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ABSTRACT
Coalition Structure Generation (CSG) is an NP-Hard problem in

which agents are partitioned into mutually exclusive groups to

maximize their social welfare. In this work, we propose QuACS, a

novel hybrid quantum-classical algorithm for Coalition Structure

Generation in Induced Subgraph Games (ISGs). Starting from a

coalition structure where all the agents belong to a single coalition,

QuACS recursively identifies the optimal partition into two disjoint

subsets. This problem is reformulated as a QUBO and then solved

using QAOA. Given an 𝑛-agent ISG, we show that the proposed

algorithm outperforms existing approximate classical solvers with

a runtime of O(𝑛2) and an expected approximation ratio of 92%.

Furthermore, it requires a significantly lower number of qubits

and allows experiments on medium-sized problems compared to

existing quantum solutions. To show the effectiveness of QuACS

we perform experiments on standard benchmark datasets using

quantum simulation.
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1 INTRODUCTION
A generic coalition game, also called a Characteristic Function Game
(CFG) (𝐴, 𝑣) comprises a set of intelligent agents 𝐴, and a char-

acteristic function 𝑣 : P(𝐴) → R which maps every non-empty

subset (coalition) of𝐴 to a real value. In many practical applications,

there are constraints that may limit the formation of coalitions and

the synergies between agents can be expressed as a graph[6]. In
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this case, the value of a coalition only depends on the pairwise

interactions connecting the agent in the graph, and such problems

are usually referred to as CFG is Induced Subgraph Game (ISG) [6].
Given an ISG (𝐴, 𝑣) represented as a connected, undirected,

weighted graph 𝐺 (𝐴,𝑤) where the nodes represent the agents 𝐴 =

{𝑎1, 𝑎2, ....𝑎𝑛} and the edgeweights𝑤𝑖 𝑗 denote the synergy between

𝑎𝑖 and 𝑎 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the value of the characteristic function
for a coalition 𝐶 can be expressed as 𝑣 (𝐶) = ∑

𝑖, 𝑗∈𝐶 𝑤𝑖 𝑗 ,∀𝐶 ⊆ 𝐴.

A Coalition Structure (CS) is a complete set partition of 𝐴 con-

sisting of a set of coalitions {𝐶1,𝐶2, . . . ,𝐶𝑘 } such that

⋃𝑘
𝑖=1𝐶𝑖 =

𝐴 and 𝐶𝑖 ∩𝐶 𝑗 = ∅ for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘} and 𝑖 ≠ 𝑗 . The goal is

to find the optimal coalition structure 𝐶𝑆∗ such that:

𝐶𝑆∗ = argmax

𝐶𝑆

∑︁
𝐶∈𝐶𝑆

∑︁
𝑖, 𝑗∈𝐶

𝑤𝑖, 𝑗 (1)

In the scope of this paper, we refer to the problem of CSG in ISG

as the ISG problem and we assume a fully connected graph allowing

both positive and negative edge weights. In this respect, the ISG

problem remains NP-Hard [1]. Notice that graph-restricted games,

such as ISGs, have realistic use cases, e.g., social network analysis

[10] to discover collective groups of people with similar interests,

or content downloading in self-driving cars [13].

2 RELATEDWORKS
ISG problems can be seen as special cases of standard CFGs and

therefore, any algorithm to solve the generic CSG problem for

CFGs can be applied in the context of ISGs (not vice-versa). The

time complexity of state-of-the-art exact solvers for generic CSGs

[4, 14, 18] scales as O(3𝑛) where 𝑛 is the number of agents.

In order to deal with this exponential complexity, approximate

solvers, such as C-link [9] can be adopted. The C-Link algorithm is

inspired by agglomerative clustering which follow a greedy bottom-

up approach to determine the profit of merging (only) two coalitions

at each step. This approach leads to an overall worst-case time

complexity of 𝑂 (𝑛3) for a coalition game with 𝑛 agents at the cost

of drastically reducing the exploration of the solution space. This

leads to a worst-case approximation ratio of 80% with respect to

the quality of the solution. Specifically for ISGs, CFSS [3] is an

anytime exact solver and the state-of-the-art solver k-constrained
Graph Clustering (KGC) [2] which is an Integer Linear Programming
(ILP) based solver. Although both CFSS and KGC perform well for

sparse graphs, they might end up exploring all possible solutions

for complete graphs with a complexity of O(𝑛𝑛).
Recently, a few quantum computing solutions have been pro-

posed for solving the CSG problem. BILP-Q [16] is the first general
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quantum algorithm for any CSG problem. It operates by reformu-

lating the problem as a Quadratic Binary Unconstrained Optimiza-

tion (QUBO) problem and solves it using both gate-based quantum

computing and quantum annealing. Although BILP-Q potentially

outperforms state-of-the-art classical solutions for generic CFGs,

it requires the number of logical qubits to be O(2𝑛), which is a

significant limitation considering near-term quantum technology.

In addition, two possible quantum annealing solvers for ISGs

have been proposed. GCS-Q [17] is an anytime approximate solver

for any generic ISG which follows a top-down approach to find a

near-optimal coalition structure. Particularly, it performs multiple

calls to a D-Wave quantum annealer to find the optimal split to split

for a given coalition. Alternatively, other existing approaches [12]

map the graph of an ISG into specific quantum annealer hardware

architecture to find the optimal coalition structure. However, this

method cannot be adopted for any problem instance as the mapping

is dependent on the hardware specifications.

In this work, we propose QuACS (Quantum Algorithm for Coali-

tion Structure generation), a novel hybrid quantum-classical algo-

rithm for ISG problems. QuACS adopts the same top-down approach

proposed by GCS-Q [17], where the coalitions are recursively split

into two disjoint subsets but uses gate-based quantum optimization

(QAOA [8]) for finding the optimal bipartition at each step. This

allows investigating its scalability and usability in terms of runtime,

number of gates, and number of qubits, to properly compare it with

respect to existing classical and quantum solvers. Starting with a

coalition structure containing a single coalition including all the

agents, QuACS runs until no further split provides better coalition

value for any coalition in the current optimal coalition structure.

Thanks to this convenient strategy, the proposed solution is any-

time and allows for obtaining near-optimal solutions in polynomial

time. These two features are essential for real-world situations

where a fast near-optimal solution is needed. We show that QuACS

outperforms existing approximate solvers both in terms of runtime

and quality of the solution. Furthermore, it requires a significantly

lower number of qubits with respect to BILP-Q [16].

As a second contribution, we implement QuACS using quan-

tum simulation on standard benchmark datasets with a number of

agents up to 20. We will show that the proposed approach performs

well even for shallow-depth QAOA (𝑝 = 1) with a worst-case ap-

proximation ratio of approximately 80%. Also, the performances

improve when tuning 𝑝 up to 92%.

3 ALGORITHM
Given an 𝑛-agent ISG (cf. Definition 1) with a fully connected un-

derlying graph, QuACS initially assigns all the agents to a single

coalition, the grand coalition 𝑔𝑐 . Thus the algorithm considers all

possible splits of 𝑔𝑐 into two disjoint coalitions, evaluating the

correspondent value of the characteristic function. If none of the

generated bipartitions provides a value greater than that of 𝑣 (𝑔𝑐 ),
then the algorithm terminates by returning 𝑔𝑐 as the best coalition

structure 𝐶𝑆∗ (e.g., in the case of superadditive games). Otherwise,

the optimal bipartition {𝐶,𝐶} of 𝑔𝑐 , which maximizes the charac-

teristic function, is selected, and the optimal coalition structure𝐶𝑆∗

becomes {𝐶,𝐶}, where the two sets of agents act independently

from each other. The process of finding the optimal bipartition is

then repeated for each coalition in the current optimal coalition

structure 𝐶𝑆∗, and the algorithm proceeds until none of the coali-

tions in𝐶𝑆∗ can be split in a way to provide a better coalition value.

In particular, the algorithm terminates when

𝑣 (𝑆) > 𝑣 (𝐶) + 𝑣 (𝐶) ∀𝑆 ∈ 𝐶𝑆∗ (2)

where 𝐶 ∪ 𝐶 = 𝑆 , 𝐶 ∩ 𝐶 = ∅. To find an optimal split (or opti-

mal bipartition), QuACS divides the underlying connected graph

of a coalition into two disconnected subgraphs by removing the

edges that maximize the sum of the remaining edge weights in

the subgraphs. In other words, the nodes of the underlying graph

are separated into two mutually exclusive subsets such that the

sum of the edge weights in the subgraphs induced by the subset

of vertices is maximum. Thus, finding the optimal split for a given

ISG is equivalent to performing the weighted minimum cut (min-

cut) in the underlying graph [6], which minimizes the sum of edge

weights that are removed while partitioning the vertices into two

disjoint sets. For arbitrary edge weights, the min-cut is proven to

be NP-Hard [11] and the exhaustive enumeration of all possible

bipartitions for a coalition of 𝑛 agents is 𝑂 (2𝑛).
In order to improve the runtime for finding the best coalition

structure, QuACS leverages the QAOA [8] for solving the min-cut

problem at each step. In fact, this problem can be reformulated

as a QUBO [5] and the solution can be retrieved using hybrid

quantum-classical optimization. Specifically, the solution to the

min-cut provided by training the correspondent QAOA is a binary

string whose values correspond to each agent belonging to one of

the two partitions. Thus, this process of formulating the optimal

split as a QUBO and solving it using QAOA is repeated at every

step of QuACS to generate the optimal splits.

The pseudocode for QuACS is reported in Algorithm 1. Example

3 shows how QuACS proceeds for a 4-agent game.

Algorithm 1 Outline of QuACS

Require: Set of𝑛 agents𝐴 = {𝑎1, 𝑎2, ., 𝑎𝑛}, weights𝑤 : 𝐴×𝐴→ R
Initialize 𝐶𝑆∗ ← 𝑔𝑐 ⊲ grand coalition 𝑔𝑐 = {𝐴}
for an unexplored coalition 𝑆 ∈ 𝐶𝑆∗ do

Derive the Ising Hamiltonian for min-cut of S

Solve Ising Hamiltonian using QAOA

Decode binary string to get 𝐶 , 𝐶 ⊲ where𝐶∪𝐶 =𝑆 , 𝐶∩𝐶 = ∅
if 𝑣 (𝐶) + 𝑣 (𝐶) ≥ 𝑣 (𝑆) then

Remove 𝑆

Add 𝐶,𝐶 to 𝐶𝑆∗

end if
end for

Ensure: Optimal Coalition Structure 𝐶𝑆∗

Example. Given an ISG with four agents {𝑎1, 𝑎2, 𝑎3, 𝑎4} and the

edge weights between them defined as
1
:

𝑤12=2, 𝑤13=6, 𝑤14=−4, 𝑤23=−5, 𝑤24=−1, 𝑤34=1

The QuACS finds the optimal coalition structure𝐶𝑆∗ as follows. At
each step, the split with the highest value is chosen. 𝐶𝑆∗ always

1
We consider a simple example with all agents/nodes having no self-loop, i.e., their

utility is equal to zero when working separately.
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contains the best solution found until then and its value is given by

𝑣 (𝐶𝑆∗). The algorithm terminates when none of the coalitions in

𝐶𝑆∗ has a better split. Here, {{𝑎1, 𝑎3}, {𝑎2}, {𝑎4}} is the best way
to partition the agents in 𝐴.

Step Coalition (S) Values to Compare 𝐶𝑆∗ 𝑣 (𝐶𝑆∗)
0 - - {{𝑎1, 𝑎2, 𝑎3, 𝑎4}} −1

1 {𝑎1, 𝑎2, 𝑎3, 𝑎4}

𝑣 ({𝑎1, 𝑎2, 𝑎3, 𝑎4}) = −1
𝑣 ({𝑎1}) + 𝑣 ({𝑎2, 𝑎3, 𝑎4}) = −5
𝑣 ({𝑎1, 𝑎2}) + 𝑣 ({𝑎3, 𝑎4}) = 3

𝑣 ({𝑎2}) + 𝑣 ({𝑎1, 𝑎3, 𝑎4}) = 3

𝑣 ({𝑎1, 𝑎3}) + 𝑣 ({𝑎2, 𝑎4}) = 5

𝑣 ({𝑎3}) + 𝑣 ({𝑎1, 𝑎2, 𝑎4}) = −3
𝑣 ({𝑎1, 𝑎4}) + 𝑣 ({𝑎2, 𝑎3}) = −9
𝑣 ({𝑎4}) + 𝑣 ({𝑎1, 𝑎2, 𝑎3}) = 3

{{𝑎1, 𝑎3}, {𝑎2, 𝑎4}} 5

2 {𝑎1, 𝑎3}
𝑣 ({𝑎1, 𝑎3}) = 6

𝑣 ({𝑎1}) + 𝑣 ({𝑎3}) = 0

{{𝑎2 .𝑎4}, {𝑎1, 𝑎3}} 5

3 {𝑎2, 𝑎4}
𝑣 ({𝑎2, 𝑎4}) = −1

𝑣 ({𝑎2}) + 𝑣 ({𝑎4}) = 0

{{𝑎1, 𝑎3}, {𝑎2}, {𝑎4}} 6

Table 1: The table illustrates the working of QuACS for an
ISG with four agents. The green box highlights the splits of
𝑆 with the maximum value chosen at each step.

3.1 Performance Analysis
In this section, we analyze the performance of QuACS in terms of

the number of qubits, number of gates, and runtime.

Lemma 3.1. QuACS that uses a p-layered QAOA circuit, requires
O(𝑛) qubits to solve an 𝑛-agent ISG problem.

Proof. In the execution of QuACS, the task of finding the opti-

mal split is reduced to the min-cut problem, reformulated as QUBO,

and solved using QAOA. The number of qubits required to solve a

QUBOmatrix of size 𝑛×𝑛 is equal to 𝑛. For a given 𝑛-agent problem,

the largest QUBO to be solved is the one corresponding to the first

step of QuACS where the grand coalition has to be split. Given the

top-down approach of QuACS , any further execution of the QAOA

operates on coalitions whose size is lower than 𝑛, which means

that the number of qubits required is strictly lower than 𝑛. Thus,

the qubit complexity of QuACS is O(𝑛). □

Lemma 3.2. QuACS that uses a p-layered QAOA circuit, requires
O(𝑛2𝑝) single and/or two qubit gates to solve an 𝑛-agent ISG problem.

Proof. According to the Lemma 3.1, the largest instance of

QAOA in QuACS requires 𝑛 qubits. In this case, the first step

of QAOA generates an equal superposition of 2
𝑛
possible states

through the use of 𝑛 Hadamard gates. Then, for each non-zero in-

teraction in the QUBO matrix of the min-cut (cost Hamiltonian 𝐻𝑐 ),

three gates (two CNOT gates and a local single-qubit 𝑅𝑍 gate) are

used, plus an additional 𝑅𝑍 applied to each qubit. Notice that, in the

case of a fully-connected graph, all the off-diagonal elements of the

QUBOmatrix are diverse from zero. The number of the off-diagonal

elements of the QUBO is 𝑛(𝑛 − 1)/2, which can be approximated

as 𝑛2. Finally, 𝑛 Pauli-𝑋 single-qubit rotation gates 𝑅𝑋 are applied

(mixing Hamiltonian 𝐻𝐵 ). For a 𝑝-layered QAOA
2
, the whole set of

gates is repeated 𝑝 times (except for the Hadamard) Thus, the total

number of single or two-qubit of QuACS is 𝑛 + 𝑝 (𝑛2 + 𝑛), which
can be approximated as O(𝑛2𝑝). □

2
for more details on the QAOA implementation see [5]

In terms of runtime, the best case for QuACS is when none

of the splits of the 𝑔𝑐 (grand coalition) provide a higher coalition

value than 𝑔𝑐 . For a generic 𝑛-agent ISG, solving the min-cut is

NP-Hard[11], i.e., it requires at most O(2𝑛) operations to evaluate

all possible bipartitions of 𝑔𝑐 . When the optimal coalition structure

is defined by the set of singletons, QuACS has to process 𝑛−1 times

the optimal split, from the grand coalition to the set of singletons.

Classically, the overall runtime of QuACS when executed using

classical computation is:

𝑛∑︁
𝑘=2

O(2𝑘 ) = O(𝑛2𝑛). (3)

Instead, using a 𝑝-layered QAOA for solving the min-cut pro-

vides a runtime of O(𝑛𝑝)[5], assuming a negligible cost for the

optimization process. Therefore, assuming 𝑝 = 1, QuACS imple-

ments O(𝑛) times the QAOA with a runtime of O(𝑛), which leads

to an overall worst-case runtime of QuACS is O(𝑛2).

3.2 Evaluation
For the experiments, we generate ISGs with edge weights sampled

from Normal and Random (Uniform) distributions centered in 0 for

generating both positive and negative values. To assess the quality

of QuACS , we implement IDP [14] to find the optimal coalition

structure and two variants of QuACS differing from each other

for the method adopted for finding the optimal split at each step:

𝑄𝑢𝐴𝐶𝑆𝑐 solves the min-cut using the classical QUBO solver while

𝑄𝑢𝐴𝐶𝑆𝑞 uses the QAOA. All the implementation use IBM Qiskit an

aer_simulator to perform the experiments. The runtime for both

distributions with ISGs up to 20 agents, considering a 1-layer QAOA

for 𝑄𝑢𝐴𝐶𝑆𝑞 are reported Figure 1.

Figure 1: Empirical runtimes of IDP, 𝑄𝑢𝐴𝐶𝑆𝑐 (Eq. 3) and
𝑄𝑢𝐴𝐶𝑆𝑞 . The plots are analytically extrapolated denoted by
dotted lines.

It can be observed that the runtimes of IDP and 𝑄𝑢𝐴𝐶𝑆𝑐 scale

exponentially as expected, while𝑄𝑢𝐴𝐶𝑆𝑞 is polynomial to 𝑛, which

complies with the runtimes discussed in Section 3.1.

Since QuACS adopts a greedy top-down strategy, it is an approx-

imate solver, and the quality of the solutions needs to be analyzed.

Theoretical quality analysis of an approximate solver for CSG prob-

lem is possible when the game is restricted to allow only positive

coalition values [15]. As we consider a more generic problem in-

stance, we can only investigate the approximation empirically. The

value of the optimal coalition structure from IDP (𝑣 (𝐶𝑆𝐸 )) is used
as the baseline to evaluate the approximation error in the value

obtained from an approximate solver (𝑣 (𝐶𝑆𝐴)) using the relation
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𝐸𝑟 =
|𝑣 (𝐶𝑆𝐸 )−𝑣 (𝐶𝑆𝐴 ) |

𝑣 (𝐶𝑆𝐸 ) ∈ [0, 1]. With IDP as an exact solver, relative

errors of 𝑄𝑢𝐴𝐶𝑆𝑐 and 𝑄𝑢𝐴𝐶𝑆𝑞 , named 𝐸𝑟𝑐 and 𝐸𝑟𝑞 respectively,

are calculated. We compute the quality solution using two different

approaches for 𝑄𝑢𝐴𝐶𝑆𝑞 : assuming 𝑝 = 1 and training the QAOA

using different values for 𝑝 , i.e., 𝑝 ∈ [1, 5]. Results are shown in

Figure 2.

Figure 2: Approximation errors for 𝑄𝑢𝐴𝐶𝑆𝑐 and 𝑄𝑢𝐴𝐶𝑆𝑞 . 𝐸𝑟∗𝑞
indicates the results of 𝑄𝑢𝐴𝐶𝑆𝑞 when tuning 𝑝 up to 5.

The minimum value for 𝐸𝑟𝑐 is equal to 8% which translates to

an expected approximation ratio for QuACS of 92% when solving

the min-cut problem classically. When using QAOA, QuACS is

more prone to error due to the intrinsically probabilistic nature

of quantum simulators and the uncertainty of the optimization

process during the training. In this case, for 𝑝 = 1, the maximum

𝐸𝑟𝑞 is 7% up to 10 agents and the quality deteriorates as long the

problem size increases. When tuning 𝑝 , the quality of the solution

improves, and 𝐸𝑟∗𝑞 seems to converge to 𝐸𝑟𝑐 .

4 DISCUSSION
In the previous section, we showed that QuACS solves the coalition

structure generation for ISGs in polynomial time with an expected

worst-case approximation ratio of 92%. QuACS always provides a

valid coalition structure (complete set partition of the agents) at

any step of the computation since the split operation produces a dis-

joint partition of the agents. Thus QuACS is an anytime approach.

When compared with alternative gate-based quantum solutions

(e.g., BILP-Q[16]), which require O(2𝑛) logical qubits to be imple-

mented, QuACS can be implemented using at most 𝑛 qubits for

an 𝑛-agent coalition game. However, unlike BILP-Q, QuACS is an

approximate solver, suitable for ISGs only. Classically, the best CSG

solver for CFG is BOSS [4], an exact and not anytime solver with a

time complexity of O(3𝑛). The approximate solver C-Link [9] has a

time complexity of 𝑛3, with an experimental approximation of 80%.

Thus, QuACS, with a runtime that scales quadratically in the

number of agents and an experimental approximation ratio of 92%

outperforms existing classical solvers and is suitable for near-term

quantum technology.

5 CONCLUSION
In this work, we presented QuACS, an approximate and anytime

quantum solver for finding the optimal coalition structure in ISGs.

Starting from the set of all agents, QuACS tries to find optimal

bipartition iteratively while delegating the optimal split problem (as

min-cut) to the QAOA. QuACS scales quadratically in the number

of agents 𝑛 and outperforms existing approximate solvers in terms

of both runtime and approximation ratio.

We also implemented QuACS using quantum simulation, show-

ing that the proposed algorithm is already a credible alternative

solution for problems with tens of agents. As future work, tech-

niques like warm-starting the QAOA [7] can be adopted for better

training the quantum circuits. An additional improvement can be

given by parallelizing the task of finding the optimal splits on

multiple quantum computers/simulators. Finally, the adoption of

QuACS can be used for generic CFGs by finding the corresponding

approximately equivalent ISG [2].
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