. However, the potential of hybrid CFN methods taking
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ride comfort into account without compromising safety in
critical scenarios remains unclear. Besides, self-driving cars
are expected to navigate whenever possible in compliance
with a given set of default driving-behavior or traffic rules,
such as not to drive on sidewalks, or to keep the lane. In
some critical situations, however, safe driving may require
the violation of certain rules as experienced human drivers
might do without making it a habit and still being able to
explain their decision for the exceptional trajectory. In [5],
a hierarchical rule-book is used for explainable (production
rule) reasoning to select rule-compliant safe trajectories but
without integration of hybrid learning and ride comfort.
To this end, we developed HyLEAR, a novel hybrid
planning-assisted deep reinforcement learning method for
collision-free navigation of self-driving cars in POMDPs.
This hybrid method determines driving policies that are not
only safe but also take into account, whenever possible, the
ride comfort and a given set of driving-behavior rules. In
particular, HyLEAR leverages interposed learning with a
hybrid planner that combines pedestrian path prediction and
risk-aware path planning with driving-behavior rule-based
reasoning for this purpose.
For our experimental comparative performance evaluation of
HyLEAR with selected baselines, we created the publicly
available CARLA-CTS benchmark [12] that consists of
critical traffic scenarios largely based on the GIDAS accident
study [2] for the driving simulator CARLA, and sources of
HyLEAR and selected baseline methods.

II. PROBLEM DESCRIPTION

As mentioned above, the collision-free navigation problem
of a self-driving car is, in short, to minimize the time to
a given goal subject to constraints with specific focus on
avoiding near misses or even hits of pedestrians. In this
section, we adopt from [23] the description of the same
considered problem as discrete-time POMDP (cf. Sect. 2.2),
as well as the underlying models of car and pedestrian (cf.
Sect. 2.1). We then outline the set of traffic scenarios in our
created virtual benchmark CARLA-CTS (cf. Sect. 2.3).

A. Car and pedestrian model

We assume the car to perceive its environment with a 360◦

surround view. Pedestrians in a perceived traffic scene are
observable within a maximum viewing distance of 50 meters,
if no other obstacle occludes them. Following [1], the car
only knows the exact positions of observable pedestrians,
and use the kinematic bicycle model in [18] to approximately



model the car driving on the road. Accordingly, the car state
at time t is defined as (pct , p

c
goal, v

c
t , θ

c
t ) with current position

pct ∈ R2, goal position pcgoal ∈ R2, velocity vct ∈ R2

and orientation θct ∈ [0, 2π) of the car. For goal-directed
navigation of the car in continuous space of POMDPs, the
anytime weighted hybrid A* k-path planner ensures that the
generated paths are driveable for the car according to its
kinematics, though paths are not guaranteed to be optimal
and complete. The planning of safe car paths requires a cost-
map. Our basic cost-map maps environmental information of
the actual scene to a discretized grid map from a bird’s eye
view with obstacle costs of car states defined as maximum
of 1, 50, and 100, if the car is on the road, partly on the side-
walk, with any part colliding with an obstacle, respectively,
infinite else. The so-called car intention I ∈ R400×400×3 is a
small RGB segmentation image (400x400 snipet) taken from
the standard cost-map with included past and the planned
path of the car in CARLA as done, for example, in [10],
[23]. Please note that, in contrast to HyLEAP in [23], our
method HyLEAR uses a risk-aware anytime-weighted hybrid
3-path A* planner with not only the basic cost-map but two
extensions of it to generate three alternative safe paths (cf.
Section III).
The pedestrian state at time t is defined as (ppedt , ppedgoal,
vpedt , θpedt ) with current position ppedt ∈ R2, goal position
ppedgoal ∈ R2, velocity vpedt ∈ R2 and orientation θpedt ∈
[0, 2π) of the pedestrian. In our experiments, pedestrians
only move into the direction of the goal in a straight line.
Accident areas for collisions between car and pedestrian are
defined via rectangles including the car with safety margins
(1.5m front, 0.5m back, 0.5m side) for the near-miss area,
which are added to the hit or crash area, both associated with
respectively negative rewards for the car (cf. Sect. II-B).

B. Collision-free navigation problem

We model the considered collision-free navigation problem
as a POMDP (S,A, T,R, γ, Z,O) just as in [23]:

S: Set {[c, ped1, ..., ped|P|] | c ∈ R2×R2× [0, 2π), pedi ∈
R2 ×R2 ×R2 × [0, 2π), 1 ≤ i ≤ |P|} of states st ∈ S
at time t with car state c and pedestrian states pedi =
[pedoi , ped

h
i ] ∈ P , 1 ≤ i ≤ |P|, where pedoi denotes the

observable position of pedestrian i
A: Set {(α, acc)} of car driving control actions a ∈

A with (a) steering angle α ∈ Z, |α| ≤ αmax ∧
α mod 25 = 0, αmax = 50o in both direc-
tions, and (b) step-wise speed action (acceleration)
acc ∈ SpeedActions where SpeedActions is the
set {Accelerate,Maintain,Decelerate} with about
+5, 0,−5km/h, respectively.

T : Transition probability T (st, at, st+1) =
p(st+1|st, at) ∈ [0, 1] of transitioning from state
st ∈ S into state st+1 ∈ S when executing action
at ∈ A at time t. State changes fully defined by car
movement kinematics, pedestrian model.

Z: Set {[c, pedo1, ..., pedo|P|]} of observations ot ∈ Z with
car state and observable part of perceived pedestrians

in the scene.
O: Observation probability O(st+1, at, ot+1) =

p(ot+1|st+1, at) ∈ [0, 1] of observing ot+1 ∈ Z
when transitioning into st+1 after executing at, and
O(st+1, at, ot+1) = 1, if ot+1 = [c, ped′

o
1, ..., ped

′o
|P′|]

for pedestrians P ′ ⊆ P currently perceived by car, else
0; states are not deducable from single observations.

R: Immediate reward R(st, at) ∈ R for executing action
at in state st is:
rgoal = +1000, if goal position reached; rnear miss
−500, if pedestrian in near-miss area of car (rectangular
area around car; includes smaller hit area) and |vct | > 0;
rhit = −1000, if pedestrian in hit area and |vct | > 0;
robst = −max{obstCosts}, obstCost defined in Sect.
II-A; racc = −0.1, if ac-/deceleration; rsteer = −1, if
steering: |αt| > 0; rnotgoal = −0.1 else.

γ: Discount factor in [0, 1], we set γ = 0.98 similar to [1].

The reward function R encourages safe, fast, and smooth
driving. Its component rewards rgoal and rnotgoal encourage
the car to reach the goal, and rnear miss to keep a safety
distance to perceived pedestrians, while rhit, robst penalize
crashing into a pedestrian or other obstacles. Small penalties
racc and rsteer intend to avoid unnecessary acceleration and
steering which decrease the smoothness of driving.

C. Benchmark CARLA-CTS

For comparative experimental evaluation of CFN methods
of self-driving cars in critical traffic scenarios (cf. Sect. IV),
we created the virtual CARLA-CTS benchmark[12] as an
extension of OpenDS-CTS in [23] for the driving simulator
CARLA1. This benchmark contains about thirty-thousand
scenes of twelve scenarios (cf. Fig. 1) mainly based on the
GIDAS study of road accidents with pedestrians in Germany
[2] and simulated in CARLA on a test drive of about 100
meters. In Fig. 1, the blue boxes with solid arrow denote the
ego-car movements, the red boxes with solid arrow denote
static or dynamic obstacles such as parking or incoming cars,
and the dotted arrows denote the pedestrian movement. The
first nine scenarios in CARLA-CTS are based on GIDAS
without incoming car and the same as in OpenDS-CTS [23],
while CARLA-CTS also includes three additional scenarios
with incoming car in different street environments.

III. HYBRID SOLUTION HYLEAR

A. Overview

HyLEAR is a hybrid planning-assisted deep reinforcement
learner that solves the above mentioned collision-free nav-
igation problem but also addresses the challenge of ride
comfort and driving behavior-rule compliance. In particular,
it consists of a soft actor-critic deep reinforcement learner
based on [13], named NavSAC, that is assisted by a hybrid
planner which leverages functional modules for (a) risk-
sensitive planning of three alternative safe and short paths,
(b) driving behavior rule-based reasoning for the selection

1CARLA: https://carla.org/



Fig. 1. CARLA-CTS traffic scenarios.

of one path with minimal risk and rule violations, and only
during interposed learning of NavSAC, (c) online POMDP
planning of an optimal speed action for the next step on this
path. HyLEAR’s training and testing architecture differs in
that the latter does not rely on the computationally expensive
online POMDP planner (cf. Figs. 3 and 4).
At each time step of driving scene simulation during training
and testing of HyLEAR in CARLA, the risk-aware path
planner uses an anytime weighted hybrid A* k-path planner
and a multi-pedestrian path predictor M2P3 [22] to determine
three alternative safe and short paths together with their
estimated human passenger-perceived risk values as in [17].
While the first path is planned with the basic cost-map,
the planning of two alternative paths relies on an extended
cost-map with lower cost of driving on free sidewalks,
and a further extended cost-map with pedestrian positions
predicted with M2P3 as obstacles. The human passenger-
perceived risk values for each of these alternative paths are
computed based on the driver risk fields for the paths as in
[17] together with the respective cost-map for path planning.
The rule-based reasoner of the hybrid planner performs hier-
archical rule reasoning on a given rule-book as in [5] of ini-
tially four priority-ordered default driving-behavior rules (no
driving on sidewalk, minimize risk, minimize lane changes,
take shortest path) to select the safe path with minimal
human-perceived risk and rule violations. The top-priority
rule (avoid driving on sidewalks) in our current but easily
extendable rule-book can be violated in emergency cases
when no alternative path with acceptable risk is available
that does not lead through the restricted area. If multiple
paths satisfy a rule equally, the next rule for path selection

with lower priority is applied. Eventually, for the next full
car control action, the steering angle is extracted from this
selected path and the optimal speed action is planned by the
approximate POMDP planner IS-DESPOT [21], [1] during
the interposed learning of NavSAC only and by the trained
learner NavSAC during testing of HyLEAR.

B. Training

1) HyLEAR DRL network NavSAC: The off-policy soft
actor-critic deep reinforcement learning network NavSAC
(cf. Fig. 2) takes as input the car intention (cf. Sect. 2.1)
including the selected best path determined by the hybrid
planner, as well as the latest reward, current speed and
previous action of the car in order to learn to output the
best next speed action acct for this path. For this purpose, it
processes the image with a convolution neural network with
three convolution layers of filter size 8x8, 4x4, 3x3, strides
of 4x4, 2x2, 1x1, and 32, 64, 64 number of filters, respec-
tively. The flattened convolution layer output (flatten layer of
135424 units) is concatenated with the reward Rt ∈ R, speed
vct ∈ R2 and previous action at−1 ∈ R|A| (concatenation
layer) and fed into fully connected layer consisting of 512
units. The output of the latter is then fed into three-way
parallel fully connected layers that provide as an output
the estimated state value V ψ ∈ R, Q-value Qθ ∈ R, and
estimated optimal speed action policy πϕ ∈ R|SpeedActions|.

Fig. 2. NavSAC architecture.

For its off-policy soft actor-critic learning, NavSAC uses the
loss functions [13]
JV (ψ)=Eot∼D

[
1
2 (V

ψ(ot)−E
at∼πϕ [Q

θ(ot,at)−log πϕ(at|ot))])2
]
;

JQ(θ)=E(ot,at)∼D[
1
2 (Q

θ(ot,at)−Q̂(ot,at))
2];

Jπ(ϕ)=Eot∼D[log π
ϕ(at|ot)−Qθ(ot,at)], where Q̂(ot, at) =

R(ot, at) + γEot+1∼p

[
Vψ̄(ot+1)

]
; observations ot and ac-

tions at are sampled from memory buffer D, and ψ, θ and
ϕ are the NavSAC network weights to be trained during its
interposed learning with the hybrid planner of HyLEAR.
2) Interposed learning with hybrid planner: The training
architecture of HyLEAR (cf. Fig. 3, Algorithm 1) follows
the general interposed learning framework introduced in [29]
for its soft actor-critic DRL network NavSAC assisted by the
hybrid planner. At each time step t, a car control action at
(steering angle αt and speed action acct) is generated by
the hybrid planner and then executed in CARLA according
to given categorical probability distribution of speed actions
that are produced by the hybrid planner with IS-DESPOT.



Fig. 3. HyLEAR training architecture.

More concrete, the risk-aware path planning module of the
hybrid planner generates k = 3 short and safe paths based
on the basic and two extended cost-maps.
For each of these paths, the human passenger-received risk is
estimated by means of computing the respective driver risk
field (DRF) as in [17]. The DRF represents the perceived
belief of the passenger over the planned path of the car, and
yields a DRF value for any grid location in the underlying
cost-map. Eventually, the passenger-perceived risk of the
planned path is estimated as respective sum product of DRF
and cost-map values. Out of these paths associated with
their risk values, the best driving rule-compliant path patht
with minimum risk is selected by the hierarchical rule-based
reasoning module of the hybrid planner, and the steering
angle αt gets obtained from it. Only in emergency cases,
when none of the planned paths with acceptable passenger-
perceived risk value below a given risk threshold does avoid
driving on a sidewalk, this rule is violated and the one with
minimum risk is selected. In case of multiple paths with
acceptable risk, they are further filtered through all rules for
final selection of the respectively best rule-compliant path
with minimal risk.

For this selected path, the velocity planner (IS-DESPOT)
then determines the speed action acc′, which is used to
initialize a categorical distribution CatDist for the speed ac-
tion set (Accelerate, Maintain, Decelerate; cf. Sect. 2.2). For
example, if acc′ =Maintain then the distribution CatDist
is initialized with the probability vector [ 1−P2 , P, 1−P2 ]. The
speed action acct is randomly sampled from the CatDist,
and the full car control action at = (αt, acct) gets executed
in the driving simulator CARLA. After execution, the car
intention and the respective POMDP belief state transition
tuple, (It, ot, at,Rt+1, ot+1) is added to the memory buffer
D of NavSAC.
For its off-policy learning of an approximate optimal speed
action policy for given car intention in observed environment,
NavSAC then randomly samples a set (mini-batch) of state
transitions from this hybrid planning influenced memory
buffer D, takes the car intention, and trains its network
parameters using the above mentioned soft actor-critic loss
functions. During this interposed learning, the action policy
making knowledge of the hybrid planner is embedded into



Algorithm 1: HyLEAR Training
1 Number of scenes: N ∈ R+

2 Number of time steps per scene simulation: Tmax ∈ R+

3 Transition buffer: D ← ϕ
4 Regularization parameters: λV , λQ, λπ , τ
5 3-dim speed action probability vector cpd for categorical speed

action probability distribution CatDist,
6 speed action selection probability: P = 0.8

input : Randomly initialized NavSAC network weights ψ, θ, ϕ
output: Trained NavSAC network weights ψ, θ, ϕ

7 Initialize ψ ← ψ
8 for scene← 1 to N do
9 ego-car goal position for scene : pscenegoal

10 t← 1
11 while t ≤ Tmax do
12 {path}kt ← RiskAwarePathPlanner(ot, pscenegoal )
13 patht ← RuleBasedPathSelection({path}kt )
14 αt ← GetSteeringAngle(patht)
15 acc′ ← VelocityPlanner(ot, patht)
16 acct ∼rd CatDist(cpd, P )
17 at ← (αt, acct)
18 ot+1 ← CARLA execution(at)
19 Rt+1 ← Reward(st+1, at)
20 D ← D ∪ {(ot, at,Rt+1, ot+1)}
21 if t % 4 = 0 then
22 Sample minibatch of transitions

{(oj , aj ,Rj+1, oj+1)} from D
23 UpdateParameters({(oj , aj ,Rj+1, oj+1)})
24 end
25 t← t+ 1
26 end
27 end

28 function UpdateParameters({(oj , aj ,Rj+1, oj+1)}):
input : Minibatch of transitions {(oj , aj ,Rj+1, oj+1)}

from D
output: Updated network weights ψ, θ, ϕ, ψ

29 ψ ← ψ − λV ∇̂ψJV (ψ)

30 θ ← θ − λQ∇̂θJQ(θ)

31 ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
32 ψ̄ ← τψ + (1− τ)ψ̄ // JV , JQ, Jπ

33 return ψ, θ, ϕ, ψ

the off-policy learner NavSAC of HyLEAR.2 In particular,
the hybrid planner guided exploration of the state space by
NavSAC may allow for faster training. It allows to avoid
cold start and unnecessary explorations caused by sampling
transitions from D that may lead to a crash or near-miss of
pedestrians. Such accidents can be anticipated and avoided
by IS-DESPOT of the hybrid planner during its n-step look-
ahead planning of optimal speed actions for next steering
action on the given path.

C. Testing

As mentioned above, the testing architecture of HyLEAR
(cf. Fig. 4) is the same as for training except that it does not
include the computationally expensive planner IS-DESPOT
to determine an optimal speed actions for given situation
and path. This capability is now embedded in and performed
much faster by the trained learner NavSAC.
During testing, the hybrid planner of HyLEAR generates the
shortest safe path with minimal human-perceived risk and

2The action selection probability value P = 0.8 was experimentally
found to offer a good trade-off between exploitation of the hybrid planner
action policy and exploration by the deep reinforcement learner NavSAC.

rule violations as input for the trained NavSAC such that
the extracted steering angle together with the optimal speed
action determined now by the trained NavSAC instead of the
planner IS-DESPOT is then executed as a full control action
by the car in the driving simulator CARLA.

IV. EVALUATION

A. Experimental Setting

For our experimental comparative performance evaluation of
HyLEAR with selected baselines, we created the CARLA-
CTS benchmark which consists of twelve parameterized
scenarios with about thirty thousand synthesized scenes in
total, simulated in the driving simulator CARLA 0.9.12.
Most of the traffic scenarios are taken from the GIDAS
accident study [2] where the car is confronted with street
crossing pedestrian, possibly occluded by some parking car,
an incoming car, and different street intersections (cf. Sect.
2.2, Fig. 1). The scenes per scenario are generated with
varying speed and crossing distance of pedestrians from the
car.
The selected baselines are the individual collision-free nav-
igation action planning and learning methods IS-DESPOTp
and NavSACp, as well as the socially-aware DRL method
A2C-CADRLp [9] In addition, we take the deep reinforce-
ment learning-assisted online POMDP planner HyLEAP
[23] as a baseline for hybrid AI methods for collision-
free navigation that differs fundamentally from the HyLEAR
approach of hybrid planning-assisted deep reinforcement
learning. Besides, all baselines are guided by a hybrid A*
path planner as in [23], which differs from the risk-aware
anytime hybrid A* k-path planner of HyLEAR. All methods
were trained on the first nine scenarios and tested on all
twelve scenarios of the CARLA-CTS benchmark following
a 18:17:65% ratio of train, validation and test set.
The performance of each method is measured in terms of
(a) the overall safety index (SI) defined as total number of
scenarios in which the method is below given percentages
of crashes (5) and near-misses (10); (b) the crash and near-
miss rates (%), and time to goal (TTG) in seconds; (c) the
ride comfort defined as being inversely proportional to the
equally weighted sum of jerks and passenger-perceived risk
of planned trajectory of car; with risk normalized to [0,1]
and the risk threshold for rule-based selection of paths with
acceptable risk has been set to 0.1 [17]; and (d) the training
time in days and execution time in milliseconds.
HyLEAR is implemented in Python and PyTorch framework;
training and testing was done on the DL supercomputer
NVIDIA DGX-1 at DFKI Kaiserslautern.

B. Results

The overall results of our experiments, averaged across all
scenarios, are shown in Table I. For each measure, we
first average the scores across all scenes of a scenario and
then average across all scenarios such that each scenario is
weighted equally.



Fig. 4. HyLEAR testing architecture.

Method Safety Crash Near-Miss TTG Comfort Training Execution
NavSACp 1 21.44 9.24 17.57 0.262 10 60.29

IS-DESPOTp 1 21.01 6.05 16.20 0.689 N/A 259.56
A2C-CADRLp 0 25.14 11.47 14.26 1.010 4 58.57

HyLEAP 4 19.26 7.41 16.16 0.803 5 215.80
HyLEAR 5 19.88 8.49 15.86 1.064 3 71.50

TABLE I
OVERVIEW OF EXPERIMENTAL RESULTS FOR HYLEAR AND BASELINES ON CARLA-CTS BENCHMARK

In general, HyLEAR provided a safer and more comfortable
ride than the other selected baselines, following compara-
tively the fastest training and with a relatively acceptable
time to goal and execution time. In some cases, taking the
safe and more comfortable but not shortest route by HyLEAR
may come at the expense of minimal time to goal compared
to the fastest method A2C-CADRL. The latter, however,
performed worse on safety due to always accelerate policy to
reach the goal faster, which resulted in second best comfort
due to zero jerks in the calculation.
On average, the n-step look-ahead action planning with IS-
DESPOT-p was as safe as the learner NavSACp and with
more ride comfort, in particular in scenarios with temporarily
occluded pedestrians but required extremely more execution
time due to online planning than both DRL methods. Like
HyLEAP, the IS-DESPOTp does not take risk-aware path
planning into account but their n-step look-ahead planning
supported some reduction of jerks, yielding lower average
comfort than HyLEAR.
The interposed learning allowed HyLEAR to learn the op-
timal speed action for given situation and safe path faster
than the other DRL methods and 20% faster compared to
HyLEAP. Moreover, due to its hybrid planning HyLEAR

performed best in terms of safety and ride comfort, only
driving on safe paths through free sidewalks if there are no
alternatives with acceptable human-perceived risk.
While both hybrid methods, HyLEAP and HyLEAR, are by
far more safe than the tested individual planning and DRL
methods, the hybrid planning-assisted learning of HyLEAR
outperformed the DRL-assisted online planning of HyLEAP
in safety, comfort, time to goal, training and execution time.
In scenarios 1, 2, 4, 5, where the pedestrian is visible
at all times and is crossing the road from the opposite
lane, HyLEAR has the lowest crash rate as it can even
predict the future position of the pedestrian. This allows
HyLEAR to either brake in time or consider navigating
through the sidewalk to avoid crash when braking in time
is not possible, for example, in scenes with high pedestrian
speed and small crossing distance. While both HyLEAP and
IS-DESPOTp construct a belief tree for observation including
the pedestrian position, the data-driven pedestrian path pre-
dictor M2P3 in HyLEAR provides better estimates. NavSacp
and A2C-CADRLp are not supported by any such pedestrian
path predictor, hence perform comparitively poorly in these
scenarios.
In scenario 9, where the ego-vehicle is approaching an inter-



Fig. 5. Critical traffic scenario 10 with incoming car (in red) on the left
lane and pedestrian crossing from right to left, together with three alternative
safe and short paths (dotted lines) determined by risk-aware path planner
of HyLEAR car (in blue) at some time step. The red path is technically
safe, rule-compliant and shortest but perceived by the passenger of the self-
driving car as of unacceptable risk; the rule-violating path via the sidewalk
in opposite to walking direction of pedestrian is selected.

section and a pedestrian is crossing at the intersection, the
online POMDP planner IS-DESPOT-p with its n-step look-
ahead planning comparatively performed best together with
HyLEAR. The alternative pure learning methods, aiming to
reach the goal faster, mostly do not sufficiently reduce the car
speed when approaching the intersection, which often led to
collisions with buildings along the street at the intersection
when turning.
In scenario 10, the ego-vehicle is driving on the right lane,
an incoming car drives on the left lane, and a pedestrian
is crossing the street straight from right to left. All scenes
of this scenario are parameterized such that braking in time
(before hitting the pedestrian) is not possible for the self-
driving car with minimum speed set to 20km/h. In general,
due to their limited path planning capabilities compared
to HyLEAR, the baselines A2C-CADRLp, NavSACp, IS-
DESPOTp and HyLEAP did not navigate via the sidewalk
in this emergency case, which resulted in relatively high
crash rates for each of them. HyLEAR was able to better
generalise for this previously unseen scenario on the basis
of scenarios 7 and 8. Through utilizing its risk-aware path
planning of alternative safe trajectories including those via
sidewalks (cf. Fig. 5) and driving-behaviour rule-based rea-
soning, it achieved a significantly reduced crash rate and, at
the same time, acceptable passenger comfort compared to
the baselines.
In scenario 11, the left lane is blocked by parked cars such
that only the right lane is available for navigation in both
directions such as in a narrow one-way street. All tested
methods decided to navigate via the free left sidewalk to
avoid collision with incoming car and parked cars. However,
unlike HyLEAR, the neural models learned to make the
exception a habit and continued to drive partly on this
restricted area until they reached the goal position fast but
with low comfort (path risk value based on the basic cost-
map, cf. Sect. 3.2) and less rule-compliant. HyLEAR was
able to navigate back onto the street to make its trajectory
more rule-compliant and comfortable as trained during its
interposed learning with the hybrid planner.

In scenario 12, where a parked car is blocking the right lane
and there is an incoming car on the left lane, the selected
baseline methods navigated through the gap between the
parked and the incoming car, though mostly resulting in a
collision with the latter. This is mainly due to their lack of
an integrated multi-object path predictor, unlike in HyLEAR.

V. RELATED WORK

As mentioned above, there are various DRL and online
POMDP planning methods for CFN in POMDPs. For ex-
ample, the hybrid learning method RLfD [20] combines RL
and imitation learning through the combining of samples
from expert demonstrations with DRL exploration in order to
improve data efficiency. GA3C-CADRL [9] and PPO [26] are
end-to-end on-policy actor-critic, respectively, policy-based
CFN methods, while SA-CADRL [6] also codifies some so-
cial norms of driving behavior in the reward function. While
the methods of intention-aware online POMDP planning for
CFN in [1], [21] account for pedestrians and vehicles in
the traffic environment, the CFN planning in [30] for multi-
lane intersection scenarios does not do so for pedestrians.
However, none of the above methods were evaluated for
safety and comfort in synthesized car-pedestrian accident
scenarios based on real-world accident studies like GIDAS.
The hybrid DRL-assisted online POMDP planning method
HyLEAP [23] may be safer than purely DRL or POMDP
planning methods for CFN but it suffers from extreme
training times and no real-time POMDP planning. To the
best of our knowledge, there is no planning-assisted DRL
method for CFN available yet.
In our context, rule-based reasoning in DRL may be required
to guarantee the safety of DRL policy at all times and
to ensure DRL policy is rule compliant. There are various
approaches to constrained (deep) reinforcement learning with
rules. For example, in [25] rule-based reasoning is combined
with DRL by modifying the reward function with traffic
rules, while in [11] this is achieved by behaviour-based
reasoning with specifications in linear time logic on finite
traces. The rule-interposed learning framework presented in
[29] embeds high level rules into DRL by sampling rule-
compliant actions to train the learner. While these methods
follow rules when possible, applied to the CFN problem they
cannot guarantee safety and rule compliance at all times.
[5] introduced a modular hierarchy of driving behavior rules
(rulebook) such that a set of safe navigation actions can
be determined on the go. However, there is no method that
combines it with rule-interposed learning for guaranteed rule
compliance.
According to [14] comfort can be broadly defined ’as a
state of well-being, ease and physical and psychological
harmony between a person and the environment’. As to
passenger comfort in autonomous cars [8], there is no
common agreement on an objective measurement of it yet,
even not in general [27], [3], but on comfort related factors
of road and load disturbance. The latter class is concerned
with smoothness and apparent safety or perceived risk of



driving, which we take to measure passenger or ride comfort
as inversely proportional to the equally weighted sum of
jerks and passenger-perceived risk of the planned car path.
To the best of our knowledge, there is no CFN method for
self-driving car that takes ride comfort into account without
compromising safety.

VI. CONCLUSION

We presented HyLEAR, the first hybrid planning-assisted
deep reinforcement learning method for collision-free driving
policies for self-driving cars that also take into account,
whenever possible, the ride comfort and a given set of
driving-behavior rules. The experimental results over the
CARLA-CTS benchmark revealed that HyLEAR can outper-
form the selected baselines in safety and ride comfort with
faster training and acceptable execution time. Ongoing work
on improving HyLEAR is concerned with, for example, the
adding of predicted paths of other cars in simulated scenes,
the addressing of car perception with (sensor) noise, the
testing of additional recent deep reinforcement learners, and
parallel k-path planning of the hybrid planner.
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