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Abstract—We present a dynamic semantic data replication
scheme called DSDR for classic k-random search in unstruc-
tured peer-to-peer (P2P) networks. During its k-random search
each peer periodically updates its local view on the semantic
overlay of the network based on observed queries (demand)
and received information about provided items (supply), in
particular their semantics. Peers dynamically form potentially
overlapping groups for semantically equivalent or similar items
they are actually demanding. Besides, each peer predicts the
number of needed item replicas in the future based on its
local observations in the past. The decision of which item to
best replicate to which member is made within each demander
group based on the maximal expected utility, traffic costs, and
plausibility of such replication. Our experimental evaluation
evidences that k-random search with DSDR-based replication
can significantly outperform its combination with a near-
optimal but non-semantic replication strategy, as well as a peer
expertise-based semantic P2P search without replication.

Keywords-semantic overlay, data replication, unstructured
P2P networks.

I. INTRODUCTION

Unstructured P2P networks like Gnutella, eMule, Mor-
pheus and FreeNet are widely used for sharing user-
generated multimedia content in a decentralized way. A
classical way of peers to search for relevant data items in
such networks is to perform k-random search [9] in which
case the relevance is determined by the exact matching of
query and item topics. It is well known that the performance
of k-random search in unstructured P2P networks can be
significantly improved by additional use of data replication
strategies with reasonable traffic overhead [18], [8], [2], [15].

On the other hand, semantic search in unstructured P2P
systems like in Bibster [6] and RS2D [1] determines the
relevance of items based on the result of semantic reasoning
on formal ontology-based annotations of items. This enables
peers to make more informed decisions for query routing
and item selection, which may result in higher precision
and recall with reasonable traffic and computational over-
head [16]. Semantic replication schemes utilize semantic
relevance computation for replication decisions, which is
to decide how many copies of which semantically relevant
items to best replicate to which peers.

However, it is unknown under which conditions k-random

search when combined with what kind of semantic replica-
tion can perform better than (a) its combination with near-
optimal but non-semantic data replication, and (b) semantic
search without any replication in such networks. Besides, to
the best of our knowledge, there does not exist a semantic
replication scheme for unstructured P2P networks yet. In this
paper, we provide answers to these major research questions.

For this purpose, we present the first scheme for dynamic
semantic data replication, called DSDR, in combination with
k-random search in unstructured P2P networks and conduct
a comparative evaluation with existing but fundamentally
different alternatives. In particular, we show that k-random
search when combined with DSDR can outperform its
combination with the recently proposed near-optimal, non-
semantic replication strategy P2R2 [15].

In addition, we show that depending on the item pop-
ularity distribution, k-random search with DSDR can also
outperform an approach for semantic peer expertise based
search [6] in unstructured P2P networks without replication.
Besides, we provide experimental evidence for a significant
outperformance of k-random search with P2R2 by its al-
ternative minimal coupling with DSDR in terms of local
data lookup tables with semantic synonyms. Moreover, our
evaluation revealed that both combinations of DSDR with k-
random search are at least as robust against changes of the
network than k-random search with P2R2-based replication.

Finally, the DSDR scheme is agnostic to the kind of
semantic description of data items and the selected method
for semantic data relevance computation to be used by each
peer. Though we conducted our experimental evaluation over
a RDF test data collection from DBpedia, DSDR can easily
be adjusted for replication of semantic services, or data items
with other forms of ontology-based semantic descriptions.

In the following Sect.II we provide the underlying as-
sumptions and definitions of our approach which is then
detailed in Sect.III. Main results of its comparative experi-
mental evaluation are presented in Sect.IV. We discuss the
related works in Sect.V and conclude the paper in Sect.VI.

II. PRELIMINARIES

In this section, we briefly provide the basic terms and
assumptions which are required to understand our approach.



We assume that (a) each peer can provide, replicate, and
request any data item replica from known peers under the
copyright restriction, which in our context limits the number
of replicas of an item an individual peer can propagate; (b)
all peers share a minimal vocabulary of primitive concepts
and roles out of which their users can canonically build local
ontologies Op in the same knowledge formalism like OWL2.
Definition 1: Item, item concept.
An item i provided and maintained by peer p consists of
both data and metadata as defined by the item tuple i =
〈l, τ(C,Op), URI , pid, sz, ns, da〉 where l is the label
(topic term) of i; C the name of the semantic annotation
concept and τ(C,Op) its self-contained logical definition
which describes the semantics of i in the local ontology Op
of peer p; URI the item identifier; pid the id of the peer p
providing i; da the item data (e.g. movie file); sz the size
of i.da; and ns the number of available copies of i at p.
i.C is called item concept of i. The item tuple without the

item data i.da is called metadata or item description (i.desc)
of i. i.l may correspond with the item concept i.C. �
Definition 2: Query, query satisfaction, query concept.
A query q of a peer req is defined by the query tuple q = 〈l,
C, τ(C, Oreq), req, {(res, its)}, {Pa}, t, st, pbd, TTL,
nd〉 where l denotes the query keyword (or topic of the query
item); C the name of the query concept used to describe
the semantics of the requested item and τ(C,Op) its self-
contained logical definition in Oreq; req the identifier of
the requesting peer; {(res, its)} the actual answer set for the
query which consists of pairs of identifiers res of peers who
respond to the query with an array its of item descriptions;
{Pa} the set of query q paths; t the query issuing time; st ∈
{Issued, Success, Fail} the query status where Success (Fail)
means that the query q is satisfied (unsatisfied) and Issued
indicates that the satisfaction of q has not been determined
by the original requestor peer req yet (or else that q is not
issued by the current peer); pbd the piggybacked data of
a query containing information on provided items of peers
along the query path; TTL the query time-to-live value; nd
the requested number of copies of the query item. �

The semantic relevance of an item i to a query item i′

is determined by means of semantic matching dc(C,C ′)
of their semantic annotation concepts C,C ′. The semantic
relevance computation means dc : Op × Op → [0, 1] can
vary for different kinds of semantic annotations such as
the example of the dc-function given in Sect.IV for logic
subsumption-based comparison of item concepts in OWL2.

The set of (relevant) items in the answer set {(res, its)}
is denoted as (Isq) Iq; The topic terms of items in Isq
syntactically match the topic term of the query. A query q
is satisfied or successful if Isq 6= ∅ and q.nd ≤

∑
i∈Isq i.ns.

III. SEMANTIC REPLICATION WITH DSDR

In this section, we first provide a brief overview of DSDR
for k-random search in unstructured P2P networks. This is

followed by the detailed presentation and examples.

A. Overview

During random search, in regular observation intervals,
each peer p observes all its received queries along with their
piggybacked item descriptions. While the queries indicate
the actual demand of items by requesting peers including
p itself, the piggybacked data on items including their
semantic description provide p with knowledge about the
actual supply in and the semantic overlay of the network
from its local perspective. At the end of each observation
period, p predicts for each semantic concept C the number
nr(C, p, otnext) of item copies p will probably be requested
for in its next observation interval otnext. It computes the
plausibility pl(C, p) of its predicted demand of items based
on all demands it has observed in the past. It then forms
for each concept C a demander group dgp(C) with other
known peers that have requested items which topics are
semantically similar with the ones requested by p itself.

Once a group dgp(C) has formed by p, it will make a joint
replication decision to determine how many copies of se-
mantically relevant items i supplied by known peers outside
the group should be replicated to which peer in dgp(C). For
this purpose, p requests any other member peer p′ in dgp(C)
to provide its predicted demand nr(C, p′, otnext) of items on
C, the expected utility EU(i, p′) of replicating these item i
to p′, and its plausibility pl(C, p′). The replication decision
to which member peer p∗ how many item replicas shall
best be replicated is then made w.r.t. the maximum expected
utility and plausibility, while the number of replicas is the
minimum of i.ns and nr(C, p∗, otnext).

B. Dynamic local observation, prediction and plausibility

Dynamic local observation. The dynamic local observation
is the up-to-date local view of each peer p on the semantic
overlay. Based on this, the demander group formation and
semantic replication decision can be performed. Assume that
the current interval otm is the m-th (m ≥ 0,m ∈ N) interval
of p since it joins into the network. When otm ends, p
computes (updates) its dynamic local observation.
Definition 3: Local observation of p over all past intervals.
The observation record of p is a series of values:
• Q(p) (Q(p, otj)): the set of all queries observed by p (in
the j-th (0 ≤ j ≤ m, j ∈ N) interval);
• QC(p) (QC(p, otj)): the set of queries observed in all past
intervals (otj) about concept C ′ sufficiently semantically
similar to concept C;
• UQ(p) (UQ(p, otj)): the set of all non-successful queries
q (q.st ∈ {Fail, Issued}) (observed in otj);
• UQC(p) (UQC(p, otj)): the set of all non-successful
queries (observed in otj) about concept C ′ that are suffi-
ciently semantically similar to concept C;
• CUQ(p) (CUQ(p, otj)): the set of concepts of non-
successful queries in UQ(p) (UQ(p, otj));



•M : the set of pairs each associating the query concept C of
a failed query issued in otm by p with a set Qdist,C(p, otm)
of queries observed by p in otm but issued by other peers
p′ 6= p. Any q ∈ Qdist,C(p, otm) is requesting for items on
concepts C ′ that are sufficiently semantically similar with
C (dc(C,C ′) > θ, θ ∈ [0, 1]), where θ is set individually at
each peer. Please note that Qdist,C(p, otm) contains exactly
one query q for each originator p′ 6= p in the interval otm;
• pop(C, p): the popularity of query concept C ∈ CUQ(p):
pop(C, p) =

∑m
j=0

pop(C,p,otj)
e·(m−j)! ∈ [0, 1], where

pop(C, p, otj) =
nC(p,otj)
ntotal(p,otj)

· |UQC(p,otj)|
|Q(p,otj)| ;

nC(p, otj) =
∑
q∈UQC(p,otj)

q.nd;
ntotal(p, otj) =

∑
q∈Q(p,otj)

q.nd.
• rc(C, p): the recentness of a query concept C ∈ CUQ(p)
is based on the most recent issuing time of a query for items
about C over all periods. rc(C, p) =

qmr.t−ot0,start

T ·m ∈ [0, 1]
where ot0,start is the starting time of the 0-th (first) interval,
qmr.t is the issuing time of the most recent query qmr for
items about C, T is the length of each interval.�
Prediction. Based on the local observation, peer p predicts
the number nr(C, p, otm+1) of desired replicas of item about
each demand concept C ∈ CUQ(p), which is prone to be
queried in the next ((m+ 1)-th) observation interval of p.
Definition 4: Predicted number of desired replicas on de-
mand concept C of peer p in the (m + 1-th) observation
interval.
N = {〈C, nr(C, p, otm+1)〉}. Each element pair associates
a demand concept C ∈ CUQ(p) with a predicted number
nr,C(p, otm+1), which can be computed via time series
analysis [7] with double exponential smoothing:
nr(C, p, otm+1) = sm + bm, where
sj = φnC(p, otj) + (1− φ)(sj−1 + bj−1);
bj = ψ(sj − sj−1) + (1− ψ)bj−1;
s0 = nC(p, ot0); b0 = 1

2 (nC(p, ot1)− nC(p, ot0)).�
The best values of weights φ (φ ∈ [0, 1]) and ψ (ψ ∈ [0, 1])
are computed via the Levenberg-Marquardt algorithm (LM)
[10] that efficiently resolves the following least squares
problem: MSEm(φ, ψ) = 1

m+1

∑m
j=0(sj − nC(p, otj))

2;
minimize : MSEm(φ, ψ); subject to : φ ∈ [0, 1], ψ ∈ [0, 1].
where MSE refers to the mean squared error between the
smoothed and observed values.

Plausibility. Plausibility pl(C, p) refers to the overall
strength of the demand on concept C ∈ CUQ(p) observed
by p in the past intervals. Based on the evidence theory in
[11], this value will be used as support for the expected
utility computed in the replication decision process.
Definition 5: Plausibility of the demand on concept C
observed by peer p.
Let H = 2CUQ(p) the power set of CUQ(p); v : H →
[0, 1] the mass function subject to the properties: v(∅) =
0;
∑
H⊆H v(H) = 1. Plausibility pl(C, p) is computed by:

v(H) = nH

nH
; nH =

∑
C∈H nC(p); nH =

∑
H⊆H nH ;

nC(p) =
∑
j={1,...,m} nC(p, otj); Bel(H) =

∑
h⊆H v(h);

pl(C, p) = 1−Bel(CUQ(p)\C)).�

C. Demander group formation

One key idea of DSDR is that each peer forms a demander
group (cf. Alg.1) for each of its own unsatisfied requests
that were observed in the most recent observation period
with peers that actually share semantically similar demands.
Such demander groups are formed in a distributed fashion.
Definition 6: Demander group.
A demander group for query concept C at peer p is
dgp(C) = {p′ : ∃q ∈ UQ(p) : q.req = p′, dc(q.C ′, C) ≥
θ}. This group is represented at each other member peer p as
dg′p(C

′) and commonly recorded at every member as a tuple
〈dgid, Pdg , Cdg〉 where dgid denotes the UUID of the group,
Pdg the set of member peers p knows, and Cdg = {C}. �

Algorithm 1 GroupConstruction() of peer p.

1: Let otm the current observation interval of p.
2: for each pair 〈C,Qdist,C(p, otm)〉 in M do
3: Let q the corresponding query of the query concept

C;
4: p locally creates a group tuple dgp(C) =

〈dgid, {p}, C〉;
5: for each query q′ in Q∼C(p) do
6: p sends a message (p.id, q.τ(C,Op), q′.τ(C ′, Op),

Dgc, dgid) to q′.req (denoted as p′) and receives a
result. C ′ is the query concept of q′ under Op;

7: p does Pdg ← Pdg ∪ p′.id, if result = Ack;
8: p does ReplicationDecision(i.desc) for any gos-

siped item i, if result = Gsp;
9: p does nothing, if result = Refuse;

10: end for
11: end for

From the view of peer p′ (cf. line 6) whose query
q′ ∈ Qdist,C(p, otm) with q.C ′ is observed by p, depending
on q′.st, p′ replies to p with different messages as follows:
If q′.st = Fail then p′ shares a semantically similar unsat-
isfied demand with p and therefore acknowledges the group
formation invitation from p. In addition, p′ represents the
initial demander group of p internally as 〈dgid, {p′, p}, C ′〉.
If q′.st = Success or any item i which is relevant for q′ has
been observed by p′ during its current observation interval
(which is not necessarily synchronized with the observation
interval of p) then p′ replies p with a gossiping message
(Gsp) containing the metadata of i. Hence p has a chance to
decide on the replication of such item i within the group. If
q′.st = Issued then p′ cannot yet determine the satisfaction
of q′ and replies with a message Refuse. The formation of a
demander group is not synchronized, and demander groups
can overlap. The introduced distributed process can result
in multiple versions of representations of the same group at
member peers. However, all these versions have the same
group identifier. If multiple peers send invitations for group



formation to each other at the same time then the invitation
from the peer with maximal lexicographical UUID is valid.

D. Semantic replication decision

The completion of group construction on some concept
C at peer p triggers the replication decision for each of its
observed item i. Performed by member peers collaboratively,
this process (cf. Alg.2) is to decide how many replicas of
what item shall be best replicated to which member peer.

Algorithm 2 ReplicationDecision(i.desc) of peer p

1: Let C ′ the item concept of data item i (maintained by
peer pro) under Op;

2: for any demander group dgp(C) p belongs to do
3: p locally computes the (i) semantic gains

gr(C,C
′, p, pro), gnr(C,C

′, p, pro), (ii) expected
utility EU(i, p) of replicating i to p, (iii) predicted
number nr(C, p, otm+1) of copies of items that
would be requested in the next interval (the (m+ 1)-
th interval) and (iv) the plausibility pl(C, p) of the
demand on concept C;

4: p sends i.desc to any other peer p′ in dgp(C),
requests p′ to compute and return the same se-
ries of values: [gr(C,C

′, p′, pro), gnr(C,C ′, p′, pro),
EU(i, p′), nr,C(p′, otnext), pl(C, p′)];

5: p computes a candidate set PT = {p′|gr(C,C, p′, pro)
> gnr(C,C

′, p′, pro), p′ in dgp(C)};
6: p selects the recipient peer p∗=maxargp′∈PT

(EU(i, p′) · pl(C, p′));
7: p sends message to item i’s providing peer pro for

replicating item i to p∗, if p∗ is p; p sends message
to p∗ telling it to replicate item i otherwise.

8: end for

The semantic gains (cf.line 3) gr ∈ [0, 1] (gnr ∈ [0, 1])
indicate the estimated benefit of p for (not) obtaining replicas
of items on concept C ′ from the known item provider
pro such that its demand for items on C ′ or semantically
similar concepts C could be satisfied. Further, these semantic
gains for p are then traded off with their estimated traffic
costs, yielding the individual expected utility EU(X) of
such replication for p (cf. Def.7). The predicted num-
ber of replicas nr(C, p, otm+1) is used to compute the
network traffic penalty depending on the communication
overhead cmin of the messages exchanged between peers
during the replication decision process, and the amount
of traffic produced by the replication. That is the number
min(nr(C, p, otm+1), nC′(pro)) of replicated items of size
i.sz with traffic costs κ per unit of the size. The utility u(X̄)
of not replicating i bases on the inverse costs cmin.
Definition 7: Semantic gain, expected utility
Consider dc, pop, rc as defined in Def.3. Let i an item
provided by peer pro on a topic which semantics is defined

with concept C ′ ∈ Opro and C is a query concept of an
unsatisfied query of p. The semantic gains gr, gnr and the
expected utility EU of replication and non-replication of
item i from pro to p are defined as follows:
gr(C,C

′, p, pro) = dc(C,C ′) · rc(C, p) · pop(C, p);
gnr(C,C

′, p, pro) = (1− dc(C,C ′)) · (1− rc(C, p)) · (1−
pop(C, p));
EU(X) = P (X) ∗ u(X) + P (X̄) ∗ u(X̄);

P (X) = gr(C,C
′,p,pro)

gr(C,C′,p,pro)+gnr(C,C′,p,pro)
;

P (X̄) = gnr(C,C
′,p,pro)

gr(C,C′,p,pro)+gnr(C,C′,p,pro)
;

u(X) = (cmin + κ · i.sz ·
min(nr(C, p, otm+1), nC′(pro)))

−1; u(X̄) = −cm−1in .
where X (X̄) denotes the event of (not) replicating item
i from pro to p; P (X) (P (X̄)) the probability of (not)
replicating based on the computed gains; u(X) the utility
of replication in terms of a traffic cost penalty.�

Peer p receives the necessary values (cf. lines 3–4) from
all other group members p′. That enables p to identify those
qualified candidates for replication (cf. PT in line 5) and
then to determine the most beneficial target peer p∗ (cf. lines
6–7) within the group. This process is based on the product
of the collected expected utility and supporting plausibility
from each peer p′ ∈ PT : p∗ = maxargp′∈PT

(EU(i, p′) ·
pl(C, p′)) where EU(i, p′) represents the expected utility
EU(X) of replicating item i to some peer p′ of the
group including p. Finally, only the target peer requests the
provider peer pro for the item data on C. Providers may
satisfy such requests for item data downloads to the target
peers of demander groups on a first come first served basis.
After replication, peer p∗ (i) discards the local record of
the group dgp∗(C) (ii) decreases q.nd of any q ∈ Q(p)
with demand concept C by the number of actually replicated
copies and (iii) updates the local observation and prediction.
Complexity. The overall traffic O(|V |) and computation
O(|V |η) complexity of both group construction and repli-
cation decision in the worst case are linear with the to-
tal number of peers |V | in the network. The complexity
O(η) of semantic relevance computations by the dc-function
depends on the chosen ontology language for semantic
descriptions (e.g. the OWL2 concept subsumption-based
dc-function used for our experiments in Sect. IV is in
NEXP). The overhead of updating local prediction is trivial
by the iterative computation in Def.41. For computing the
plausibility pl(C, p), peer p has to execute O(2|CUQ(p)|−1)
extra operations for each observed query in the current
interval. However, this can be performed off-line, which is
totally in parallel with p’s routing process.

1LM algorithm iteratively finds the proper weights φ, ψ near to
the optimal. It terminates if the difference of target function values
(∇MSEm(φ, ψ)) is less than a given threshold ε, which can be achieved
in O(ε−2) iterations [13]. For efficiency, it is proper to set ε = 1 since
its volume is at the level of O(mn2) � O(1−2) where n denotes the
number of requested replicas. This guarantees that p can compute good
values of weights in one iteration.



Example. We illustrate the principled working of DSDR-
based replication combined with k-random search by a
simple example of an unstructured P2P network N = (V,E)
which just consists of three sequentially connected peers
with V = {p, p1, p2}, E = {(p, p2), (p2, p1)}. Each peer
has its local ontology defined in OWL2 and only one item
is available which is provided by peer p1. This item i1 =
〈taxi, Taxi, τ(Taxi,Op1), uri(i1), uuid(p1), 1.5MB, 50,
yellowcabs.mpg〉 is labeled with the topic term i1.l = cab
which formal semantics is defined by the concept
i.C = Taxi in the local ontology Op1 of p1.
k-random search. Suppose that peer p is searching for
one item i (i.l = taxis) which formal semantics is de-
fined by the concept i.C = CAB in Op. Since p does
not have any items at all, it randomly forwards the is-
sued query q = 〈cab, CAB, τ(CAB,Op), uuid(p,N), ∅, ∅,
070312:1:15pm, Issued, [−], 2, 1〉 to a number k of its
neighbor peers, in this case only peer p2 with q.TTL = 2.
Since peer p2 has no items neither it forwards the query
to one of its neighbor peers, that is p1 which determines
that its only item i1 is not relevant for q since the item
and query topic terms do not syntactically match. Peer p2
then triggers (q.TTL = 0) the backward propagation of the
random walker q to its originator p along the same path in
reverse direction who eventually determines that the query
q is unsatisfied (q.st = Fail). Meanwhile, peer p2 issued a
query q1 on the topic ”yellowcars” with semantic annotation
concept TaxiV ehicles defined in the local ontology Op2 .
Observed semantic overlay. Before returning the query q
along its path, p1 adds the semantic descriptions of all its
items to the piggybacked dataset of q, in this case only the
one for item i1 ((Taxi, τ(Taxi,Op1))). As a result, upon
receipt of the returning random walker q its originator peer
p knows the actual semantic domain of items provided by
p1 which becomes part of its observed semantic overlay
of the network. Peer p1 decides when to further exploit
some random walker it receives from p to communicate an
update of its semantic item domain to p. Besides, peer p
observed that its neighbor p2 is demanding items with a
certain semantic description.
Prediction and plausibility. On p’s observation of q, p
employs an independent thread to update the local plau-
sibility pl(CAB, p) of demand concept CAB in parallel
with its main thread for routing. This yields available result
for the replication decision for items on CAB, which is
possible to happen in the future. Suppose that the current
(m-th) observation interval otm of p now ends. p update
its predicted number nr(CAB, p, otm+1) of the requested
replicas about concept CAB for otm+1. That is to compute
(cf.Def.4) sm, bm and nr(CAB, p, otm+1) based on the
volumes of sm−1 and bm−1 in otm−1).
Demander group formation. Since q was unsatisfied in the
past period, peer p uses its actual local knowledge about the
semantic overlay to form a demander group with those peers

from which it received queries for items with semantically
similar descriptions. In fact, p invites p2 to form a demander
group dgp(CAB) = {p, p2} on CAB since both peers
demanded semantically equivalent items on this subject in
the past observation period: dc(CAB, TaxiV ehicles) =
(τ(TaxiV ehicles,Op2) ≡ τ(CAB,Op)) = 1. Since
p2’s query is unsatisfied as well the demander group on
concepts CAB, TaxiV ehicles is formed and denoted as
dgp2(TaxiV ehicles) at p2 and as dgp(CAB) at p.
Replication decision within demander groups. In this ex-
ample, p knows that p1 supplies the item i on concept Taxi.
For deciding the replication of i, both member peers then
compute their own semantic gains, expected utility, predicted
number of future requested replicas and plausibility of the
demand on concept semantically similar to Taxi. These
values are sent to p on p’s request. Assume that peer p
has the maximal product of expected utility and plausibility
within the group, it requests the provider p1 to download
the desired number of replicas of the item i1 data.

IV. EVALUATION

We present and discuss the results of our comparative ex-
perimental evaluation of the performance of k-random search
with DSDR for different configurations of P2P networks.
Setup. For our experiments, we created unstructured P2P
networks with one million peers and topologies based on
random graphs (RG) and random power law graphs (RLPG).
The latter is known to be a realistic model in particular
for social networks. Further, we employed two models of
item popularity distribution in these networks which are used
for many real-world item popularity rankings: Uniform at
random (R) and Zipf’s law (Z) based distribution. We restrict
the k-random search by all peers to k = 3. The initial value
of TTL (TTLinit) of each walker is 20.

As a test collection we use a random subset of 50k
RDF linked data items (in files: instance types en.nt.bz2
and mappingbased properties en.nt.bz2) taken from DBpe-
dia (http://downloads.dbpedia.org/3.7/en/) with its ontology
(dbpedia 3.7.owl.bz2) O of 319 defined concepts and 1635
roles. We built peer ontologies through random sampling of
250 concepts and 1450 roles taken from O on average.

For non-semantic random search the relevance of item-
s for queries is based on the Levenstein edit distance
between their topic terms. The semantic relevance of an
item with annotated concept C with a query on con-
cept C ′ is computed by semantic similarity dc(C,C ′):
dc(C,C ′) = [1.0 if C ≡ C ′; 0.9 if C v1 C

′ or C w1

C ′; 0.1 if C vk C ′ or C wk C ′, k > 1, k ∈ N; 0
otherwise.] Since DBpedia does not provide the relevance
sets for item queries, we use the following heuristics for
relevance judgments: Item i about concept C is relevant (a
true positive) for query item i′ about concept C ′, if any
of the logic-based concept relations in {C ≡ C ′, C v1

C ′, C w1 C ′} holds. The semantic relevance threshold θ



for the demander group construction is 0.5. All experiments
are conducted via our semantic P2P simulation framework
(http://sourceforge.net/projects/dsdr/).
Evaluation measures. Let Q the set of queries in the
network; Iq (Iq,j) the set of items collected by k walkers of
a query q ∈ Q (at its j-th hop, 1 ≤ j ≤ TTLinit; j ∈ N);
I∗q (I∗q,j ) the set of relevant items in Iq (Iq,j); I∗tq,j (I∗tq)
the set of relevant items for q at the j-th peer (all peers) on
the query path;
• Average cumulative recall (CREm) over all queries in Q:
CREm = 1

|Q|
∑
q∈Q

∑m
j=1 |I

∗
q,j |

|I∗tq|
.

• Macro-averaged precision (MAPλ) at 11 recall lev-
els (REλ) with equidistant steps of 0.1: MAPλ =
1
|Q|

∑
q∈Qmax{preq,m|req,m ≥ REλ, for ∀〈preq,m,

req,m〉 ∈ PRq}. A set PRq of precision-recall
〈preq,m, req,m〉 pairs is computed for each query q at
different number of hops m. Nearest-neighbor interpolation
is used for estimation of missed precision values for some
queries at some recall levels: PRq = {〈preq,m, req,m〉} =

{〈
∑m

j=1 |I
∗
q,j |∑m

j=1 |Iq,j |
,

∑m
j=1 |I

∗
q,j |∑m

j=1 |I∗tq,j |
〉}.

• Averaged precision ap = 1
|Q|

∑
q∈Q

|I∗q |
|Iq| .

• Traffic utility tu = total # of successful queries
total # of hops . Instead of the

avg. messages per query, this metric exams the usage of
overall traffic cost on satisfying user queries with the under-
lying data replication.
• Replication utility ru = total # of successful queries

total # of replicas .
Experiment 1: Semantic-based vs. non-semantic-based
replication. We compare the retrieval performance of the
same k-random search with different replication schemes:
DSDR, DSDR plus lookup table (DSDR(L)), and non-
semantic P2R2 in a RPLG-based network with one million
peers and 50k initial items. The item popularity distributions
considered are uniform at random (R) distribution over all
items, and the Zipf (Z) distribution (β = 1.05) over pre-
clustered 127 topics. The latter is a well known model for
the common search behavior of human users. Our exper-
iments revealed that the k-random search when combined
with DSDR-based replication can significantly outperform
its combination with the non-semantic replication P2R2 in
terms of precision (Fig.1, top-left) and cumulative recall
(Fig.1, top-mid). Particularly, it achieved 27.3% more preci-
sion with similar volumes of traffic utility (Fig.1, top-right).

Synonym lookup table L is an optional structure for
each peer to store the learned term relevancy during se-
mantic replication decision. Each record (e.g. (taxis, cab,
yellowcars) in the example in Sect.III) in L contains the un-
satisfied query terms (cab and yellowcars) and replica terms
(taxis). Based on this, syntactic irrelevance on semantically
relevant terms is less prone to happen in future queries.
When DSDR working without lookup table, syntactic based
local item selection at peer p to a query for item i could
yield syntactic false negative given a true positive item i1

at p. DSDR indirectly bridges this gap by enabling p to
replicate another observed item i2 semantically similar to i,
on the observed demand of i. To some extent, the transitive
syntactic relevancy between i and i2 can exist. It follows
that the replica i2 can syntactically match the future queries
for i. Thus, syntactic true positive can be achieved in future
rounds. Our experiment result evidences this. Both precision
and recall are indirectly improved over time as they increase
monotonically w.r.t. the probability of p receiving a replica
that is a true positive for future queries on the same topic.

DSDR needs extra network traffic for the group construc-
tion and replication decision. For uniform item popularity
distribution, k-random search with DSDR yielded lower
traffic utility (Fig.1, top-right) than the search with P2R2
while the precision of both are similar in this case. Besides,
the replication utility of the former is slightly higher than the
latter (Fig. 1, bottom-left). Finally, the k-random search with
DSDR(L) performs even better than its combination with
DSDR or P2R2 regardless of the item popularity distribution,
as the relevancy computations of search and replication are
minimally coupled with lookup tables. Overall, these results
clearly evidence the benefit of employing the semantic-
based replication scheme DSDR rather than a non-semantic
replication scheme like P2R2 with k-random search.
Experiment 2: Semantic search without replication vs.
Non-semantic search with semantic replication. We test
in this experiment whether simple but fast random search
with semantic replication can outperform semantic search
without replication. We choose the representative semantic
search Bibster [6] as the competitor of the k-random search
with DSDR. Each peer in Bibster routes query to at most s
(s ≥ 0, s ∈ N) peers whose peer expertise are semantically
similar to query. The peer expertise knowledge is advertised
by each peer via TTL bounded (denote b (b > 0, b ∈ N)
the bound) flooding after its joining into the network. We
independently run these two competing systems in random
graph networks with one million peers under different initial
number of items and peer connectivity degrees. For Bibster,
b = 5; TTLinit = 5; s = 2. For k-random search with
DSDR, TTLinit = 20, k = 3. This setup ensures that each
query can traverse at most similar number of peers, though
systems run with different routing strategies.

Shown in Fig.1 (bottom-mid), Bibster achieves better ap
k-random search with DSDR in case the number (50k) of
initial items and peer connectivity degree (5.75) are relative-
ly large. However, the latter combination performs better if
the initial number of items (5k) or the peer connectivity
degree (2.17) is smaller. The reason is that the effect of
peer expertise advertising is sensitive to the decrease of both
factors. When items are rare in the network, it is possible
that a query can never be satisfied if there is no available
knowledge about the desired items on remote peers that is
reachable from the query originator within TTL number
of hops. Data replication overcomes this issue by enabling



Figure 1: (top-left, top-mid, top-right, bottom-left) Search performance comparison between k-random search with DSDR
and the same search with P2R2; (bottom-mid, bottom-right) Search performance comparison between k-random search with
DSDR and Bibster without replication.

peer (transitively) to propagate (replicate) items to remote
peers according to the observed demands. It indirectly
breaks through the TTL limitation and therefore enlarges
the chance of peer’s finding the desired item. When the peer
connectivity degree is smaller, the expertise information will
be known by less peers, which is crucial for routing.

Bibster performs better than k-random search with DSDR
in terms of MAP@recall (Fig.1, bottom-right) if the initial
number of items and peer connectivity are large. K-random
search with DSDR achieves better precision at small recall
levels (0.0–0.5), while the latter results in better recall
at large recall levels (0.6–1.0). The reason is that DSDR
replicates items based on the semantic relevance of the
demand and supply. These replicas then have risk to be
ignored by the syntactic based item selection of k-random
search. This situation is much less serious in the Bibster
case, in which the semantic item selection is used.
Experiment 3: Robustness. Random search with non-
semantic replication by P2R2 has been shown to be highly
robust against dynamic changes of the network topology
[15]. Our third experiment analyses the robustness of k-
random search with DSDR for networks with RPLG-based
topology containing one million peers which randomly issue
200k queries. After the processing of 80k and 160k queries,
we randomly deleted 200k peers from the network while

Figure 2: Robustness under churn: averaged precision.

adding them randomly to the network after 120k queries
were processed. As expected, both types of topology changes
resulted in a decrease of precision for some time, since either
the replicas were removed or the semantic overlay structure
was partially destroyed through peers leaving the network,
or the replicas were diluted in case of peers entering the
network. The averaged precision of k-random search with
both replication methods dropped at each change event
(Fig.2) but both systems were able to recover within almost
the same time period. In this context, not surprisingly, the
leaving of peers had a greater negative impact than the



arrival of new ones. For DSDR, the individual time interval
T of each peer is crucial. In this experiment, for each run
of DSDR, we manually control the expected value E(T )
of interval lengths, like 40min, by configuring the interval
lengths of peers to uniformly distribute between 0.5E(T )
and 1.5E(T ), like 20min and 60min. The evaluation re-
vealed that shorter intervals are less prone to such topology
changes than larger intervals while the recovery behavior is
comparable to P2R2 but with significantly higher precision.

V. RELATED WORKS

To the best of our knowledge, DSDR is the first dynamic
semantic replication scheme for k-random search in unstruc-
tured P2P networks. It differs from previous efforts, like [2],
[15], [5], [8], [9], [12], [17] and the ones in the survey [18],
in that it incorporates the statistics of observed demand or
supply and the semantic relevance between them as well.

In [2], the square-root rule is derived, which identifies the
optimal number of replicas to minimize the expected random
search size rather than to improve the search performance in
terms of cumulative recall and precision@recall like DSDR.
The works [5], [12], [8] and [17] propose the proactive item
replication strategies by which each item providing peer
issues probing or limited flooding messages that either detect
the item rareness or advertises its items. In addition to the
risk of large network traffic, the actual demands of users
in the network are not considered. In comparison with such
proactive replication strategies, the DSDR scheme appears to
be more demand-oriented based on actual local observations.
In P2R2 [15], the replica distribution problem is reduced to
the known multi-knapsack problem by regarding replicas as
elements that are supposed to be put into bins which are
representing target peers. Its replication scheme has been
proven to converge to a 2-approximation solution of the
problem under the following assumptions: the scheme is
executed only in small networks in a sufficiently long steady
state since the knapsack algorithm needs to know all the
bins in advance. Unlike DSDR, this assumption hinders the
applicability of P2R2 to large-scale scenarios. In another
work[14], each peer is prone to replicate its provided items
to the remote peers that have larger query routing traffic,
in order to guarantee higher replication utility. In contrast
to DSDR, this replication strategy is less robust, highly
sensitive to network dynamics. Other approaches, such as
[4], [3], [19], are based on peer grouping or partitioning
widely used in P2P systems so far. While the first two
systems make the assumption of global knowledge of the
network which renders them unsuitable for unstructured P2P
scenarios, the latter is restricted to the flooding radius thus,
unlike DSDR, being very sensitive to the network topology.

VI. CONCLUSION

We presented and comparatively evaluated the first dy-
namic semantic data replication scheme DSDR for k-random

search in unstructured P2P networks. Main contribution is
that the search performance of k-random search with DSDR
can outperform the same search combined with a near-
optimal data replication and a semantic P2P search with
elaborated routing but without replication as well.
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