
Adaptive Hybrid Semantic Selection of
SAWSDL Services With SAWSDL-MX2

Matthias Klusch, Patrick Kapahnke, Ingo Zinnikus
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany
Email: {klusch, patrick.kapahnke, ingo.zinnikus}@dfki.de

ABSTRACT
We present an adaptive, hybrid semantic matchmaker for SAWSDL services, called SAWSDL-
MX2. It determines three kinds of semantic matching of an advertised service with a requested
one both of which are described in the standard SAWSDL: Logic-based, text-similarity-based
and XML-tree edit-based structural similarity. Before selection, SAWSDL-MX2 learns the
optimal aggregation of these different matching degrees off-line over a random subset of a given
SAWSDL service retrieval test collection by exploiting a binary support vector machine-based
classifier with ranking. Finally, we present a comparative evaluation of the retrieval performance
of SAWSDL-MX2. The matchmaker is available at semwebcentral.org.

Keywords: Semantic services, Matchmaking

INTRODUCTION
Semantic service selection is commonly considered key to the discovery of relevant services in
the semantic Web, and there are already quite a few matchmakers available for this purpose and
different formats like OWL-S, WSML and SAWSDL (Klusch 2008). As a W3C
recommendation dated August 28, 2007, the SAWSDLi (Semantic Annotations for WSDL)
specification proposes mechanisms to enrich Web services described in WSDLii

However, SAWSDL-MX1 focuses on semantic annotations of the signature but not on the
XML structure of the Web service as a whole. This is taken into account by the WSDL-Analyzer
tool presented in (Zinnikus et al. 2006) by means of measuring the XML tree edit distances
between given pair of services through XML type compatibility, token-based text and lexical
similarity measurements. Besides, SAWSDL-MX1 combines logic-based and text-similarity-

 (Web Service
Description Language) with semantic annotations. Among others, one goal of these additional
descriptions is to support intelligent agents in automated service selection, a task which is hard to
accomplish using pure syntactic information of service profiles based mainly on XML Schema
definitions. Typical application scenarios that require or benefit from a service matchmaking
component include for example negotiation and coalition forming among agents and automated
or assisted service composition. The first hybrid semantic service matchmaker SAWSDL-MX1
for semantic services in SAWSDL (Klusch & Kapahnke 2008) adopted the ideas of our hybrid
matchmakers OWLS-MX and WSMO-MX (see Klusch et al. 2009a; Kaufer & Klusch 2006) for
semantic services in OWL-S, respectively, WSML.

based matching in a fixed manner: It applies five logical matching filters and ranks service offers
that share the same logical matching degree with respect to a given request according to their text
similarity value. The hybrid variant SAWSDL-M0+WA does the same as SAWSDL-MX1
except that its ranking of services with the same logical matching degree is according to their
structural similarity value as computed by the WSDL-Analyzer.

Finally, the adaptive hybrid matchmaker variant SAWSDL-MX2 computes three kinds of
semantic matching, logical, text and structural similarity-based. In addition, it learns the
optimally weighted aggregation of these different types of semantic matching to decide on the
semantic relevance of a service to a given request.

One major advantage of this off-line learning is that it renders SAWSDL-MX2, in principle,
independent from any given service test collection or future extensions with other matching
filters. In fact, the configuration of any non-adaptive matchmaker such as SAWSDL-MX1 would
have to be manually retuned by the developer of the matchmaker to reflect such changes.

Whether this adaptation feature may even improve the precision of non-adaptive variants in
practice has been checked by us against the only publicly available SAWSDL service retrieval
test collection SAWSDL-TC1 consisting of more than 900 SAWSDL services from different
application domains. The results of our experiments show that all hybrid semantic service
matchmaker variants outperform the single matching type variants (logic-based or text similarity
or structural XML similarity only) in terms of precision, while all SAWSDL matchmaker
variants available today, whether adaptive or not, do not significantly differ from each other in
terms of their precision with respect to this collection SAWSDL-TC1.

The remainder of the paper is structured as follows. After a brief introduction to SAWSDL in
the following section, the SAWSDL service matching approach of the non-adaptive matchmaker
SAWSDL-MX1 is recapitulated. The subsequent section presents the structural matching of Web
services in WSDL performed by the WSDL-Analyzer tool, followed by an illustration of the
application of all three matching filters by example. The adaptive aggregation of different
matching results based on an off-line learned binary Support Vector Machine (SVM) classifier
with ranking by the adaptive matchmaker SAWSDL-MX2 is described thereafter. We briefly
present implementation details and then report the results of our experimental evaluation over the
public test collection SAWSDL-TC1 in terms of macro-averaged recall/precision, average
precision and average query response time. Eventually, we comment on related work on
SAWSDL service matchmaking and conclude. This paper is an extended version of (Klusch et
al. 2009).

SERVICE DESCRIPTIONS IN SAWSDL
SAWSDL is designed as an extension of WSDL enabling service providers to enrich their
service descriptions with additional semantic information. For this purpose, the notions of model
reference and schema mapping have been introduced in terms of XML attributes (tags) that can
be added to already existing WSDL service description elements including XML Schema
definitions for message parameters as depicted in Figure 1.

Semantic annotation of WSDL services. More precisely, the following extensions are used
for semantic annotations of WSDL services:

- modelReference: A modelReference points to one or more concepts with equally intended
meaning expressed in an arbitrary semantic representation language. They are allowed to

be defined for every WSDL and XML Schema element, though the SAWSDL
specification defines their occurrence only in WSDL interfaces, operations, faults as well
as XML Schema elements, complex types, simple types and attributes. The purpose of a
model reference is mainly to support automated service discovery.

- liftingSchemaMapping: Schema mappings are intended to support automated service

execution by providing rules specifying the correspondences between semantic
annotation concepts defined in a given ontology (the “upper” level) to the XML Schema
representation of data actually required to invoke the Web service (the “lower” level),
and vice versa. A liftingSchemaMapping describes the transformation from the “lower”
level in XML Schema up to the ontology language used for semantic annotation.

- loweringSchemaMapping: The attribute loweringSchemaMapping describes the

transformation from the “upper” level of a given ontology to the ”lower” level in XML
Schema.

[Insert figure 1 here]

Figure 1. SAWSDL extensions of WSDL service interface components.

However, the current specification of SAWSDL model references poses quite some problems

for semantic service matchmaking as follows.

No uniform, formal ontology language. Unlike OWL-S or WSML, the specification of SAWSDL
does not restrict the developer to any uniform, formal ontology language like OWL or as defined as part
of WSML. As a result, any mean of automated semantic service selection has to cope with the semantic
interoperability problems of heterogeneous domain ontologies and ontology languages. While this
problem could be resolved in some cases by means of syntactic and semantic transformations - such as for
OWL-DL and WSML-DL - it remains hard in general.

Multiple references to different ontologies. The same holds especially for references to

different kinds of ontologies like plain or structured text files, annotated image archive, or logic
theories. In fact, SAWSDL allows multiple references to different kinds of ontologies for
annotating even the same service description element. How shall any semantic service
matchmaker know how to process them to understand the semantics of that single element? Are
its annotations meant to be complementary or equivalentiii

? If complementary, how to aggregate
them, if equivalent, which one to select best for further processing? This opens up a wide range
of differing pragmatic solutions for SAWSDL service matching.

Top-level vs bottom-level annotations. According to the SAWSDL specification, semantic
annotation by means of so-called top-level annotation and bottom-level annotation shall be
considered both independent from each other and applicable at the same time. While top-level
annotation refers to the annotation of a complex type or element definition of a message
parameter by means of a model reference as a whole, any bottom-level annotation focuses only
on a single (atomic) XML element. Unfortunately, it remains unclear how to evaluate a matching
between top-level and low-level annotated parameters, or which one to prefer if both levels of

annotation are available for a complex service description element. In addition, element and type
definition specifying a message component can be annotated at the same time.

[Insert figure 2 here]

Figure 2. Example of pragmatic assumptions for service selection by SAWSDL-MX.

Pragmatic assumptions for SAWSDL service matching by SAWSDLMX. Regarding the
above mentioned problems of SAWSDL service matching, the following pragmatic assumptions,
illustrated in figure 2 above, were made for using all members of our SAWSDL-MX
matchmaker family, that is the non-adaptive matchmakers SAWSDL-MX1, its variant
SAWSDL-M0+WA, and the adaptive matchmaker SAWSDL-MX2 each of which we will
describe in subsequent sections:

References to formal ontologies in description logics only. The current implementation of

SAWSDL-MX performs reasoning on logic-based annotations in OWL-DLiv but is not restricted
to it: It supports other description logics (DL) if they are translated into the standard DIG 1.1v

interface representation format.

- Only top-level semantic annotations of service parameters are considered for service
matching. Direct top-level annotation of a WSDL message part has priority over the top-level
annotation of the respectively referenced (and annotated) XML Schema element or type.

- In case of multiple annotations of a single element at the same level, one of them is selected

uniformly at random. Only semantic annotations of service (IO) parameters are considered,
but not annotations of entire operations or interfaces. However, the proposed matching
variants could easily be adopted for this purpose.

SAWSDL-MX1: LOGIC AND TEXT SIMILARITY-BASED SIGNATURE MATCHING
In this section, we describe the hybrid semantic service signature matching performed by the
non-adaptive matchmaker SAWSDL-MX1. Its logic-based only variant is called SAWSDL-M0.
Since service requests and offers are presumed to be formulated in SAWSDL, each of their
interfaces comprising one or multiple operations with semantically annotated signatures, we first
present the way in which SAWSDL-MX1 performs hybrid semantic matching on the service
interface level based on the results of its hybrid semantic matching of pairs of operations.

Hybrid Service Interface Matching
For each pair of service offer O and service request R, the matchmaker SAWSDLMX1 first
determines their semantic similarity by evaluating every combination of their operations in terms
of logic-based only (SAWSDL-M0) and text similarity-based only operation matching. These
processes of logic-based and text similarity-based (service) operation matching are described in
more detail below.

To determine an injective mapping between service offer and request operations that is
optimal regarding their matching degrees, SAWSDL-MX1 applies bipartite operation graph
matching. Nodes in the graph represent the operations and the weighted edges are built from

possible one-to-one assignments with their weights derived from the computed degree of
(logical/text/hybrid) operation match. If there exists such a mapping, then it is guaranteed that
there exists an operation of the service offer for every requested operation, disregarding the
quality of their matching at this point.

For example, consider the service request and service offer given in Figure 3. Every request
operation ROi (with i ∈ {1, 2}) is compared to every advertisement operation Oj (with j ∈ {1, 2,
3}) with respect to logic-based filters defined in the next section. In this example, RO1 exactly
matches with O1, but fails for O2 and O3. O3 is a weaker plug-in match for RO2 (the subsumed-by
match of RO2 with O2 is even weaker than a plug-in match). The best (max) assignment of
matching operations is {<RO1,O1>, <RO2,O3>}.

[Insert figure 3 here]

Figure 3. Interface level matching of SAWSDL-MX1 for logic-based semantic similarity.

One conservative (min-max) option of determining the matching degree between service offer

and request based on their pairwise operations matching is to assume the worst result of the best
operation matching results. In other words, we guarantee a fixed lower bound of similarity for
every requested operation - which is what SAWSDL-MX1 is doing. In the example shown in
Figure 3, the service offer is considered a plug-in match for the request. Other not yet
implemented possibilities would be to merge the operation matching results based on their
average syntactic similarity values and to provide more detailed feedback to the user on the
operation matchings involved.

Logic-based Operation Matching
The logic-based operation matching by SAWSDL-MX1 bases on the successive application of
the following four filters of increasing degree of relaxation to a given pair service offer operation
OO and service request OR: Exact, Plug-in, Subsumes and Subsumed-by. These filters have been
originally developed for the matchmaker OWLS-MX but extended with bipartite concept graph
matching to ensure an injective mapping between I/O concepts of service offer and request,
whenever possible. As an overview to description logic and DL reasoning, we refer to (Baader et
al. 2003). The sets lgc(C) and lsc(C) contain the least generic concepts of C (direct parent) and
the least specific concepts of C (direct child), respectively.

Exact match: Service operation OO exactly matches service operation OR ⇔ (∃ injective

assignment Min: ∀m ∈ Min: m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 ≡ m2) ∧ (∃ injective assignment
Mout: ∀m ∈ Mout: m1 ∈ out(OR) ∧ m2 ∈ out(OO) ∧ m1 ≡ m2). There exists a one-to-one mapping of
perfectly matching inputs as well as perfectly matching outputs. Assuming that an operation
fullfills a requesters need if every input can be satisfied and every requested output is provided,
the assignments only require to be injective (but not bijective), thus additional available
information not required for service invocation and additional provided outputs not explicitly
requested are tolerated.

Plug-in match: Service operation OO plugs into service operation OR ⇔ (∃ injective

assignment Min: ∀m ∈ Min: m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 m2) ∧ (∃ injective assignment

Mout: ∀m ∈ Mout: m1 ∈ out(OR) ∧ m2 ∈ out(OO) ∈ m2 ∈ lsc(m1)). The filter relaxes the constraints
of the exact matching filter by additionally allowing input concepts of the service offer to be
arbitrarily more general than those of the service request, and advertisement output concepts to
be direct child concepts of the queried ones.

Subsumes match: Service operation OO subsumes service operation OR ⇔ (∃ injective

assignment Min: ∀m ∈ Min: m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 m2) ∧ (∃ injective assignment
Mout: ∀m ∈ Mout: m1 ∈ out(OR) ∧ m2 ∈ out(OO) ∈ m1 m2). This filter further relaxes constraints
by allowing service offer outputs to be arbitrarily more specific than the request outputs (as
opposed to the plug-in filter, where they have to be direct children). Thus, a plug-in can be seen
as special case of a subsumes match resulting in a more fine-grained view at the overall service
ranking.

Subsumed-by match: Service operation OO is subsumed by service operation OR ⇔ (∃

injective assignment Min: ∀m ∈ Min: m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 m2) ∧ (∃ injective
assignment Mout: ∀m ∈ Mout: m1 ∈ out(OR) ∧ m2 ∈ out(OO) ∈ m2 ∈ lgc(m1)). The idea of the
subsumed-by matching filter is to determine the service offers that the requester is able to
provide with all required inputs and at the same time deliver outputs that are at least closely
related to the requested outputs in terms of the inferred concept classification.

The matching degree of fail is true if and only if none of the matching filters defined above

succeed. As a result, services are ranked according to their matching degree in the following
decreasing order: exact > plug-in > subsumes > subsumed-by > fail.

Text Similarity-Based Operation Matching
The hybrid variants of SAWSDL-MX1 also perform a complementary text similarity-based
matching by means of classical token-based text similarity measures Loss-of-Information,
Extended Jaccard (Tanimoto), Cosine and Jensen-Shannon as implemented, for example, in
SimPackvi

Concretely, each semantic service signature is transformed into a pair of weighted keyword
vectors for input, respectively, output according to the classical vector space model of
information retrieval. For this purpose, each input concept is logically unfolded in the shared
ontology (as defined for standard tableaux reasoning algorithms) and concatenated with all
others to a complex logical expression containing only primitive components and logical
operators. This expression is treated as a mere text string which is being processed to a TFIDF
weighted keyword vector; the same is done with service output concepts. The TFIDF term
weighting values are computed over two distinct text indices depending on whether service
inputs or outputs are compared.

. For this purpose, the semantic signatures (i.e., the semantic annotations of the I/O
message parameters) of both service request and offer are considered as text such that the degree
of semantic similarity is measured in terms of their averaged text similarity.

The motivation for applying the above mentioned text similarity measures, originally intended
for natural language document comparison, is the experimentally evidenced observation that the
primitive (concept and role) components or terms that are used to describe more complex
concepts logically keep to Zipf ’s Law. That is, taking into account all documents derived from
the logical description of the semantic service signatures provided by services taken from the

public SAWSDL service retrieval test collection SAWSDL-TC1 (this also holds e.g. for the
public OWL-S service test collection OWLS-TC2), the observed distribution of terms is as

follows: ∑ =
=

N

n ss nk
Nskf

1

11),,(with k being the observed rank, N the number of ranks and s

a given parameter to characterize the distribution. For natural language text, s ≈ 1 is usually
assumed, reducing the formula to a normalized variant of 1/k , i.e. the term at rank 1 occurs two
times as often as the term at rank 2, three times as often as rank 3 and so on.

[Insert figure 4 here]

Figure 4. Term distribution for service signature text documents (SAWSDL-TC1).

Figure 4 scatterplots (logarithmically scaled) one of the term indices. In fact, the term

distributions for both service signature (service input, respectively, output concepts) indices
support the proposition that the data generated for text similarity matching as described above
resemble natural language text.

Non-Adaptive SAWSDL-MX1 Algorithm
To summarize, the hybrid semantic service matchmaker SAWSDL-MX1 first applies both
logical matching and text matching to each pair of operations of each pair of advertised and
requested SAWSDL service interface. It then determines the degrees of both logical and text
matching for the given service pair on the interface level by means of two respective bipartite
graph matchings based on these results which eventually leads to the hybrid semantic service
matching degree denoted as a 2-tuple (logic-based semantic service matching degree, text
similarity-based service matching value). Finally, it ranks those service offers with the same
logical matching degree (i.e., the first part of the hybrid matching degree) with respect to the
given request according to their text similarity values (i.e., the second part of their hybrid
matching degree) in decreasing order.

SAWSDL-M0. The logic-based only matchmaker variant SAWSDL-M0 of SAWSDLMX1

only performs the logic-based semantic service matching as described above, and ranks service
offers that share the same logical matching degree with respect to the given request uniformly at
random.

WSDL-ANALYZER: STRUCTURAL SERVICE MATCHING
The WSDL-Analyzer (WA) tool introduced in (Zinnikus et al. 2006) performs a structural only
matching of WSDL 1.1 services. That is, it ignores the semantic annotations of SAWSDL
service descriptions, hence treats any SAWSDL service as a mere WSDL service. The WA tool
detects similarities and differences between WSDL files to find a list of non-logic-based
semantically relevant Web services. Since its similarity algorithm inherently produces a mapping
between WSDL service descriptions, the tool can also be used for supporting mediation between
services.

More concrete, the WA tool exploits various types of XML schema information of WSDL
operation signatures such as element names, datatypes and structural properties, and
characteristics of data instances, as well as background knowledge from dictionaries and

thesauri. The similarity algorithm recursively calculates the similarity between the XML
structures of a requested and a candidate service, respects the structural information of complex
datatypes involved, and is flexible enough to allow for a relaxed matching as well as matching
between parameters that come in different orders in service parameter lists.

WSDL-Analyzer Algorithm
The structural matching of two WSDL services is a multi-step process. It starts off with (1)
comparing the operation sets of both services on interface level, which is based on (2) the
comparison of the structures of the operation signatures, that is their input and output messages,
which, in turn, is based on (3) the comparison of the XML Schema data types of the objects
communicated by these messages. This recursive structural matching of two XML-based WSDL
service descriptions is performed as follows.

A WSDL description is represented as a labeled tree where leaf nodes are the basic built-in
data types provided by the XML schema specificationvii

. Let L = {l1, l2, …, ln} be a set of labels.
A labelled tree T = (N, E, root(T), ϕ) is an acyclic, connected graph with:

- N = {n1, n2, …, nn} is a set of nodes.
- E ⊂ N × N is a set of edges.
- root(T) is the root of the tree.
- ϕ: N → L is a function which assigns a label to each node with basic data types D ⊂ L.

The process of calculating the similarity of two trees T1 and T2 starts with the roots root(T1)

and root(T2), and traverses these trees recursively: For a ∈ NT1 and b ∈ NT2 do compute

{ }

∈

∉⊕⋅+⋅
=

Dbabasim

Dbamnsimbasim
basim

t

jijisnn

)(),(,))(),((

)(),(,)),((max))(),((
),(

,

ϕϕϕϕ

ϕϕωϕϕω
.

where (a, ni) ∈ ET1, (b,mj) ∈ ET2 and ⊕i,j(ni,mj) denotes the sum of pairs sim(ni,mj) for 1 ≤ i ≤

card(n) and 1 ≤ j ≤ card(m) such that each ni and mj occur at most once in the sum. If card(n) ≠
card(m), some of the nodes cannot be matched. Weights ωn and ωs are used to either increase or
decrease the effect of element (label) name or structural similarity.

The computation of type similarity simt bases on a given type compatibility table, that assigns
a similarity value to each combination of the considered basic data types. The similarity of
names (labels) simn can be calculated with different measures such as string edit distance,
substring containment or WordNetviii

 similarity (semantic proximity). In order to improve the
mapping results, we used substring matching and WordNet. Experiments showed that especially
in rather standardized areas the results are better than with pure data type mapping.

Hybrid Semantic Matchmaker SAWSDL-M0+WA
The hybrid semantic service matchmaker SAWSDL-M0+WA performs (a) logic-based semantic
matching and (b) ranks service offers that share the same logical matching degree with respect to
a given request according to their degree of structural similarity as computed by the WSDL-
Analyzer.

SERVICE MATCHING EXAMPLE
In the following, we demonstrate the application of the three different semantic service matching
approaches, that is logic-based, text similarity-based and structural service matching by example.
Suppose a user is searching for a Web service that returns a map for a given location as input.
The main parts of the description of the desired service in SAWSDL are as follows:

<types><schema ...>

 <complexType name="GPSType" modelReference="http://...#GPSPos">

 <sequence>

 <element name="longitude" type="float"/>

 <element name="latitude" type="float"/>

 </sequence>

 </complexType>

 <simpleType name="MapType" modelReference="http://...#Map">

 <restriction base="anyURI"/>

 </simpleType>

</schema></types>

<message name="getMapResponse">

 <part name="_Map" type="MapType"/> </message>

<message name="getMapRequest">

 <part name="Location" type="GPSType"/> </message>

<portType name="PositionMapInterface">

 <operation name="getMAP">

 <input message="tns:getMapRequest"/>

 <output message="tns:getMapResponse"/>

 </operation>

</portType>

Listing 1 Service Request

The requested service offers exactly one operation which returns the reference to an
appropriate map given a GPS position as input. As usual, the message data types of the operation
signature are semantically annotated using SAWSDL model references that point to appropriate
ontologies in which the semantics of the used annotation concepts are defined. In this example,
the operation (service) input is claimed to conform to the concept GPSPosition while the output

is a Map, both concepts described in OWL. Besides, there is a service offer (registered at the
matchmaker) which provides similar functionality:

<types><schema ...>

 <simpleType name="LocationType" modelReference="http://...#Location">

 <restriction base="string"/>

 </simpleType>

 <simpleType name="MapType" modelReference="http://...#RoadMap">

 <restriction base="anyURI"/>

 </simpleType>...

</schema></types>

<message name="getMAPResponse">

 <part name="MapPart" type="MapType"/> </message>

<message name="getMAPRequest">

 <part name="LocationPart" type="LocationType"/> </message>

<portType name="LocationMapInterface">

 <operation name="createMAP">

 <input message="tns:getMAPRequest"/>

 <output message="tns:getMAPResponse"/>

 </operation>

 <operation ...>...</operation>

</portType>

Listing 2 Service Offer

During the matching process, this offer is compared to the request using one or more variants

as proposed in this paper. For the logic-based and text similarity matching, the interface level
matching is examined at first. Since the request only consists of a single operation, the bipartite
graph matching problem is trivial and omitted here. We just assume that the second operation of
the service offer provides different functionality and thus is not part of the final assignment.

Logical Service Matching
For the logic-based semantic service operation matching, the following concept definitions are
assumed (written in the more compact standard DL notation instead of the normative RDF
syntax of OWL-DL):

Map Image ∃hasScale.Scale ∃contains.GeographicalEntity

RoadMap Map ∃contains.Road

Location GeographicalEntity ∃hasParameter.GPSPos

GPSPos ∃hasLongitude.FPNum ∃hasLatitude.FPNum

Sequential application of the different logic-based matching filters for this example results in

a fail, which can be considered as false negative. Although the fact RoadMap Map holds for
the outputs, there does not exist an inclusion for the concepts Location and GPSPos. Thus, the
example exposes one of the main problems with this standard matching technique. Both concepts
are strongly related to each other, but logic-based concept subsumption reasoning fails to
recognize that. One possibility to deal with such cases is the usage of text similarity approaches
as described previously in this paper.

Text Similarity-Based Matching
The unfolded concept definitions are used as input for a text similarity measure based on the
vector space model utilizing TFIDF weights over a given (service) document corpus. In this
example, the matchmaker applies the common Loss-of-Information similarity measure which just
takes the two service documents into account:

SR
SRSR

SRLOI
+

∩−∪
−=1),(,

where R is the set of terms of the request document and S the set of terms of the service offer.
Since the proposed text similarity approach is structured, distinct values are computed for inputs
and outputs respectively.

For example, the set of terms of inputs of the request after unfolding and stopword
elimination is Rin = {hasLongitude, FPNum, hasLatitude} while the corresponding set for the
service offer is Sin = {Location, GeographicalEntity, hasParameter, hasLongitude, FPNum,
hasLatitude}. The partial similarity result restricted to these service inputs then is LOI(Rin, Sin) ≈
0.66, which indicates a moderate textual similarity (in contrast to the logic-based fail). For the
outputs, the similarity value is computed as LOI(Rout, Sout) ≈ 0.92, which indicates high similarity
(only the single term Road distinguishes both sets). The overall structured textual similarity of
both services R and S is the average of both values, that is LOI(R, S) = 0.75, which is clearly in
the upper part of the similarity function range, thus compensates the logic-based false negative.

Structural Service Matching
To illustrate the functionality of the structural WSDL matching described in Section 4, the
similarity computation of the two operations in question is exemplified here. Please note, that the
actual similarity computation of the WSDL Analyzer (WA) involves the whole document
structure, but this is an analogous process omitted here for reasons of simplicity.

Basically, the WA algorithm recurs into the lower level WSDL tree representation nodes of
both service descriptions until a leaf node containing a basic data type occurs. If this is also the
case for the other service at the same time, the data type similarity is looked up in a predefined
table. If a basic data type occurs on one hand but some complex structure at the other hand, the
system tries to find the best matching simple type contained in the complex type. Recursion takes
place at every pair of nodes to compare structures that are not leaf nodes in the corresponding
WSDL trees. At this step, the label similarity is computed for these nodes and the maximum of
possible similarities for subnode recursion is added to the overall similarity.

[Insert figure 5 here]

Figure 5. Structural WSDL service operation matching example.

For our example of service request and offer (cf. Listings 1 and 2, Figure 5), the operation

similarity (sub-) computation involves comparing GPSType to LocationType. Since GPSType is
a complex type and LocationType a leaf node, simple types contained in GPSType are checked
for type similarity resulting in 0.8 as stated in the lookup table (both simple subtypes in question
are float and for the offer string was found).

By comparing their labels using WordNet, a relationship is discovered. Also, upper level
nodes have a high textual similarity in most cases for the example, e.g. getMapRequest and
getMAPRequest. For the output part of the operation, the algorithm ends up in comparing the two
leaf nodes labeled MapType in both cases. Both also share the same simple datatype anyURI,
thus these branches add a high similarity value to the overall structural similarity value.

Similarity wn⋅simn ws⋅max{⊕i,j}

sim(GPSType, LocationType) 1.5 simt(float, string) = 0.8 (leaf/non-leaf)

sim(_Location, LocationPart) 2 2.3

sim(getMapRequest, getMAPRequest) 4 4.3

sim(<input>, <input>) 0 (no names) 8.3

sim(MapType, MapType) 3 simt(anyURI, anyURI) = 1

sim(Map, MapPart) 2 4

Sim(getMapResponse, getMAPResponse) 4 6

sim(<output>, <output>) 0 (no names) 10

sim(getMAP, createMAP) 2 18.3

Table 1 Structural similarity values computed by the WSDL-Analyzer (WA)

Table 1 summarizes all similarity computations of the WA assuming that both weighting
parameter values (ωn, ωs) are equal to 1. For computing the name similarity, WA applies a
simple token-based string comparison in combination with WordNet matching. The token
matching adds a value of 1 for each matched token to the overall similarity, WordNet matching
ranges to an interval [0, 1], and both results are added for the overall simn value. The given
lookup table for data type matching (simt) assigns similarity values in [0, 1] where equal types
have a similarity value of 1.

As can be seen from the bottom line of Table 1, the overall result for the example request and

service offer pair is 20.3, which is normalized by the maximum obtainable structural matching
value of 28 to 0.73. Obviously, each of the different semantic matching approaches above has its
pros and cons. While logic-based semantic matching takes advantage of formal semantic
definitions of concepts and roles, it may be mislead in some cases as for the concepts GPSPos
and Location. The additional use of text IR techniques and structural matching may overcome
this problem in this example: Text similarity of 0.75 and structural similarity of 0.73 are both
sufficiently high enough to indicate semantic relevance. However, as noted for example in
(Klusch et al. 2009), each of these non-logic-based semantic matching approaches can, in
principle, introduce misclassifications on their own.

SAWSDL-MX2: ADAPTIVE MATCHING AGGREGATION
As mentioned above, the logic-based filters of SAWSDL-MX1 have been complemented by text
similarity matching in a fixed, that is, in a non-adaptive way. In particular, services were ranked
according to their logical matching degree first and then (within the same logical matching class)
according to their signature text similarity. Obviously, there are some problems with this
approach. The first problem is the tedious search for a text similarity threshold parameter value
for arbitrary pairs of service offers and requests. Second, more general, how to best combine
different semantic service matching filters such as those described in previous sections to obtain
a reasonable retrieval performance in terms of precision and recall? In particular, how to achieve
this in a way that renders the matchmaker independent from any service collection in principle?

One option to resolve these issues is to let the matchmaker learn how to do it rather than
finding a solution by hand. Inspired by the work of (Joachims & Radlinski 2007) and (Kiefer &
Bernstein 2008) on off-line adaptive search, we developed an off-line adaptive hybrid semantic
matchmaker for SAWSDL services, called SAWSDL-MX2, that simply learns how to optimally
solve the just mentioned problems with fixed hybrid matchmaking by means of a support vector
machine-based classifier that is trained and cross-validated over a given test collection and then
applied to the selection process for a service request at hand.

SAWSDL-MX2 Overview
In short, the SAWSDL-MX2 matchmaker returns a ranked list of relevant services S for a given
request R in SAWSDL based on the aggregated results of separately performed logical, text and
structural similarity-based matching. Each of these different matching filters has been described
above for SAWSDL-MX1 and the WSDL-Analyzer tool. Their aggregation by SAWSDL-MX2
is optimal with respect to average classification accuracy according to its binary SVM-classifier
that has been learned over a given training set previously. In the following, we describe the

training (off-line learning) phase and the subsequent use of the learned SVM-classifier for hybrid
semantic service selection by SAWSDL-MX2 in more detail.

Off-Line Learning of SVM Classifier
The problem of classifying a given service S with respect to its semantic relevance to a given
request R can be re-formulated as the problem of learning a binary support vector machine-based
classifier. That is to find a separating hyperplane in a given feature space X such that for all
positive and negative training samples with minimal distances (these particular samples are also
called support vectors) to it, these distances are maximal.

In case of SAWSDL-MX2, we consider a 7-dimensional feature space X = {0, 1}5 × [0, 1] ×
[0, 1], where each of the first five binary dimensions corresponds to the occurrence of one out of
five different logical matching degrees (exact, plug-in, subsumes, subsumed-by, fail) followed by
the two real-valued dimensions for text, respectively, structural similarity-based matching
degrees. For example, the feature vector xi = (0, 0, 1, 0, 0, 0.6, 0.7) (i ≤ N, N is the size of the
training set of positive and negative samples) indicates that the matching results for the service
offer/request pair (S, R) that corresponds to the training sample (xi, yi) (with yi = 1 if S is relevant
to R according to the binary relevance sets defined in the test collection SAWSDL-TC1, else yi =
−1) yields a logical subsumes match, a text similarity of 0.6, and structural similarity of 0.7.

For the training set {(x1, y1), …, (xN, yN)}, we randomly selected 2325 samples in total derived
from SAWSDL-TC1 with equal quantities of positive and negative samples. This amounts to
around 10% of the complete search space of samples (which size is the number of requests times
the number of services in the used collection) over which the binary SVM classifier for service
relevance is learned.

The SVM classification problem is defined as the following optimization problem:

()() 0,1:1 subject to
2
1:,,in minimize

1
≥−≥+≤≤∀+ ∑

=
iii

T
i

N

i
i

T bxwyNiCwwbw ξξφξξ ,

where w and b define the optimally separating hyperplane as the set of points satisfying
wTφ(x) + b = 0. Furthermore, w is the normal vector which specifies the orientation of the plane,
b is called bias and indicates the offset of the hyperplane from the origin of the feature space X.
The error term ∑ =

N

i iC
1
ξ is introduced to allow for outliers in a non-linear separable training set,

where the error penalty parameter C must be specified beforehand. The predefined function φ
maps features into a higher, possibly infinitely dimensional space in which the SVM finds an
optimal hyperplane that allows the classification of non-linear separable data (more precise with
respect to the original dimension of X)ix

.

Since ()∑ =
=

N

i iii xyw
1

φα is a linear combination of training sample feature vectors the dual
formulation of the SVM classification problem that is actually solved by SAWSDL-MX2 is as
follows:

()

∑

∑ ∑

=

= =

≤≤≤≤∀=

−

N

i
iii

N

ji

N

i
ijijiji

CNiy

xxKyy

1

1, 1

0:1,0 subject to

 ,
2
1:in maximize

αα

αααα
.

The kernel function K(xi, xj) = φ(xi)Tφ(xj) implicitly defines φ in the scalar product. The
problem is solved by finding a set of Lagrange multipliers φi representing the hyperplane for
which training samples xi with φi ≠ 0 are called support vectors (of the hyperplane). For
SAWSDL-MX2, we choose the RBF Kernel (Radial Basis Function) as suggested in (Hsu et al.
2007):

()
2

, ji xx
ji exxK −−= γ .

Unlike polynomial kernels, it only introduces a single parameter γ which keeps the
complexity of model selection low. Besides, for specific parameter settings it can behave like a
linear or sigmoid kernel.

The searching of a SVM parameter setting (C, γ) that is optimal with respect to its average

classification accuracy has been done through means of grid search and 6-folded cross-
validation. Binary classification of samples x ∈ X for service pair (S, R) with the above

parameters is defined as follows: () ()∑
=

+=
N

i
iii bxxKyxd

1
,α with bias b satisfying the Karush-

Kuhn-Tucker condition (Chang & Lin 2001), such that S is classified as relevant if and only if
d(x) > 0. Please note, that w is not a direct output of the dual optimization but computed using
the objective value o of the dual optimization and the coefficients αi based on the relation
between the primary and dual problem:

()

+⋅=== ∑∑

==

N

i
i

N

ji
jijiji

T oxxKyywww
11,

2 2, ααα .

For more details on SVM in general and on the dual problem solving in particular, we refer
the interested reader to, for example, (Hsu et al. 2007).

[Insert figure 6 here]

Figure 6. Illustration of SVM classification for training set of linear separable 2D samples.

Figure 6 illustrates the functioning of a linear SVM classifier (i.e. K(xi, xj) = xi

Txj) in a two-
dimensional example for adapting the aggregation of two service matching variants (structural +
text) forming a linearly separable 2D feature space [0,1] × [0,1]. The parameters of both problem
formulation variants for this case are shown: the normal vector w specifies the orientation of the
resulting hyperplane and b the offset from the origin for the primal formulation. The dual
parameters αi characterize the support vectors (labeled SV in the figure), which lie exactly on the
planes with maximum margin computed by the SVM optimization problem solver.

Using Learned SVM Classifier with Ranking for Service Selection
Once the matchmaker SAWSDL-MX2 has finished its training phase over the given test
collection, it can apply the learned SVM classifier to any new service pair (S, R) with a new
request R that is not known in the training set to compute the hybrid semantic matching degree.
More concrete, it just applies its learned binary classifier d to the corresponding feature vector x
of (S, R) as described above. That is, service S is relevant to R, if and only if d(x) > 0, otherwise
it is classified as irrelevant. Finally, the matchmaker SAWSDL-MX2 then ranks the service S

according to the distance () wxdxdist)(= of its feature vector x to the learned hyperplane.
Eventually, it returns the computed hybrid semantic matching degree for the pair (S, R) as the
tuple (d(x), dist(x)).

The off-line learning of SAWSDL-MX2 renders it, in principle, independent from any given
test collection, in particular any set of services registered at the matchmaker (it just has to learn
over the respectively modified test collection in case of changes) as well as any set of different
matching filters that the developer would like to use in combination in future versions of
SAWSDL-MX2. In this case it just automatically re-learns off-line how to best aggregate them
for the actual service collection at hand. That is particularly in line with the off-line adaptive
search engine Striver (Joachims & Radlinski 2007) and the adaptive OWL-S matchmakers
OWLS-MX3 (Klusch & Kapahnke 2009) and OWLS- iMatcher2 (Kiefer & Bernstein 2008).

IMPLEMENTATION

We implemented the SAWSDL matchmaker variants described in previous sections in Java.
In particular, we used the sawsdl4jx API (handling SAWSDL for WSDL 1.1) to parse SAWSDL
documents, the OWL APIxi for accessing OWL ontologies used for annotation, the DIG 1.1
standard interface to handle OWL-DL (SHOIQ) knowledge base queries, and the OWL-
API/Pelletxii reasoner as OWL-DL inference engine for logic-based semantic matchmaking. The
binary SVM-classifier with ranking as used by the SAWSDL-MX2 has been implemented with
the public libSVMxiii

Figure 7 provides an overview of the components of the SAWSDL-MX2 matchmaker
architecture. The implementation of both the non-adaptive SAWSDL-MX1 and the adaptive
SAWSDL-MX2 is publicly available at the portal semwebcentral.org.

 software.

[Insert figure 7 here]

Figure 7. Architecture of the adaptive hybrid semantic matchmaker SAWSDL-MX2.

The semantic service selection tool called SAWSDL-MX offers both matchmakers with an

integrated graphical user interface (see Figure 8).

[Insert figure 8 here]

Figure 8. Graphical user interface of the semantic service selection tool SAWSDL-MX.

The functionality of this tool covers all steps of semantic service selection ranging from the

selection of given test collection, configuration of the selected matchmaker variant, and the
display of not only its answer set for a particular request but also the results of applying different
selected retrieval performance evaluation measures which can be conveniently saved in form of
an evaluation summary report in PDF.

PERFORMANCE EVALUATION
For evaluating the retrieval performance of the different non-adaptive and adaptive SAWSDL
service matchmakers described in previous sections, we conducted a comparative evaluation
experiment based on the only publicly available SAWSDL service retrieval test collection

SAWSDL-TC1 and the classical retrieval performance measures macro-averaged
recall/precision, average precision and average query response time. For checking the statistical
significance of the evaluation results for different matching variants, we used the standard
Friedman test.

In the following, we focus on the comparative retrieval performance evaluation of the non-
adaptive matchmakers SAWSDL-M0+WA and SAWSDL-MX1, and the adaptive matchmaker
SAWSDL-MX2. For more detailed results on SAWSDL-MX1 alone, we refer to (Klusch &
Kapahnke 2008).

Evaluation Setup
The experimental evaluation of service retrieval performance is based on the first SAWSDL test
collection SAWSDL-TC1. It is semi-automatically derived from OWLS-TC 2.2xiv using the
OWLS2WSDLxv

The collection SAWSDL-TC1 consists of around 900 Web services covering different
application domains: education, medical care, food, travel, communication, economy and
weaponry. It also includes a set of queries and binary relevance sets subjectively specified by
domain experts. As one result, each service in SAWSDL-TC1 contains only a single interface
with one operation. All automatically derived model references are pointing to OWL ontologies.
Therefore, this test collection can only be seen as a first attempt towards a commonly agreed
testing environment for SAWSDL service discovery and our evaluation has to be considered as
preliminary.

 tool, as there is currently no other standard test collection for SAWSDL
available. OWLS2WSDL transforms OWL-S service descriptions (and concept definitions
relevant for parameter description) to WSDL through syntactic transformation. Top-level
annotations taken from the original OWL-S descriptions have been added for XML Schema type
definitions used to describe message inputs and output.

The performance tests have been conducted on a machine with Windows XP 32b, Java 6, 2.8
GHz CPU and 4 GB RAM. We used the publicly available semantic service matchmaker
evaluation tool SME2xvi

 developed at DFKI for comparative performance evaluation of semantic
service matchmakers.

Retrieval Performance Evaluation Measures
For retrieval performance evaluation, we measured the classical precision and recall:

A
BA

Rec
B

BA
Prec

∩
=

∩
= , ,

where A is the set of all relevant documents, and B the set of all retrieved documents for a
request. Further, we measured the macro-averaged precision at standard recall levels:

(){ }∑
∈

∈∧≥⋅=
Qq

qooiooi OPRRecRP
Q

Prec ,max1
,

where Oq denotes the set of observed pairs of recall/precision values for query q when
scanning the ranked services in the answer set for q stepwise for true positives in the relevance
sets of the test collection. For evaluation, the answer sets are the sets of all services registered at
the matchmaker which are ranked with respect to their (totally ordered) matching degree. In
other words, we computed the mean of precision values for answer sets returned by the
matchmaker for all queries in the test collection at standard recall levels Reci (0 ≤ i < λ).

Ceiling interpolation is used to estimate precision values that are not observed in the answer
sets for some queries at these levels; that is, if for some query there is no precision value at some
recall level (due to the ranking of services in the returned answer set by the matchmaker) the
maximum precision of the following recall levels is assumed for this value. The number of recall
levels from 0 to 1 (in equidistant steps n/λ, n = 1, …, λ) we used for our experiments is λ = 20.

The Average Precision (AP) measure produces a single-valued rating of a matchmaker for a

single query result: ∑
=

=
L

r r
rcountrisrel

R
AP

1

)()(1
, where R is the set of relevant items previously

defined by domain experts for the examined query, L the ranking of returned items for that
query, isrel(r) = 1 if the item at rank r is relevant and 0 otherwise and count(r) the number of
relevant items found in the ranking when scanning top-down, i.e. ()∑ =

=
r

i
iisrelrcount

1
)(. Please

note that the AP measure is independent from the way and size of ranking.

Statistical Significance Test
In general, differences in performance evaluation results can be shown to be statistically
significant or insignificant by means of the so-called Friedman test. This is a non-parametric test
for simultaneously analyzing ranked result sets of at least two different (service matching)
methods and has been shown in (Hull 1993) to be a vital explanatory component of a
comparative retrieval performance evaluation.

We are using the Friedman Test variant proposed in (Iman & Davenport 1980) as FN =
MSR/MSE, where MSR is the mean-squared difference between the different matching variants
and MSE the mean-squared error. The resulting value can be compared to the F-distribution with
m − 1 and (n − 1)(m − 1) degrees of freedom, where n is the number of queries and m the number
of tested matching variants. The resulting p-value indicates, if there is a significant difference
between the variants which one cannot interpret as being an implication of the null hypothesis,
i.e. that variations of the matchmaker rankings per query are insignificant. As a threshold value
for p, we rely on α = 0.05, which is frequently used for tests like this. To produce the rankings
for the test, averaged AP values have been used.

Performance Evaluation Experiments
As a first experiment, we compared the retrieval performance of SAWSDLM0+WA to that of
both approaches applied solely. This experiment was conducted mainly to check, whether even
such a simple hybrid combination of logic-based and non-logic-based semantic matching as in
SAWSDL-M0+WA can improve upon the performance of each of both (SAWSDL-M0 and
Text-IR) individually.

[Insert figure 9 (a) and (b) side by side here]

(a) Logical (SAWSDL-M0) vs. structural (WSDL-Analyzer/WA) vs. hybrid (SAWSDL-M0+WA)
semantic service selection.
(b) Non-adaptive hybrid (SAWSDL-M0+WA & SAWSDL-MX1) vs. adaptive hybrid (SAWSDL-
MX2) semantic service selection.

Figure 9. Macro-averaged precision/recall of SAWSDL service matchmaking variants.

As shown in Figure 9(a), the combination of both performs best at almost every recall level

except towards full recall. This is in perfect line with our experimental results on SAWSDL-
MX1 reported in (Klusch & Kapahnke 2008). As we already pointed out there, ontologies
currently found in the Web are merely inclusion hierarchies or taxonomies rarely making use of
elaborated logical concept definitions for service annotation, which still dampens the benefit of
any logic-based semantic matching approach.

To compare the performance of the adaptive hybrid matchmaker SAWSDLMX2 (logic, text,
structural similarity) with that of the non-adaptive variants SAWSDL-M0+WA (logic and
structural similarity) and SAWSDL-MX1 (logic and text similarity), we conducted a second
evaluation experiment. As shown in Figure (b), the adaptive SAWSDL-MX2 performs better
than SAWSDL-M0 (logic-based only) and at least as good as the non-adaptive variant
SAWSDL-MX1 utilizing logic-based matching and extended Jaccard (Tanimoto) text similarity-
based matching. This is mainly due to the fact, that text similarity computation as described
introductorily is closely related to structural matching when applied to mere is-a ontologies
(inclusion hierarchies, taxonomies).

In fact, for the given test collection, where SAWSDL files have been semi-automatically
derived from OWL-S and the XML Schema parameters origin from OWL concept definitions,
the WSDL-Analyzer (WA) indirectly performs both structural and text similarity-based concept
matching which makes it partly redundant to SAWSDL-MX2 in such cases. Nevertheless, for the
general case, the adaptive approach of SAWSDL-MX2 enables an easy and well-defined
integration of arbitrary matching mechanisms to improve result rankings in the future.

 SAWSDL-MX1 SAWSDL-MX2 COM4SWS URBE SAWSDL-iMatcher3
AP 0.7 0.68 0.68 0.73 0.63
AQRT 3.1s 7.9s 6.14s 20s .75s

Table 2 Average precision and query response time (in seconds) of SAWSDL-MX matchmaker
variants compared to other SAWSDL matchmakers URBE, COM4SWS and SAWSDL-
iMatcher3.

Table 2 summarizes the average precision (AP) and query response time (AQRT) of

SAWSDL-MX1 and SAWSDL-MX2 as well as other available SAWSDL matchmakers
developed elsewhere, that are non-adaptive COM4SWS, URBE and adaptive SAWSDL-
iMatcher3; we will comment on these relevant matchmakers in the next section. The results of
their performance evaluation over the same test collection SAWSDL-TC1 (and same publicly
available evaluation tool SME2xvii

The average precision values for the individual service matching variants, that are logic-based
matching (SAWSDL-M0), structural matching by WSDL-Analyzer (WA) and text matching
with TFIDF-Cosine (IR) are 0.53, respectively, 0.44, respectively, 0.46. Their average query
response times are 1.7, respectively, 3, respectively 1.4 seconds. The differences between their
precision values are not statistically significant. It is noteworthy that the text matching did
outperform neither pure logic-based nor structural matching. The latter is partly due to redundant
text similarity measurement of unfolded I/O concepts by the WA and IR since the XML schema
parameter definitions of SAWSDL services in SAWSDL-TC were automatically derived from

) are taken from the summary report of the 2009 edition of the
international semantic service selection contest (S3 2009).

respective I/O concept definitions for corresponding OWL-S services in the collection OWLS-
TC2 by the publicly available conversion tool OWLS2WSDL xviii.

The hybrid semantic SAWSDL matchmaker variants SAWSDL-M0+WA (logic + structural)
and SAWSDL-MX1 (logic + text) outperformed the individual filters (SAWSDL-M0, WA, IR)
in terms of AP 0.61, respectively, AP 0.68. For example, the statistical significance test for
macro-averaged recall/precision results for SAWSDL-M0+WA (logic + structural matching)
compared to the structural only matching by the WSDL-Analyzer (WA) and the logic-based only
matchmaker variant SAWSDL-M0 yielded p = 0.026, respectively, p = 0.0028 both of which
below threshold α. That is, the hybrid combination significantly outperformed the individual
ones at 5% level. This is in perfect line with experimental evaluation results for hybrid semantic
service matchmakers reported elsewhere (Klusch et al. 2006, 2009, 2009a).

RELATED WORK
All SAWSDL matchmakers listed in Table 2 did perform equally well, that is with reasonable and
statistically insignificant differences between their average precision (p = 0.331 at 5% level), but with
unacceptably high query response times for many applications. For the given test collection SAWSDL-
TC1, no performance gain resulted from using adaptive SAWSDL matchmakers like SAWSDL-MX2
(SVM classifier) or SAWSDL-iMatcher3 (linear regression) instead of non-adaptive ones like SAWSDL-
MX1, COM4SWS and URBE manually optimized with respect to the collection.

However, as mentioned above, the automated optimal aggregation of different kinds of
selection results through machine learning renders the respectively adaptive matchmakers
independent from changes of considered service collections as well as newly added or modified
matching filters. In case of non-adaptive matchmakers, this would require a tedious manual (re-)
tuning of their individual and aggregated matching processes to (again) keep up with the
precision of adaptive ones. The off-line learning time of SAWSDL-MX2 over its training subset
of SAWSDL-TC1 was 31 minutes of which 5 minutes were devoted to feature space building for
2325 samples (cf. page 15). In addition, most non-adaptive matchmakers use linearly weighted
aggregation functions while SAWSDL-MX2 automatically learns such aggregation even for non-
linear separable feature spaces.

It is noteworthy that the only other adaptive SAWSDL service matchmaker SAWSDL-
iMatcher3 trained over the full test collection of the contest by their developers using a linear
regression model was slightly outperformed by SAWSDL-MX2 which was only trained over a
random 10% subset using SVM-based classification. The extremely fast query response time of
SAWSDL-iMatcher3 is due to its essentially pre-computed answer sets for this collection.

In any case, we emphasize that the above results of our experimental evaluation strongly
depend on the only publicly available SAWSDL service retrieval test collection SAWSDL-TC1.
In this regard, the reported results are preliminary until a more comprehensive standard
SAWSDL test collection (like the TREC collections in the information retrieval domain)
becomes available in the future.

The first search engine for WSDL-S services has been Lumina (Li et al. 2006) developed in
the METEOR-S projectxix

The URBE matchmaker (developed by Pierluigi Plebani in 2008 at the Politecnico di Milano,
Italy) performs non-logic-based semantic SAWSDL service matching (Plebani & Pernici 2009).

. It follows an approach similar to FUSION based on mapping WSDL-
S (the predecessor of SAWSDL) to UDDI but performs non-logic-based semantic matching in
terms of structural ontology-based (path lengths between terms in shared ontology) and simple
keyword-based service matching scores only.

In particular, it performs text similarity matching of property-class and XSD I/O message data
types as well as structural ontology-based I/O concept similarity in terms of worst-case path
length between concepts in a shared ontology. There is no logical reasoning involved. Like
SAWSDL-MX1 and SAWSDL-MX2, URBE performs bipartite graph-matching of service
operations and ranks services based on weighted aggregation of structural and text matching
scores. Remarkably, URBE won the special track for SAWSDL service selection of the
international S3 (semantic service selection) contest editions 2008 and 2009 in terms of average
precision (0.72). Though, the differences to the adaptive SAWSDL matchmakers SAWSDL-
MX2 and SAWSDL-iMatcher3 were statistically not significant, and its average query response
time was worst (20 sec) compared to that of its next ranked competitors.

The COM4SWS matchmaker (developed by Stefan Schulte and his colleagues at the
Technische Universität Darmstadt, Germany) is also a hybrid semantic SAWSDL service
matchmaker: It performs non-logic-based clustering (FarthestFirst, syntactic distance) of service
descriptions in the vector space model and checks for logic-based mutual coverage of (subclasses
of) I/O concepts. Matching of service components from a service offer and a service request is
based on the Hungarian algorithm (i.e., bipartite service signature graph matching) while ranking
values are computed as weighted similarity values from all service abstraction levels. No further
information is available on COM4SWS yet. It is noteworthy, that it performed close to the next
ranked adaptive SAWSDL-MX2 in terms of average precision (0.681) but slightly faster in
average (6.14 sec) at the 2009 edition of the S3 contest.

The SAWSDL-iMatcher3 (developed by Dengping Wei and Avi Bernstein in 2009 at the
University of Zurich, Switzerland) is most relevant to SAWSDL-MX2 with respect to adaptive
selection of SAWSDL services. It partially applies the selection process performed by the OWL-
S matchmaker iMatcher developed by the same group (Kiefer & Bernstein 2008) to the case of
SAWSDL service selection. In particular, SAWSDL-iMatcher3 is hybrid in the sense that it
performs logical matching based on output concept subsumption and text similarity-based
matching of service names, if they are provided in the respective SAWSDL descriptions. For the
latter purpose, it applies different token- and edit-based text similarity measures. Like SAWSDL-
MX2 it learns how to best select services off-line but applies a linear regression model with
ranking and does perform neither text matching of logically unfolded I/O concept definitions nor
WSDL structure matching.

(Syeda-Mahmood et al. 2005) present a hybrid semantic service matchmaking approach for
WSDL-S with annotations in OWL based on the combination domain-independent knowledge
aquired from the WordNet thesaurus and domain-dependent semantic scoring. In contrast to
SAWSDL-MX2, it relies on a fixed scoring schema that is adapted manually to valuate different
types of concept relations. Hybrid result aggregation is also fixed by considering the minimum
result as overall ranking score, whereas our approach automatically adapts the overall
aggregation strategy including different degrees of logical match using SVM training. Apart
from the matching procedure itself, a redundant storage strategy named attribute hashing is
presented to improve retrieval performance in large service repositories.

The adaptive and hybrid semantic service matchmaker OWLS-MX3 (Klusch & Kapahnke
2009) is similar to SAWSDL-MX2 in that it performs the same SVM-based off-line learning and
is restricted to semantic annotations in OWL-DL. However, both matchmakers significantly
differ in various aspects of their selection process such as the way of how they perform structural
matching. While SAWSDL-MX2 performs structural matching on the WSDL files of SAWSDL
service descriptions ignoring the semantic annotations, OWLS-MX3 ignores the grounding of

semantic services in WSDL completely. Another differing aspect is the definition of the logic-
based filters. While SAWSDL-MX2 applies bipartite graph matching at operation level to
compute the optimal one-to-one parameter assignment for request and service offer, OWLS-
MX3 allows multiple assignments for a parameter mapping, thus producing false positives
caused by parameters that subsume more than one parameter of its counterpart.

For a comprehensive survey of semantic service matchmakers in general, we refer the
interested reader to (Klusch 2008). A survey of approaches to WSDL service signature or
behavior (message-based conversation) matching such as WXplorer (Stroulia & Wang 2004) or
Woogle (Dong et al. 2004) is out of the scope of this paper but provided, for example, in
(Plebani & Pernici 2009). Taking a broader view, the task of semantic service retrieval can be
interpreted as finding compositions of services that fulfill given requirement specifications, as
for example in SEMAPLAN (Akkiraju et al. 2006), which applies semantic service matching in a
cost function to guide an AI planner in generating favorable service compositions, or Opossum
(Toch et al. 2007), which introduces the notion of service networks to represent service
dependencies as basis for approximated retrieval of service composition. However, integration of
SAWSDL-MX2 in such a system is out of the scope of this paper.

CONCLUSION
We discussed different hybrid SAWSDL service matchmakers each of which outperform the
individual types of semantic service signature matching that they combine. Among others, the
comparative experimental performance evaluation showed that the combined use of logical and
non-logic-based structural matching may indeed outperform logic-based only matching but not
the combination of logical with text similarity-based matching by SAWSDL-MX1.

Further, the adaptive combination of all three types of matching by SAWSDL-MX2
performed as well as the non-adaptive hybrid variant in terms of average precision. This
experimental result appears somewhat disappointing at first glance but, apart from that it
depended on the only available test collection SAWSDL-TC1, the major benefit of the offline
learning capability is that it renders SAWSDL-MX2 independent from any manual adjustment to
other or updated test collections and matching filters in the future. In fact, if services or
ontologies change or new filters shall be used or integrated into a given non-adaptive
matchmaker, the optimal configuration of its filters with respect to precision would have to be
sought by the developer in time-consuming experiments and analysis otherwise.

REFERENCES

Akkiraju, R., Srivastava, B., Ivan, A.-A., Goodwin, R. & Syeda-Mahmood, T. (2006).
SEMAPLAN: Combining Planning with Semantic Matching to Achieve Web Service
Composition. Proceedings of 6th International Conference on Web Services (ICWS), IEEE
Computer Society, Washington, DC, USA.
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. & Patel-Schneider P.F. (2003). The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press.
Chang, C.-C. & Lin, C.-J. (2001). Libsvm: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Dong, X., Madhavan, J. & Halevy, A. (2004). Mining Structures for Semantics. ACM Special
Interest Group on Knowledge Discovery and Data Mining Explorations Newsletter, 6(2).

Hsu C.-W., Chang C.-C. & Lin C.-J. (2007). A Practical Guide to Support Vector Classification.
Hull, D. (1993). Using statistical testing in the evaluation of retrieval experiments. Proceedings
of 16th ACM SIGIR conference on research and development in information retrieval.
Iman, R.L. & Davenport, J.M. (1980). Approximations of the critical region of the Friedman
statistic. Communications in Statistics, A9(6).
Joachims, T. & Radlinski, F. (2007). Search Engines that Learn from Implicit Feedback. IEEE
Computer, 40(8).
Kaufer, F. & Klusch, M. (2006). WSMO-MX: A Logic Programming Based Hybrid Service
Matchmaker. Proceedings of the 4th IEEE European Conference on Web Services (ECOWS
2006), IEEE CS Press, Zurich, Switzerland.
Kiefer, C. & Bernstein, A. (2008). The Creation and Evaluation of iSPARQL Strategies for
Matchmaking. Proceedings of 5th European Semantic Web Conference (ESWC), LNCS, 5021,
Springer.
Klusch, M. (2008): Semantic Service Coordination. In: (Schumacher et al. 2008), Chapter 4.
Klusch, M., Fries, B. & Sycara, K. (2006). Automated Semantic Web Service Discovery with
OWLS-MX. Proceedings of 5th International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, ACM Press.
Klusch, M. & Kapahnke, P. (2008). Semantic Web Service Selection with SAWSDL-MX. CEUR
Proceedings of 2nd Workshop on Service Matchmaking and Resource Retrieval in the Semantic
Web (SMR2), Karlsruhe, Germany, CEUR 416.
Klusch, M. & Kapahnke, P. (2009): OWLS-MX3: An Adaptive Hybrid Semantic Service
Matchmaker for OWL-S. Proceedings of 3rd International Workshop on Semantic Matchmaking
and Resource Retrieval (SMR2) at ISWC, Washington, USA; CEUR 525
Klusch, M., Kapahnke, P. & Zinnikus, I. (2009): SAWSDL-MX2: A Machine-Learning Approach
for Integrating Semantic Web Service Matchmaking Variants. Proceedings of IEEE 7th
International Conference on Web Services (ICWS), Los Angeles, USA, IEEE CS Press.
Klusch, M., Fries, B. & Sycara, K. (2009a). OWLS-MX: A Hybrid Semantic Web Service
Matchmaker for OWL-S Services. Web Semantics, 7(2), Elsevier.
Kourtesis, D. & Paraskakis, I. (2008). Combining SAWSDL, OWL-DL and UDDI for
Semantically Enhanced Web Service Discovery. Proceedings of 5th European Semantic Web
Conference (ESWC), LNCS, 5021, Springer.
Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J. A. & Sheth, A. P. (2006). Designing
Semantic Web Processes: The WSDL-S Approach. Semantic Web Services, Processes and
Applications. J. Cardoso, A. Sheth (eds.), Springer.
Plebani, P. & Pernici, B. (2009). URBE: Web Service Retrieval Based on Similarity Evaluation.
IEEE Transactions on Knowledge and Data Engineering, 21(11).
S3 - International Semantic Service Selection Contest. Website: http://www.dfki.de/~klusch/s3.
Schumacher, M., Helin, H. & Schuldt, H. (2008) Eds. CASCOM – Intelligent Service
Coordination in the Semantic Web. Birkhäuser Verlag, Springer.
Stroulia, E. & Wang, Y. (2004). Structural and Semantic Matching for Assessing Web-Service
Similarity. Cooperative Information Systems, 14(4), World Scientific.
Toch, E., Gal, A., Reinhartz-Berger, I. & Dori, D. (2007). A semantic approach to approximate
service retrieval. ACM Transactions on Internet Technology 8(2), ACM.
Zinnikus, I., Rupp H.-J. & Fischer, K. (2006). Detecting Similarities between Web Service
Interfaces: The WSDL Analyzer. Proceedings of 2nd International Workshop on Web Services
and Interoperability (WSI 2006).

i http://www.w3.org/TR/sawsdl/

ii http://www.w3.org/TR/wsdl/ and http://www.w3.org/TR/wsdl20/

iii The W3C recommendation for SAWSDL does not define a logical relationship among multiple model references
for a single element.

iv http://www.w3.org/2004/OWL/

v http://dig.sourceforge.net/

vi http://www.ifi.uzh.ch/ddis/research/semweb/simpack/

vii http://www.w3c.org/TR/xmlschema-2/

viii http://wordnet.princeton.edu/

ix The fraction ½ is introduced for computational reasons only, and does not affect the classification result.

x http://knoesis.wright.edu/opensource/sawsdl4j/

xi http://owlapi.sourceforge.net/

xii http://pellet.owldl.com/

xiii http://www.csie.ntu.edu.tw/~cjlin/libsvm/

xiv http://projects.semwebcentral.org/projects/owls-tc/

xv http://projects.semwebcentral.org/projects/owls2wsdl/

xvi http://projects.semwebcentral.org/projects/sme2/

xvii SME2: Semantic Service Matchmaker Evaluation Tool. Available at projects.semwebcentral.org/projects/sme2/

xviii OWLS2WSDL converter. Available at projects.semwebcentral.org/projects/owls2wsdl/

xix http://lsdis.cs.uga.edu/projects/meteor-s/

http://www.w3.org/TR/sawsdl/�
http://www.w3.org/TR/wsdl/�
http://www.w3.org/TR/wsdl20/�
http://www.w3.org/2004/OWL/�
http://dig.sourceforge.net/�
http://www.ifi.uzh.ch/ddis/research/semweb/simpack/�
http://www.w3c.org/TR/xmlschema-2/�
http://wordnet.princeton.edu/�
http://knoesis.wright.edu/opensource/sawsdl4j/�
http://owlapi.sourceforge.net/�
http://pellet.owldl.com/�
http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://projects.semwebcentral.org/projects/owls-tc/�
http://projects.semwebcentral.org/projects/owls2wsdl/�
http://projects.semwebcentral.org/projects/sme2/�
http://lsdis.cs.uga.edu/projects/meteor-s/�

