
Next-generation applications in healthcare
digital libraries using semantic service
composition and coordination

Thorsten Möller, Heiko Schuldt, Andreas Gerber and Matthias Klusch

Healthcare digital libraries (DLs) increasingly make use of dedicated services to
access functionality and/or data. Semantic (web) services enhance single services
and facilitate compound services, thereby supporting advanced applications on
top of a DL. The traditional process management approach tends to focus on
process definition at build time rather than on actual service events in run time,
and to anticipate failures in order to define appropriate strategies. This paper
presents a novel approach where service coordination is distributed among a set
of agents. A dedicated component plans compound semantic services on demand
for a particular application. In failure, the planner is reinvoked to define contin-
gency strategies. Finally, matchmaking is effected at runtime by choosing the
appropriate service provider. These combined technologies will provide key
support for highly flexible next-generation DL applications. Such technologies
are under development within CASCOM.

Keywords
agent systems, compound service execution, service composition planning, service
coordination, service matchmaking

Introduction

The paradigm of service-oriented computing encapsulates functionality and makes use of
it in a well-defined way by providing standardized interfaces for access and description.
Digital libraries (DLs) in general and healthcare digital libraries in particular increasingly
exploit services that encapsulate functionality and/or data. Enriching the conventional

107

Article

Copyright © 2006 SAGE Publications (London, Thousand Oaks, CA and New Delhi)
Vol 12(2): 107–119 [1460-4582(200606)12:2;107–119; DOI: 10.1177/1460458206063802] www.sagepublications.com

Health Informatics Journal



syntactic description of a service with information on its semantics allows for a more
focused search for appropriate services in a large-scale network. However, complex
(healthcare) DL applications usually require the combination and composition of several
(semantic) services into compound services or processes. The traditional workflow and
process management approach considers the definition of a process at build time but
does not take into account the service instances that are actually available at run time.
Failures have to be anticipated and appropriate failure handling also has to be defined at
build time. In this approach, unforeseen failures cannot be handled. In addition, usually
a centralized approach is followed that implies a single point of failure and that does not
scale well with the number of processes to be executed and the number of semantic
services available.

The goal of the CASCOM project (Context-Aware Business Application Service Co-
ordination in Mobile Computing Environments) [1] is to overcome these limitations by
implementing, validating, and testing a value-added supportive infrastructure for business
application services for mobile workers and users across mobile and fixed networks. The
driving vision of CASCOM is that ubiquitous business application services are flexibly
coordinated and pervasively provided to the mobile worker/user by intelligent agents in
dynamically changing contexts of open, large-scale, and pervasive environments. Valida-
tion and testing of the CASCOM architecture will take place in a real-world healthcare
DL setting.

The CASCOM architecture is divided into several layers (see Figure 1). The planned
technological innovations at each layer can be summarized as follows. The main outcome

Health Informatics Journal 12 (2)

108

Wireless/Wireline Networks (WLAN, WAN, LAN)

Network Environment: P2P, QoS

Service Execution Platform: consistent execution

Network Layer

Service Composition: Planning, Workflow management

Service Execution Platform: consistent execution

Service co-ordination Layer

Service Modeling: OWL-S, Declarative

Applications: Healhcare

Application Layer

Users

Figure 1 Layered CASCOM architecture



of the network layer is a generic, secure, and open intelligent agent-based peer-to-peer
(IP2P) network infrastructure taking into account varying quality-of-service (QoS) proper-
ties of wireless communication paths, limitations of resource-poor mobile devices, and
contextual variability of nomadic environments. IP2P environments are extensions to
conventional P2P architectures with components for mobile and ad hoc computing,
wireless communications, and a broad range of pervasive devices. This means that hetero-
geneous and dynamic systems have to be linked together (e.g. smart phones, PDAs,
computers), and that the infrastructure should be robust with no major point of failure
while the deployment and maintenance effort should be minimal. Conceptually, the IP2P
layer will be built to permit seamless mobility to the user. In contrast to existing wireless
technologies, users are then able to roam through different physical network technolo-
gies like GSM, UMTS, and WLAN. One essential approach to achieve this is to build a
network abstraction (overlay network) on top of the network infrastructure. The main
outcomes of the service coordination layer are (1) flexible semantic web service discovery
including adaptive service QoS-oriented service matching and usage of distributed
semantic web service directories (DSD), (2) dynamic context-aware semantic web service
composition including resource-efficient interaction between DSD and service composi-
tion planner, fault-tolerant interleaving of planning and service execution, and (3) secure
service execution and monitoring providing service data consistency.

In this paper, we present the novel CASCOM agent-based approach to process gener-
ation and execution. Process execution is distributed among a set of cooperating service
provider agents. Each agent works off its part of a process (i.e. locally invokes the required
services) and then forwards control to the next agent, which is then in charge of continu-
ing process execution. Processes are not defined statically. Rather, a dedicated planning
component composes semantic services based on the particular goals of an application.
In case of failure, the planner is reinvoked in order to define contingency execution strat-
egies. Finally, instance matchmaking is done at run-time by choosing the most appropri-
ate agent (according to pre-defined QoS constraints) among a set of agents qualifying for
the execution of a particular semantic service.

The focus of this paper is the interaction of planning, matchmaking, and execution of
processes consisting of invocations of semantic web services. The combination of these
technologies will provide key support for highly flexible next-generation DL applications
that make use of semantic service descriptions. In particular, we apply these technologies
to semantic web service composition in a healthcare DL application (emergency assist-
ance), which supports people travelling in foreign countries with the healthcare services
they need when suddenly suffering from illnesses and needing medical treatment and
care. This of course requires access to services and data in a healthcare DL.

The paper is organized as follows. In the next section we present an emergency assist-
ance scenario which we focus on in CASCOM. Subsequent sections introduce the
different technologies needed to support this scenario and show how these can be seam-
lessly integrated. A discussion of related work and our conclusions complete the paper.

Sample healthcare application

In the following, a sample business application service scenario ‘Emergency Assistance’ is
described (see Figure 2). The scenario is based on the fact that people on the move, e.g.

Möller et al. Semantic service coordination

109



travelling in foreign countries for business or holidays, may get into situations where they
need medical assistance because of a sudden disease or emergency. Currently, these sorts
of episodes are neither tackled nor realized in this form in practice and no software system
is presently in widespread use to address them.

Alice and Bob, tourists from Finland, are abroad on a countryside journey in Austria
during their summer vacation. They carry a PDA, already equipped with the CASCOM
mobile agent suite. Suddenly after some days, Alice is seriously suffering from unknown
pain in the upper part of her body. For this reason, she wants to immediately call a
hospital or physician. After activation of the PDA, the agent immediately finds out the
contact information of a local healthcare institution near them.1 Additionally, the agent
gives them the contact information of the Finnish representative of the Emergency
Medical Assistance (EMA) service centre that takes care of the remote support of the
patient. Alice decides to immediately go to the local hospital. The agent on the PDA also
supplies them with information on how to get there. This could be either a map showing
their current location and the healthcare centre location, or a phone number for a local
taxi, or instructions for a connection via public transportation. On arrival and check-in at
the local hospital, Alice has to manually answer some questions about her personal data
because the healthcare institution does not provide the infrastructure and services to plug
her PDA into the local information system, i.e. to exchange initial data. During the first

Health Informatics Journal 12 (2)

110

Figure 2 Emergency assistance application



examination by the local emergency physician it turns out that Alice had either a silent
heart attack or angina pectoris, but the physician is not sure about the diagnosis and
wants to obtain a second opinion. Even Bob and Alice are concerned about the doubtful
situation. Bob now uses the PDA to access a second opinion service by forwarding all
information available so far. If the hospital had had the CASCOM infrastructure installed,
the local physician could have used a local PC or PDA to access the second opinion
service. However, in this case the agent on the PDA finds out the contact information of
a specialized cardiologist and establishes a connection. After assessment of the situation,
the doctors decide that Alice should be transferred soon to a hospital with advanced
cardiac life support to undertake thorough examination. Alice says that she wants to be
transferred back to a hospital in her home country, Finland. As a result, the EMA service
centre will be contacted to organize the transfer by using the PDA: remember that
contact information was transferred before. Now, the EMA agent first automatically
investigates possible travel arrangements (depending on the medical circumstances and
the geographical distance, the agent may eventually come up with a decision on whether
to use regular flights, a car, or some other form of transportation). Second, the agent
informs all people that are involved during the transfer (doctors and escorts). Third, it
contacts Alice’s insurance company to make sure that her insurance will cover all possible
transportation costs. In addition, the agent could possibly automatically contact the
Finnish hospital (which participates in the CASCOM network) to make further
arrangements. Back in Finland, Alice is treated at a sophisticated cardiac hospital. After 
2 weeks of recovery she finally uses her PDA to send a ‘thank you’ to all the people
involved with her medical case.

As can be seen in this scenario, people (patients) not only need medical treatment, but
also need information as well as (sometimes) transportation assistance. Furthermore,
assistance in the form of information is also required by the physicians, hospitals, and
healthcare professionals involved. One straight implication of these complex requirements
is the need for on-demand initiation, composition, coordination, and supervision of
various activities represented mostly through non-human actors, like agents and services,
but also through persons.

Service coordination layer

The process of service coordination is usually considered to encompass all activities that
are devoted not only to the description but also to the discovery, composition, and
execution of services. In subsequent sections, we introduce the basic technologies needed
for the requirements derived from the healthcare application scenario.

One outstanding requirement of the scenario is its demand for coverage of large areas,
i.e. it is supposed to spread over many different countries. As a consequence, the number
of users (service requesters) and service providers is expected to range from many
thousands to millions. Due to this fact, it is impossible to know all services, their func-
tionality, and their distribution beforehand. As an initial step, this requires appropriate
methods to discover and register services (either centralized or decentralized). In particu-
lar, this demands matchmaking – the selection of appropriate web services using semantic
similarity. For instance, in case of emergency, the user needs to find a hospital or

Möller et al. Semantic service coordination

111



emergency centre near him or her. When several distinct but similar service providers exist
which are all able to return this information, one has to be chosen. For this, quality-of-
service criteria can be exploited (e.g. one service might be able to find emergency centres
closer to the current location than another service). As a second step, the scenario requires
service composition planning – the composition of several web services into processes.
Typical usage cases within the scenario involve interaction with several service providers.
For instance, transportation of a patient back to his or her home country may require
interaction with different service providers to arrange the most suitable transportation.
Finally, the service coordination layer must include execution, i.e. a runtime environment
for compound services.

Service matchmaking

The service matchmaking functionality provides the means to compare the semantics
specified for services, thus allowing the detection of semantically equivalent/similar
services. Several approaches to the sophisticated semantic matchmaking of web services
have been proposed that rely on ontology-based languages (e.g. OWL-S [2], WSMO, and
Annotated WSDL [3]) and are grounded with formal semantics such as description logics
[4]. The most important principle of semantic matchmaking is that semantics of words
used in the description of web services are formally defined in ontologies. Those ontolo-
gies can be exploited by matchmaker agents to determine the degree of semantic
matching of advertised services with a given service request.

For semantic matching of services specified in OWL-S, the OWLS-MX for hybrid
matchmaking has been developed at DFKI. It takes any OWL-S service description as a
query, and returns an ordered set of relevant services that match the query, each
annotated with its individual degree of matching (DOM) and syntactic similarity value.
The user may extend the query by specifying the desired DOM and a syntactic similarity
threshold. OWLS-MX first classifies the service query I/O concepts into its local service
I/O concept ontology. As usual, we assume that the type of computed terminological
subsumption relation determines the degree of semantic relation between pairs of input
and concepts. Attached to each concept in the concept hierarchy is auxiliary information
on whether it is used as an input or output concept by any service that has been regis-
tered at the matchmaker. The corresponding I/O lists of unique service identifiers for
input and output concepts are then used by the matchmaker to compute the set of
relevant services that match the given query according to its five matching filters. In
particular, OWLS-MX determines pairwise not only the degree of logical match but also
the syntactic similarity between the terminological expressions built by unfolding each
of the considered query and service input (output) concepts in the local matchmaker
ontology. In this way, logical subsumption failures produced by the integrated descrip-
tion logic reasoner of OWLS-MX are tolerated, if the syntactic similarity value computed
by means of a specific information retrieval similarity metric is sufficient (i.e. exceeds the
given threshold).

Service composition planning

The service composition functionality supports the context dependent composition of
compound, value-added services whenever no appropriate single service can be found

Health Informatics Journal 12 (2)

112



during matchmaking. In CASCOM we intend to use OWLS-Xplan [5]. OWLS-Xplan takes
a set of available OWL-S services, related OWL ontologies, and a query as input, and
returns a plan sequence of composed services that satisfies the query goal. For this
purpose, it first converts the domain ontology and service descriptions in OWL and
OWL-S, respectively, to equivalent problem and domain descriptions. The problem
description contains the definition of all types, predicates and actions, whereas the
domain description includes all objects, the initial state, and the goal state. Both descrip-
tions are then used by the AI planner Xplan to create a composition plan that solves the
given problem in the actual domain.

Xplan is a heuristic hybrid search planner based on the FF planner [6]. It combines a
guided local search with graph planning and a simple form of hierarchical task networks
to produce a plan sequence of actions that solves a given problem. This yields a higher
degree of flexibility than pure hierarchical task-reduction planning (HTN), and the use of
predefined workflows or methods improves the efficiency of the FF planner. In contrast
to the general HTN planning approach, a graph-plan-based planner is guaranteed to
always find a solution independent of whether the given set of decomposition rules for
HTN planning would allow building a plan that contains only atomic actions (services). In
fact, any graph-plan-based planner would test every combination of actions in the search
space to satisfy the goal which, of course, can quickly become prohibitively expensive.
Xplan combines the strengths of both approaches. It is a graph-plan-based planner with
additional functionality to perform decomposition like an HTN planner.

The Xplan system consists of the XML parsing module, a pre-processing module, the
planning core, and the replanning module. The latter is used to readjust outdated plans
during execution time (see later). After the domain and problem definitions have been
parsed, Xplan compiles the information into memory efficient data structures. A connec-
tivity graph is then generated, which contains information about connections between
facts and instantiated operators, as well as information about numerical expressions
which can be connected to facts. This connectivity graph is maintained during the whole
planning process and serves as a kind of efficient lookup table for the actual search.

Service execution

The service execution system (SES) executes compound services as they are generated by
the service composition planner agent (SCPA). For process execution, we first assume that
a compound service contains an arbitrary number of service invocations whereby the
composition structure is equal to an acyclic ordered graph, i.e. combined sequential and
parallel flows together forming processes as denoted in [7]. Second, as a basis for correct
process execution, each service invocation is assumed to be atomic and compensatable.
This means that the effects of a service can be undone later. Otherwise, unwanted side
effects of aborted or compensated executions may remain and an at-most-once execution
semantic could not be guaranteed. For services which do not comply with the atomicity
requirement, we assume that a wrapper can be built which adds this functionality [8].
Third, we assume that services are stateless, i.e. that they never have to remember
anything beyond interaction. In our approach, process state (i.e. the intermediate results)
is solely stored by the execution system. Finally, our approach considers the crash failure
model, which means that components such as services and machines may fail by prema-
turely halting their execution.

Möller et al. Semantic service coordination

113



The execution system is based on the principles of the OSIRIS (Open Service Infra-
structure for Reliable and Integrated process Support) process management system [9].
Within OSIRIS, aspects of agent-oriented systems were introduced to fit into the CASCOM
infrastructure. In particular, the execution system consists of one or more federated
execution agents organized in a peer-to-peer manner, meaning that no central execution
coordinator is required. To accomplish this, every agent implements a process manager
which locally invokes services and which coordinates execution basically by forwarding
control and data to the next agent(s). Furthermore, we distinguish between two types of
service execution agents (SEAs): service provider agents and standard agents. The differ-
ence is that the former is locally attached to one or more service instance(s) on the same
machine (i.e. agent and service(s) run on the same device), whereas the latter may run
on any computing device – especially mobile devices – and calls services remotely. Never-
theless, both implement execution functionality completely according to our execution
requirements.

The execution first involves decomposing the process model into its atomic execution
units. An execution unit contains a service invocation s and links to all the services that
are the direct successors of s. In addition, for failure handling purposes, information on
the predecessors of s is also needed. This is important in order to determine which services
need to be compensated (i.e. which effects need to be undone) when a failure during
process execution occurs. This means that for every service only links to adjacent services
are of interest. All in all, the units provide execution agents with all the information they
require to execute a service and to do forward navigation afterwards. The explicit distinc-
tion between control and data flow enables optimal interaction paths with as few
communication efforts between execution agents as possible.

Integration of service matchmaking, composition planning,
and execution

As noted earlier, the SCPA acts as the client for SES. Consequently, our combined inter-
action and execution model consists of the following steps (see Figure 3 for the model
and step numbers). Before actual execution starts, the SCPA creates a new process using
a planning algorithm and semantic matchmaking to employ some of the services in the
domain according to their service descriptions. It then sends input (the newly generated
process type) to SES and orders execution start (1). Note that the process type contains
all the necessary information for instantiation; just the individual service types still need
to be bound to instances. Now, the execution preparation phase starts. Since a process
instance is not suitable for execution on the physical layer, a detailed execution plan has
to be created [10]. The most important part of this plan is the decomposition of the
process into its execution units (2). The following step is called instance matchmaking at
runtime (3), where a concrete service provider instance of a given type will be selected
based on most current QoS criteria like average load or execution costs.2

The preparation phase is finished by distributing required information to the execution
agents, such that they can forward control on their own during execution. Then SES
spawns service execution on behalf of the input (4), i.e. the execution phase starts. During
execution, failures might happen, for example service instances or other infrastructure
components might crash. In such a situation, execution cannot terminate or at least

Health Informatics Journal 12 (2)

114



cannot continue without some recovery mechanism. In classical transactional systems, this
would lead to an abort of the global transaction (i.e. all side effects created so far would
be undone or compensated) and some external logic would have to decide what to do
next. In our approach, a crash failure situation does not necessarily end in the abortion
of process execution. After a failure, SES temporarily freezes process execution. In particu-
lar, if parallel execution paths exist, all of them will be frozen. Furthermore, SES knows
about the current process state and the side effects created. Then, SES transmits this infor-
mation to the SCPA and requests online contingency replanning (5); remember that the
original process execution goal still holds. Starting from the stop point, the planner now
tries to fix the problem by searching for an alternative path (6) – usually by employing
semantically similar services. If SCPA succeeds in composing a partial new process of
remaining activities, this new process fragment will be sent to SES (7). Otherwise, if it was
not possible to find an alternative path, SCPA sends an abort command to SES. Conse-
quently, SES is then obligated to roll back the process side effects completely (8) – which
is possible according to our assumption of atomic, compensatable services. In the former
case, SES can continue execution with the new process fragment. In order to be able to
do this, it first has to replace the old remaining process fragment (which is now obsolete)
with the new one. This is accomplished by starting a new sub-preparation phase, whereby
decomposition, instance matchmaking, and distribution to the service provider agents

Möller et al. Semantic service coordination

115

Figure 3 Interaction and execution model

2 Decomposition

3 Instance Matchmaking

1 Send ni put & Start

4 Spawn execution 
(service calls)

5 Replanning reque ts

Service Composition
(planning, semantical 

matchmaking)

Failure

7 Par it al n we input orAbort command
6 On-line replanning 8 Roll back if necessary

9 Execution of partial 
new input

10 provide res lu t

Execution phase

Preparation phase

Composition System Execution System



again take place (i.e. update of the execution plan). Afterwards, execution continues (9).
Replanning is also required if the original goal for which the process has been generated
is altered. If the new process fragment requires the partial undoing of side effects because
of its changes (i.e. utilization of other services), this will be done immediately before
continuation. Finally, when execution has finished, the result will be sent back to SCPA
(10). In order not to block resources endlessly during online replanning, we use a timeout-
based approach: when there is no reply from SCPA to SES until the timeout (because SCPA
has crashed or connection has been lost), SES aborts the current process execution and
tries to notify SCPA about that.

One aspect of our interaction model that is still open for discussion is whether we allow
for indefinite replanning phases. By allowing indefinite replanning phases it is evident that
execution theoretically might never terminate. On the other hand, and with the presented
emergency assistance scenario in mind, the probability of high numbers of replanning
cycles falls with the number of cycles. For emergency service providers it is crucial that
their services are constantly available; if not, nobody would develop trust in such appli-
cations. However, because of different service providers, similar services (alternatives) are
expected to exist. Thus, it is evident that either an alternative is available early, which
eventually leads to success, or no alternative exists and execution stops entirely. A simple
approach to address this issue is to fix a maximum replanning cycle count for the imple-
mentation. A more sophisticated approach would be the definition of execution progress.
If there is no significant progress towards the execution goal even though both SCPA and
SEA are not inactive (i.e. execution stagnates), its value converges to zero. Thus, it is
possible to detect stagnated executions and abort them eventually. All in all, the decision
about which policy should be used for replanning phases should not be made without
taking the target application into account.

In the scenario presented earlier, Alice and Bob are first required to state the goal of
the process they wish to be executed (e.g. transfer to a hospital, receive treatment from
there while giving the local physician access to Alice’s health record). Then, by combining
matchmaking and planning, a process tailored to Alice’s needs is generated and executed.
In the case of failures or changes in the environment, planning is reinvoked and the
process is changed (and executed) accordingly.

Related work

Similar to CASCOM, the ARTEMIS project (Semantic Web Service-Based P2P Infrastruc-
ture for the Interoperability of Medical Information) [11] aims at supporting healthcare
applications by means of dedicated semantic web services. However, ARTEMIS focuses on
providing single semantic web services and addresses standards and interoperability issues
of these services, while the goal of CASCOM is to provide value-added, composite services
in order to support sophisticated ad hoc process-based healthcare applications in IP2P
environments.

Issues of service composition (planning) and coordination are currently widely
addressed in research, especially if extension to semantic description of web services
comes into play. Some ontology-based approaches to semantic service matchmaking that
have been proposed in the literature are LARKS [12], OWLS/UDDI [13], MAtchMAker-
Service [14], RACER [15], and HotBlu [16]. Other approaches are either process based (e.g.

Health Informatics Journal 12 (2)

116



High-Precision Service Retrieval Service [17]), peer based (e.g. Semantic Web Services P2P
Discovery Service [18]) or hybrid (e.g. the Recursive Tree Matchmaker [19]). Alternative
approaches include graph-based matching methods such as those presented in [20] and
[16]. Furthermore, there are currently very few approaches and software tools available
for OWL-S-based service composition planning, such as OWL-S Composition Planner
using SHOP2 [21], logic-based DAML-S composition planning [22], the DAML-S workflow
composer [23], and a Petri-net approach in which an OWL-S service description is auto-
matically translated into Petri nets [24].

Finally, the issue of service execution is widely addressed in classical research domains
like transactional information systems and process management. The OSIRIS infrastruc-
ture on which the SES is built provides a scalable distributed process navigation platform.
To achieve this, it combines a rich set of aspects. Based on the hyperdatabase vision [25],
ideas from process management, peer-to-peer networks, database technology, and Grid
[26] infrastructures have been combined. Similar to OSIRIS, where processes are running
within a peer-to-peer community that is established by the individual service providers,
the MARCAs presented in [27] are service providers acting as peers. Finally, Pleisch and
Schiper [28] provide a general overview on fault-tolerant agent-based (process) execution.

Conclusions

In this paper, we have presented the CASCOM approach to providing access to func-
tionality and data, encapsulated by semantic services, in a healthcare digital library. Ad
hoc process-based applications are supported by seamlessly combining sophisticated
service composition planning, service matchmaking, and agent-based distributed service
execution. The binding of service types to service instances during runtime integrates well
with the dynamic nature of the healthcare application domain, i.e. provides a high degree
of flexibility.

The CASCOM infrastructure that is currently being built will be evaluated in detail in
a real-world setting in cooperation with TILAK, the umbrella organization of the state
hospitals of the Austrian state Tyrol. In future work, we aim – among other things – to
address more sophisticated transaction and failure models, especially by considering
malicious failures (i.e. Byzantine failures as they might appear in untrusted environments).

Acknowledgements

This work is supported by the EU in the 6th Framework Programme within the STREP
CASCOM (Context-Aware Business Application Service Coordination in Mobile Computing
Environments), contract no. 511632. The work presented in this article has been done
while Thorsten Möller and Heiko Schuldt have been affiliated with the Information &
Software Engineering Group at the University for Health Sciences, Medical Information
and Technology in Tyrol, Austria.

Notes
1 Their location is found either by using the GSM network cell identifier or by GPS.
2 This is important when there is more than one service instance available with equal signatures.

Möller et al. Semantic service coordination

117



References
1 The CASCOM project. http://www.ist-cascom.org.
2 T.O.-S. Coalition. OWL-S 1.0 (Beta) Draft Release. Autonomous Agents and Multi-Agent Systems,

2003.
3 Patil A, Oundhakar S, Sheth A, Verma K. Meteor-s web service annotation framework. In

Proceedings of the World Wide Web Conference, 2004.
4 Baader F, Nutt W. Basic description logics. Chapter in The Description Logic Handbook: Theory,

Implementation and Applications 47–100. Cambridge: Cambridge University Press, 2003.
5 Klusch M, Gerber A, Schmidt M. Semantic web service composition planning with OWLS-Xplan. To

appear in the First International Symposium on Agents and the Semantic Web, 2005.
6 Hoffmann J, Nebel B. The FF planning system: fast plan generation through heuristic search. Journal

of Artificial Intelligence Research 2001; 14; 253–302.
7 Schuldt H, Alonso G, Beeri C, Schek H-J. Atomicity and isolation for transactional processes. ACM

Transactions on Database Systems (TODS) 2002; 27 (1); 63–116.
8 Schuldt H, Schek H-J, Alonso G. Transactional coordination agents for composite systems. In

Proceedings of the 3rd International Database Engineering and Applications Symposium (IDEAS
1999), August, Montréal 321–31. IEEE Computer Society.

9 Schuler C, Weber R, Schuldt H, Schek H-J. Scalable peer-to-peer process management: the OSIRIS
approach. In Proceedings of the 2nd ICWS 2004, July, San Diego 26–34. IEEE Computer Society.

10 Schuler C, Schuldt H, Türker C, Weber R, Schek H-J. Peer-to-peer execution of (transactional)
processes. To appear in International Journal of Cooperative Information Systems (IJCIS) 2005.

11 The ARTEMIS project. http://www.srdc.metu.edu.tr/webpage/projects/artemis.
12 Sycara K, Widoff S, Klusch M, Lu J. LARKS: Dynamic Matchmaking among Heterogeneous Software

Agents in Cyberspace. Boston: Kluwer, 2002.
13 Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of web services capabilities. 

In Proceedings of the First International Semantic Web Conference on the Semantic Web 333–47.
Springer, 2002.

14 Colucci S, Noia T D, Sciascio E D, Donini F, Mongiello M, Piscitelli G, Rossi G. An agency for
semantic-based automatic discovery of web-services. In Artificial Intelligence Applications and
Innovations: Proceedings of IFIPWCC-04 315–28. Boston: Kluwer, 2004.

15 Li L, Horrocks I. A software framework for matchmaking based on semantic web technology. In
Proceedings of the 12th International Conference on the World Wide Web 331–9. ACM Press,
2003.

16 Constantinescu I, Faltings B. Efficient matchmaking and directory services. In IEEE/WIC International
Conference on Web Intelligence, 2003.

17 Klein M, Bernstein A. Towards high-precision service retrieval. IEEE Internet Computing 2004; 8 (1);
30–6.

18 Banaei-Kashani F, Chen C, Shahabi C. WSPDS: Web Services Peer-to-Peer Discovery Service. In ISWS
2004.

19 Bansal S, Vidal J. Matchmaking of web services based on the DAML-S service model. In
AAMAS2003, Melbourne.

20 Trastour D, Bartolini C, Gonzalez-Castillo J. A semantic web approach to service description for
matchmaking of services. In Proceedings of SWWS 2001.

21 Wu D, Parsia B, Sirin J H E, Nau D. Automating DAML-S web services composition using SHOP2. In
Proceedings of 2nd ISWC2003, Sanibel Island, FL 20–3.

22 Sheshagiri M, desJardins M, Finin T. A planner for composing services described in DAML-S. In
Proceedings of AAMAS 2003 Workshop on Web Services and Agent-Based Engineering.

23 Tarkoma S, Laukkanen M. Adaptive agent-based service composition for wireless terminals. In Klusch
M et al. eds Proceedings of CIA VII, August 2003, Helsinki 16–29. Berlin: Springer, 2003.

24 Hamadi R, Benatallah B. A Petri-net-based model for web service composition. In Proceedings of the
14th Australasian Database Conference: Database Technologies 191–200. ACM Press, 2003.

25 Schek H-J, Schuldt H, Schuler C, Weber R. Infrastructure for information spaces. In Advances in
Databases and Information Systems: Proceedings of the 6th East European Symposium, ADBIS 2002,
September, Bratislava 23–36.

26 Foster I, Kesselman C eds. The Grid: Blueprint for a New Computing Infrastructure 2nd edn. San
Francisco: Morgan Kaufmann, 2004.

Health Informatics Journal 12 (2)

118



27 Dogac A, Tambag Y, Tumer A, Ezbiderli M, Tatbul N, Hamali N, Icdem C, Beeri C. A workflow system
through cooperating agents for control and document flow over the internet. In Proceedings of the
7th International Conference on Cooperative Information Systems (CoopIS 2000), September 2000,
Eilat 138–43.

28 Pleisch S, Schiper A. Approaches to fault-tolerant and transactional mobile agent execution: an
algorithmic view. ACM Computing Surveys 2004; 36 (3); 219–62.

Correspondence to: Thorsten Möller

Möller et al. Semantic service coordination

119

Thorsten Möller
University of Basel
Department of Computer Science
Database and Information Systems Group
Bernoullistraße 16, 4056 Basel,
Switzerland
E-mail: thorsten.moeller@unibas.ch

Heiko Schuldt
University of Basel
Switzerland
E-mail: heiko.schuldt@unibas.ch

Andreas Gerber
German Research Center for Artificial
Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany
E-mail: gerber@dfki.de

Matthias Klusch
DFKI, Germany
E-mail: klusch@dfki.de




