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Abstract. One of the major issues for building a complete quantum
neural network is the implementation of non-linear activation functions
in a quantum computer. In fact, the postulates of quantum mechanics
impose only unitary transformations on quantum states, which is a
severe limitation for quantum machine learning algorithms. Recently, the
idea of QSplines has been proposed to approximate non-linear quantum
activation functions by means of the HHL. However, QSplines rely on a
problem formulation to be represented as a block diagonal matrix and
need a fault-tolerant quantum computer to be correctly implemented.
This work proposes two novel methods for approximating non-linear quan-
tum activation functions using variational quantum algorithms. Firstly,
we develop the variational QSplines (VQSplines) that allow overcom-
ing the highly demanding requirements of the original QSplines and
approximating non-linear functions using near-term quantum computers.
Secondly, we propose a novel formulation for QSplines, the Generalized
QSplines (GQSplines), which provide a more flexible representation of
the problem and are suitable to be embedded in existing quantum neural
network architectures. As a third meaningful contribution, we implement
VQSplines and GQSplines using Pennylane to show the effectiveness of
the proposed approaches in approximating typical non-linear activation
functions in a quantum computer.

Keywords: Quantum Machine Learning · Quantum Neural Networks · Quantum
Computing

1 Introduction

Quantum computers are machines that leverage the properties of quantum me-
chanics to store and process information. Although a potential quantum advantage
has already been shown in different domains, such as quantum chemistry [1],
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multi-agent systems [2,3], it is still unclear whether quantum computation can
be used efficiently in machine learning (ML).

The majority of the approaches proposed in the field of Quantum Machine
Learning (QML) relies on using hybrid quantum-classical optimization to train
parameterized quantum circuits to perform typical ML tasks. Although these
techniques represent the most promising attempt to leverage near-term quantum
technology, it is still unclear whether they can outperform classical algorithms.

One class of QML algorithms gaining momentum in recent years is Quantum
Neural Networks (QNN) which try to emulate the behavior of classical neural
networks using parametrized quantum circuits. The key feature of classical neural
networks is the ability to capture complex patterns by applying multiple non-linear
activation functions. On the other side, QNN models utilize quantum kernels
to explicitly map data into a high-dimensional space and learn the complex
patterns in data. Although this approach has shown promising results, it is not
a credible alternative capable of providing a robust quantum advantage over
classical methods. An alternative strategy to unlock the full potential of quantum
computing in ML is to implement classical neural networks using the properties
of quantum computing as computational resources to obtain a robust speed-up.
However, the postulates of quantum mechanics forbid non-unitary operations on
quantum states, which is a strong limitation for QML algorithms. Thus, the ability
to approximate non-linear activation functions in a quantum computer is essential
to obtain a quantum advantage of QML algorithms over their classical counterpart.
In this paper, we propose two novel approaches for quantum activation functions
based on QSplines [4], which leverage hybrid quantum-classical optimization and
are suitable for near-term quantum computation.

The remainder of the paper is structured as follows: a brief discussion of
related work is provided in section 2. Section 3 gives a highlight of the contribution
of the paper while section 4 contains the detailed methodological approach. In
section 5 the results of the experiments are presented and then discussed in
section 6. The paper concludes with a summary of achievements and future work.

2 Related Works

Recently, several attempts have been made to provide a routine for quantum
activation functions and overcome the constraint of the unitarity of quantum
operations. The quantum Splines (QSplines) [4] rely on classical B-Spline re-
gression models that aim to find the optimal set of parameters to minimize the
Residual Sum of Squares in a ridge regression problem where observed variables
are augmented with polynomials. However, the QSplines suffer from several draw-
backs and limitations: the use of the HHL [5] as a subroutine imposes running
the algorithm on a perfectly error-corrected quantum computer, and it is not
suitable to be executed on near-term quantum devices. Moreover, the output of
the QSplines requires a post-processing step to obtain the value of the non-linear
function which is stored in the quantum state. Furthermore, QSplines require
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ad-hoc formulation for the basis expansion matrix in terms of a diagonal block
matrix that is hardly generalizable.

Other works on quantum activation functions rely on repeat-until-success
technique [6]. In this case, the most significant limitation is that the input must
be in the range

[
0, π

2

]
, which is a severe constraint for real-world problems.

Recently, the problem of non-linear approximation has been considered by means
of a Quantum Perceptron [7]. The proposed quantum algorithm produces the
output of a non-linear activation function leveraging an iterative computation
of all the powers of the inner product up to an order d. The main drawback of
this approach is the number of qubits required, which depends linearly on the
number of input features and the order of the polynomial. in particular, given an
n-dimensional feature vector and a degree of the polynomial d, the idea of the
Quantum Perceptron requires n+ d qubits. Experimentally, this approach shows
good results with a degree of polynomial 3 ≤ d ≤ 10 for 1 dimensional feature
vector.
In [8] the authors try to solve the non-linear functions problem by means of a
quantum nonlinear processing unit in a variational circuit.

3 Contribution

This work proposes two alternative approaches for quantum activation functions:
Variational QSpline (VQsplines) and Generalized Quantum Splines (GQSplines).
The VQSplines adopt the problem formulation of the QSplines [4], translating
it in the context of hybrid quantum-classical computation using the VQLS as
a quantum routine for matrix inversion and uses the quantum dot product to
calculate the value of the non-linear activation function. The advantage of this
approach is twofold: on one side, the use of the HHL is avoided allowing the
VQSplines to be executed using near-term quantum technology. On the other
side, the use quantum dot product provides a quantum state encoding the value
of the activation function without requiring a post-processing step.

The second main methodological contribution is a novel formulation for
QSplines, the GQSpline, that relies on a more flexible problem formulation in
terms of basis expansion and allows obtaining an end-to-end quantum routine that
can approximate any non-linear activation function. Importantly, the GQSplines
can be adopted as a sub-routine in existing quantum neural networks encoding
into the amplitudes of a quantum states the value of the non-linear function.

Importantly, the proposed algorithms encode data (basis expansion of the
input features and the value of the non-linear activation function) into the
amplitudes of quantum states. This means that the qubit complexity (i.e., the
number of qubits required) scales logarithmically with respect to the input size
which is a significant improvement with respect to existing approaches whose
number of qubits is extremely demanding.
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4 Methods

In this section, the methodological contributions are presented. We describe two
different approaches for quantum splines: the VQSplines adopts the piece-wise
formulation of QSplines but replaces the HHL with the Variational Quantum
Linear Solver (VQLS) [9]. As a consequence, we obtain a quantum algorithm
suitable for NISQ devices capable of estimating any non-linear function. Second,
we propose the GQSplines model, a novel formulation of QSplines that allows us
to obtain an end-to-end quantum algorithm for non-linear approximation suitable
for existing quantum neural networks.

4.1 Preliminaries

Quantum Splines
Spline functions are smoothing methods for modeling the relationships between
variables, typically adopted either as a visual aid in data exploration or for
estimation purposes [10]. The underlying idea is to use linear models in which
the input features are augmented with the basis expansions. Technically, splines
are constructed by dividing the sample data into sub-intervals delimited by
breakpoints, also referred to as knots. A fixed degree polynomial is then fitted in
each of the segments, thus resulting in piecewise polynomial regression.

While the formulation in terms of truncated basis functions is conceptually
simple, its numerical and computational properties are not very attractive. For
this reason, in practice, the B-splines parametrization [11] is adopted. This
generates a block design matrix where the sparsity is constant and depends on
the degree of the polynomial fitted in each local interval. Given a sequence of
knots ξ1, ξ2, · · · , ξT , we fit a line in each interval [ξk, ξk+1]k=1,··· ,T−1 without
derivability constraints.

ỹ = Sβ →


ỹ1
ỹ2
· · ·
ỹK

 =


S1 0 · · · 0
0 S2 · · · 0
· · · · · · · · · · · ·
0 0 · · · SK




β1

β2

· · ·
βK

 , (1)

where ỹk contains the function evaluations in ξk and ξk+1, βks are the spline
coefficients and S(2K)×(2K) is a block diagonal matrix with each block Sk that
represents the basis expansions in the k-th interval. Therefore, solving the linear
system in Eq. (1) allows computing the splines coefficients, which serve to
approximate non-linear functions encoded in the vector ỹ.

The idea of the Quantum Splines (QSplines)[4] is to adopt the B-spline
formulation in the context of quantum computation to approximate non-linear
functions. In particular, the computation of the QSplines is performed in three
steps. First, the HHL computes the spline coefficients for the k-th interval encoded
into the quantum state |βk⟩. Second, |βk⟩ interacts with the quantum state |xk⟩
encoding the input in the k-th interval via quantum interference through the swap-
test [12]. This allows generating the state |fk⟩ which encodes the estimate of the
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non-linear function evaluated in xk; Third, |fk⟩ is measured and post-processed
to obtain yk.

Although QSplines allow overcoming the limitation of unitary operation on
quantum states, their applicability is very limited since the use of the HHL as a
subroutine requires a massive number of error-corrected qubits to be executed.
Furthermore, in the current formulation, the final quantum state is obtained
using the swap test, whose results are not directly encoded in the amplitude
and need a post-processing step to be calculated. All these factors forbid the
adoption of QSplines in current models of quantum neural networks, which run
on a limited set of noisy qubits.

Variational Quantum Linear Solver
An alternative quantum algorithm to solve a linear system of equations is the
Variational Quantum Linear Solver (VQLS ) [9]. Specifically, the VQLS solves a
linear system of equations using a variational hybrid quantum-classical approach
which is suitable for near-term quantum devices. Given a matrix A and a state
vector |b⟩, the VQLS prepares the state |x⟩ such that:

A |0⟩ = A |x⟩ ∝ |b⟩ . (2)

The matrix A is defined as a linear combination of unitary matrices Al:

A =

L∑
l=0

Alcl (3)

where cl are complex numbers. With this input, the VQLS generates the state
|x⟩ employing an ansatz for the gate sequence V (θ) such that |x(θ)⟩ = V (θ) |0⟩.
The parameters θ are input to a quantum computer, which prepares |θ⟩ and runs
an efficient quantum circuit that estimates a cost function C(θ). The value of
C(θ) from the quantum computer is returned to the classical computer which
then adjusts θ (via a classical optimization algorithm) in an attempt to reduce
the cost. This process is iterated many times until one reaches a termination
condition of form C(θ) < γ, at which point we say that θ = θopt.

Once the cost function is minimized, the Ansatz V (θopt) with the optimal
parameters θopt prepares the normalized state |x(θopt)⟩ which approximates |x⟩:

V (θopt) |0⟩ = |x(θopt)⟩ . (4)

Notice that this description of the problem is coherent with the original VQLS.
However, in the case of QSplines, the linear system of equation in Eq.(1) represents
the target solution (the B-spline coefficients) as |β⟩, the Al circuit encodes the
matrix S, and |y⟩ replaces |b⟩.

4.2 VQSplines: Variational Algorithm for QSplines

The idea behind the VQSplines is to implement the QSplines in the context
of hybrid quantum-classical computation and provide an efficient method to



6 M. A. Inajetovic and F. Orazi et al.

Fig. 1: The VQSplines architecture. The quantum part of the VQLS is optimized
classically and then θk,opt is used in the quantum inner product to compute |ŷk⟩

estimate non-linear functions using near-term quantum computers. In particular,
the VQSplines replace the HHL with the VQLS and adopt the quantum inner
product [13] to generate a quantum state encoding the value of the non-linear
target function, avoiding the use of the swap-test.

In practice, the computation of the VQSplines is performed in two steps. First,
the VQLS estimates the spline coefficients for the k-th interval:

Sk |β′
k⟩ = |y′k⟩

V QLS
====⇒ |β′

k⟩ = β′
k,0 |0⟩+ β′

k,1 |1⟩ ≈ S−1
k |y′k⟩ (5)

In order to obtain the quantum state |β′
k⟩, each 2×2 linear system requires the

training of a parametrized quantum circuit which needs three different quantum
gates: a unitary V (θk) implemented with a Pauli rotation gate Ry that allows
generating a quantum state whose amplitudes encode the B-spline coefficients,
once the optimal set of parameters θk,opt is obtained. Notice that, as for the
QSplines, the entire problem is decomposed into K 2 × 2 linear systems, and
each set of coefficients can be encoded using a single qubit; the second set of
quantum gates are the unitaries Al, which encode the information related to
the Sk matrix. In particular, the matrix Sk is decomposed by means of a linear
combination of known unitary matrices as follows:

Sk =

[
1 a
1 b

]
=

3∑
l=0

Alcl = Ic0 +Xc1 + Zc2 +Ry(3π)c3 (6)

where the coefficients of the linear combination are initialized as follows:

c0 = (b+ 1)/2; c1 = (a+ 1)/2; c2 = (1− b)/2; c3 = (a− 1)/2;

Third, the unitary U encodes the classical vector yk into the amplitude of |y′k⟩
[14]. The QSplines model for the k-th interval is depicted in Figure 1.

As a result of the optimization process, we obtain a variational circuit that
creates a quantum state encoding the solution of the linear system:

V (θk,opt) |0⟩ = |β′
k⟩ = β′

k,0 |0⟩+ β′
k,1 |1⟩ (7)



4. METHODS 7

The second step of the VQSplines computes the inner product between the
basis expansion of the input |x′

k⟩ and the B-splines coefficients |β′
k⟩. To this end,

the quantum inner product [13] generates a quantum state whose amplitudes
encode the value of the non-linear function:

B†V (θk,opt) |0⟩n = ao |0⟩n +

N−1∑
i=1

ai |i⟩n (8)

a0 = ⟨0|B†V (θk,opt) |0⟩ = ⟨x′
k|BB† |β′

k⟩ = ⟨x′
k|β′

k⟩ = ŷk (9)

where B is the amplitude encoding quantum routine [14] of the basis expansion
of the input xk. The quantum circuit of the non-linear target function for the
k-th interval is built as shown in Figure 1 (Quantum Inner product).
These steps are repeated for each sub-interval and the solutions of the quantum
system in Eq. (1) are obtained. Therefore, as for QSplines, once |β′⟩ is known,
the VQSplines require O(K) repetitions of the quantum inner product circuit to
calculate a spline function with K knots.

Importantly, the use of the quantum inner product allows one to directly
obtain the value of the target function as amplitudes of a quantum state and
does not require any post-processing as for QSplines.

4.3 GQSplines: Generalized Quantum Splines

The original formulation of the QSplines and VQSplines relies on a block di-
agonal B-Spline matrix which allows decomposing the entire problem into K
sub-problems that can be solved independently. However, this approach does not
allow the estimation of a non-linear function in a full quantum manner, which
is a requirement for embedding a quantum activation function into a quantum
neural network. For this reason, we propose the Generalized Quantum Splines
(GQSplines), a novel approach that relies on a more general formulation of the
B-splines and allows estimating the value of a non-linear function with a single
quantum circuit without problem decomposition.

Given the recursive definition of B-Spline [11] and the related basis expansion
with knots list ξ = [ξ1, .., ξi, ξi+1, .., ξT ], a non linear function f can be estimated
using the observed values Y = {y1, .., yK} given the inputs X = {x1, .., xK}.
In this case, the linear system of equations describing the relation between the
estimates of the activation function Y , the matrix S and the spline coefficients β
is the following:

YK×1 = SK×KβK×1 =⇒


y1
y2
...
yK

 =


B1,d(x1) . . . Bl,d(x1)
B1,d(x2) . . . Bl,d(x2)

...
. . .

...
B1,d(xK) . . . Bl,d(xK)



β1

β2

...
βK

 , (10)

where d is the degree of the B-spline, T is number of knots and l = T − d− 1.
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Nonetheless, to adopt the VQLS (or the HHL) for solving the linear system
of equations, the basis expansion matrix S has to be hermitian and, therefore,
square and non-singular. The GQSplines formulation imposes the matrix S to be
Hermitian, i.e., K = l = T − 2, and adopts a quantum linear solver to find the
set of optimal parameters |β⟩3. Assuming to fit a linear function in each interval
(i.e., d = 1), the linear system of the GQSplines is:

y1
y2
y3
y4
...

yk−1

yK


=



1 0 . . . . . . 0 0
0 1− x2 x2 . . . . . . 0
. . . 0 1− x3 x3 . . . . . .
. . . . . . 0 1− x4 . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . . . . . . . 1− xK−1 xK−1

0 0 . . . . . . 0 1





β1

β2

β3

β4

...
βK−1

βK


. (11)

which leads to the following quantum linear system of equations:

S |β⟩ = |Y ⟩ (12)

where |β⟩ and |Y ⟩ are two quantum states that encode in their amplitudes
the vectors Y and β. Importantly, the normalization constraint of quantum
states |β⟩ and |Y ⟩ imposes rescaling the values of the target variable such that
⟨Y |Y ⟩ = ⟨β|β⟩ = 1.

With a particular focus on the VQLS as a quantum linear solver, the size of
the linear system in Eq. (12) is K which gives us the number of qubits required
to find the optimal coefficients. Precisely, since the VQLS requires the vectors to
be encoded as quantum state, the number of qubits scale logarithmically in the
number of knots K, which is directly related to the quality of the fitting of the
curve (the higher is K, the better the fitting is). This exponential scaling with
respect to the number of inputs is a significant improvement when compared to
other quantum approaches for quantum activation functions [7] whose number of
qubits scales linearly with the size of the inputs.

Given the linear system in Eq. (10), the GQSplines proceed in two steps.
Firstly, the coefficients |β′⟩ are generated using the VQLS (or the HHL):

|β′⟩ = V QLS(S, Y ) =

K∑
i=1

βi |i⟩ . (13)

Thus, quantum state |β′⟩ interacts via interference with |x′⟩ representing the
basis expansion of x by means of the quantum inner product, as for VQSplines.

In the case of GQSplines, the VQLS circuit requires n + 1 qubits, where
K = 2n is the number of knots. Therefore, the Hadamard test [15] employs n
qubits to implement the operators (V (θ),A and U) and one for the ancilla qubit.
Furthermore, if d = 1, we end up with a diagonal block matrix which allows

3 It is also possible to define the Hermitian matrix H from S as H =

(
0 S

S† 0

)
.
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Fig. 2: GQSplines architecture. The quantum part of the VQLS is optimized
classically to obtain θopt that is then used in the quantum inner product to
compute |ŷk⟩. All y′k ∈ y can be approximated with the results of a single
optimization of the VQLS.

decomposing the matrix S (Eq. (3)) in terms of quantum gates in such a way
to define the quantum circuit of the VQLS efficiently. Specifically, we can act
independently on each interval to define the k-th matrix decomposition as follows:

Sk =

[
1− a a
0 1− b

]
=

3∑
l=0

Alck,l = Ick,0 +Xck,1 + Zck,2 +Ry(3π)ck,3 (14)

where the coefficients of the linear combination are computed as:

c0 = 1− a/2− b/2; c1 = a/2; c2 = (b− a)/2; c3 = a/2

This method allows the S matrix to be efficiently decomposed and obtain the
linear combination of quantum gates required for the VQLS ([9]). The operator U
is realized by amplitude encoding state preparation [14]. Still, the normalization
of Y is required. With this new formulation, we are able to solve a singular linear
system and encode all the spline coefficients β in a unique quantum state by
implementing the Ansatz only once. Subsequently, this state is used to compute
the inner product with the k-th row of the matrix S (encoded through the routines
Bi) and return the ŷk estimates describing Ŷ . The workflow of GQSplines is
depicted in Figure 2.

5 Evaluation

In this section, we implement and evaluate the proposed VQSplines and GQSplines
for approximating three typical non-linear activation functions usually adopted
in classical neural networks (sigmoid, elu, and relu) and the sine function4. The
algorithms are implemented through the use of Pennylane 5(0.27.0 version).

4 Though the primary objective of QSplines is to embed non-linearity into quantum
neural networks, they can serve to approximate other types of non-linearity.

5 https://pennylane.ai/

https://pennylane.ai/
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5.1 Experimental Settings

Data Generation We consider sigmoid, elu, and relu activation functions and the
sine function to showcase the non-linearity of our models. Eq. (15) shows the
formulation of the functions tested for VQSplines, which is coherent with the
experimental setting of original QSplines [4]:

ReLu(x) = max(0, x) Elu(x) =

{
x if x > 0

0.3(ex − 1) otherwise

Sigmoid(x) =
1

1 + e−4x
fsin(x) = sin(πx)

(15)

In the case of GQSplines, the input features and the value of the non-linear activation
function are encoded into the amplitude of a quantum state. In this respect, the same
functions are normalized in the interval [0, 1]. Thus, for the VQSplines the approximation
of Elu, ReLu, and Sigmoid is carried out according to the experiments of the original
QSplines paper, while sin allows for comparison of other approaches [7].

Metrics As discussed in the previous sections, different models are tested using different
renormalizations. In order to perform a fair comparison between all methods, we consider
the Normalized Root Mean Squared Errors (NRMSE) are defined as:

NRMSE =

√
N−1

∑N
i=0(ŷi − yi)2

ymax − ymin
. (16)

The NMRSE allows for a robust comparison that investigates the quality of the fitting
independently of the scale of the target variable and the number of points used to
approximate it.

Fig. 3: VQSpline experimental results. The model is able to approximate the
function and obtain non-linearity. Each point j is computed as a product between
|xj⟩ and the spline coefficient

∣∣β′
j

〉
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5.2 Results

We test the VQSplines by training the VQLS and computing the quantum inner product
to produce the final estimates Ŷ for curve described in Section 5.1. The results are
shown in Figure 3.

We can see that in all the cases, the VQSplines can capture the non-linearity of the
curves as expected. For relu and sigmoid, we have a good approximation, while the
same cannot be observed for the elu and sine. In particular, the approximation of the
curves deteriorates at the boundaries of the activation functions with input close to −1
or 1.

Considering the results of the GQSplines, the experiments are performed on the
four functions normalized into the interval [0, 1]. For each curve, we show the fitting
results in Figure 4, using 16 knots and 4 qubits. In this case, the approximation quality
seems to be sensitively better with respect to the VQSplines. However, while increasing
the number of knots allows a better fitting, it implies using a larger quantum state
which flatters the curve since the vectors |Y ⟩ and |β⟩ are normalized to 1.

Fig. 4: GQSplines experimental results. The model is able to approximate and
emulate the trend of all 4 normalized functions. Each point is computed as the
product of the j-th row of S and the B-spline coefficients |β′⟩.

We can observe that there is a slight tendency of the GQSplines to overestimate the
target function. Nevertheless, the method can capture the non-linearity of the curves
while approximating their, especially in the case of the activation function. These results
are achieved using only 4 qubits which is a significant improvement with respect to the
experiments of other proposed approaches in the literature.

In order to make a fair comparison between QSplines, VQSplines and GQSplines,
we calculate the NRMSE for the four curves and report the results in Table 1. We
can observe that both proposed methods outperform the original QSplines. Although
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VQSplines perform better in terms of NRMSE than GQSplines for the relu and sigmoid,
the differences between the two methods are minimal. The same happens when looking
at the approximation of elu and sigmoid, where the GQSplines perform better.

Model Knots Elu Relu Sigmoid Sin

Qsplines 20 0.4874 0.5240 0.1589 —

GQSpline 16 0.0126 0.0111 0.0156 0.0099

VQSpline 20 0.1278 0.0069 0.0067 0.0677

Table 1: NRMSE on each function for the proposed models and the baseline.
The best approximation for each function is highlighted, and we can see that our
model provides a considerable increase in performance with respect to QSplines.

6 Discussion

GQSplines and VQSplines allow estimating the value of non-linear functions by means
of parameterized quantum circuits. Both methods outperform the original proposal
of QSplines in terms of fitting and require a significantly less number of qubits with
respect to other existing approaches for quantum activation functions [7,6].

In the case of VQSplines, the quality of the estimates in each interval depends to
the specific condition number of linear systems, that for activation functions increases
as one moves towards the extremes of the function. In fact, if the matrix S in Eq. (12) is
ill-conditioned (i.e., it has a high condition number) the quality of the solution provided
by a quantum solver is negatively affected. In particular, the larger the condition number
is, the higher the probability of obtaining numerical errors in solving the linear system
[9] since ill-conditioned systems converge slowly [16]. This implies that subsystems
where the condition number is high lead to worse estimated coefficients.

The GQSplines algorithm uses a problem formulation that allows obtaining an
end-to-end quantum algorithm representing the spline coefficients with a single linear
system of equations. In this case, results are more stable, the shape of the curve is
well-approximated, and the non-linearity is well-captured. However, the limitation is
that the curves must be normalized, and the normalization depends on the number
of Knots which defines the size of the linear system. To tackle this problem, one can
consider adopting amplitude amplification [17] to stretch the shape of the curve and
increase the amplitudes to correct the normalization effects. Nonetheless, increasing the
number of Knots (which scales logarithmically with the number of qubits of the VQLS)
allows to build smaller intervals and potentially improves the fitting quality. This is
a significant improvement with respect to existing quantum approaches [7] where the
input scale linearly with the number of qubits.

Furthermore, to use of GQSplines as a method for quantum activation functions
requires the ability to calculate the target variable ŷj from a generic input xj . In this
regard, we have to devise a mapping circuit M that creates a vector representing the
basis expansion of xj . Then, in order to obtain ŷj we have to apply the dot-product
between the basis expansion of xj and the β coefficients, both encoded as a quantum
state. As before, the output ŷj will be encoded by the quantum state calculated by the
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following circuit:

∣∣x′
j

〉
⊗ |0⟩⊗(n−1) M(T, [ξi, ξi+1]) V †(θopt) ŷj |0⟩+Σk

i=1αi |i⟩

(17)
Note that the only difference between this approach and the one described for the
GQSplines is that here the Ansatz (V †) is transposed and applied in reverse order
with respect to the encoding of the basis expansion of xj . This procedure allows the
proposed GQSplines method to produce a non-linear function f for a given input xj

which approximates the target variable y. This approach can be adopted in existing
quantum neural networks such as the quantum Single Layer Perceptron [18,19] or the
more general MAQA Framework [20], which require an end-to-end quantum routine
storing the input-output of the non-linear activation function into the amplitudes of a
quantum state.

Table 2 summarizes the properties of QSplines [4] and the two proposed methods.
The VQSplines overcome the issue of performing the post-processing step and replace
the HHL with the VQLS. However, they still require an ad-hoc problem decomposition
with a diagonal block matrix. The GQSplines overcome this issue by defining a single
linear system of equations representing the splines function.

Method End-to-end Linear Quantum Post
Problem Solver Inner Product

QSplines × HHL Swap Test ×
VQSplines × VQLS Inner Product ✓
GQSplines ✓ VQLS Inner Product ✓

Table 2: Comparison between QSplines [4], VQSplines, and GQSplines. The
table describes whether the approach allows obtaining an end-to-end quantum
routine for non-linear approximation (end-to-end), the quantum linear solver
in use (VQLS [9] or HHL [5]), and whether the results are directly encoded
into a quantum state or not depending on the use either the swap-test [21] (not
accessible) or the quantum inner product [13] (accessible). This dichotomy is
described by the column Post.

7 Conclusion

Quantum Machine Learning (QML) has recently attracted ever-increasing attention
and promises to impact various applications by leveraging quantum computational
power and novel algorithmic models, such as Variational Algorithms. However, the field
is still in its infancy, and its practical benefits need further investigation. One of the
major issues in building a complete quantum neural network is the limitation of unitary,
and therefore linear, operations on quantum states. In this work, we move toward a
non-linear approximation of quantum activation functions using parametrized quantum
circuits. In particular, we showed that it is possible to circumvent the constraint of
unitarity in quantum computation by presenting an efficient version of the QSplines,
whose implementation falls within the context of fault-tolerant quantum computation.
The proposed methods do not require a fault-tolerant quantum subroutine (such as
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HHL) and allow the approximation of non-linear functions using near-term quantum
technology.

The contribution of this paper is twofold. The first part proposes the Variation
Quantum Splines (VQSplines), an implementation of the fault-tolerant QSplines [4]
in the context of hybrid quantum-classical computation. Additionally, Generalized
QSplines (GQSplines) are formulated and discussed. The benefit of this new formulation
lies in the ability to be generalizable with respect to the structure of the spline matrix.
The GQSplines adopt a new basis expansion matrix formulation, avoid the problem
decomposition, and allow for tackling the problem of the matrix inversion in an end-to-
end manner, with one single linear system and the number of qubits that scales
logarithmically with the number of knots. Furthermore, the GQSplines are more
efficient with respect to the number of qubits required with respect to existing quantum
approaches for quantum activation functions. Experiments showed that both methods
outperform the QSplines and can efficiently capture the non-linearity of typical activation
functions adopted in classical neural networks.

Future work will be dedicated to embedding the GQSplines as a subroutine in
existing quantum neural networks to leverage the properties of quantum computing in
typical machine learning tasks where the non-linearity is crucial.
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