
AJAN: An Engineering Framework for Semantic
Web-Enabled Agents and Multi-Agent Systems

André Antakli, Akbar Kazimov, Daniel Spieldenner,
Gloria Elena Jaramillo Rojas, Ingo Zinnikus, and Matthias Klusch

{firstname.lastname}@dfki.de
German Research Center for Artificial Intelligence,

Saarland Informatics Campus, Saarbruecken, Germany

Abstract. The development of Semantic Web-enabled intelligent agents
and multi-agent systems still remains a challenge due to the fact that
there are hardly any agent engineering frameworks available for this pur-
pose. To address this problem, we present AJAN, a modular framework
for the engineering of agents that builds on Semantic Web standards and
Behavior Tree technology. AJAN provides a web service-based execution
and modeling environment in addition to an RDF-based modeling lan-
guage for deliberative agents where SPARQL-extended behavior trees are
used as a scripting language to define their behavior. In addition, AJAN
supports the modeling of multi-agent coordination protocols while its
architecture, in general, can be extended with other functional modules
as plugins, data models, and communication layers as appropriate and
not restricted to the Semantic Web.

Keywords: Semantic Web · Agent Engineering Framework · Multi-Agent Sys-
tems

1 Introduction

The idea of Semantic Web-enabled intelligent agents and multi-agent systems
(MAS) has been around for almost as long as the idea of the Semantic Web
itself, as indicated in [9]. Nonetheless, as mentioned in [8], web-based MAS has
been somewhat neglected until recently. The situation has changed with the
emergence of new standards such as Linked Data (LD) or Web of Things (WoT),
which aim to improve the interoperability of heterogeneous environments and
provide a solid foundation for building autonomous intelligent and distributed
systems. For example, [9] presents agents for manufacturing using said standards,
or show, as in [13], how those can be combined with machine learning.
However, these approaches are isolated solutions that only show how agents can
be used in and implemented for the Semantic Web but without some agent
engineering framework for this purpose. In fact, the development of semantic
web-enabled agents and multi-agent systems still requires considerable manual
effort from the agent engineer. Established agent engineering frameworks such
as Jason, JaCaMo and JACK are simply not natively designed to interact with

2 A. Antakli et al.

Fig. 1: The AJAN editor to model, create and debug AJAN agents

Semantic Web environments, let alone to provide an agent modeling language
and environment that embeds itself homogeneously into the Semantic Web. [4]
is taking a step in the right direction with a proposed OWL-based agent model
language that can be combined with frameworks such as JADE. Or even [14],
in which the behavior of reflexive agents can be described and executed via
N3 rules. However, these approaches are insufficient in describing an agent’s
interaction with its environment or knowledge base, or do not even provide one.
Additionally, they fail to support the engineer with templates for implementing
multi-agent coordination protocols.
To address these challenges, we present AJAN, a novel, modular and extensi-
ble framework for the engineering of Semantic Web-enabled agents and multi-
agent systems. AJAN relies on the SPARQL-BT paradigm to describe the event-
based behavior of agents and enables them to natively interact with Semantic
Web-based environments or coordinate themselves with other AJAN agents. The
AJAN agent model including agent knowledge and behavior is described in RDF
and SPARQL in direct support of the development of agents when they are in-
tended for the Semantic Web. Due to its architecture, AJAN can be extended
with other AI approaches but also data models as well as communication lay-
ers, allowing it to be used in various domains such as Industry 4.0, pedestrian
simulation, smart living, or social services.
This paper is structured as follows. Section 2 describes the AJAN Framework. In
Section 3, various application areas are presented in which AJAN is used. After
discussing the related work in Section 4, we conclude the paper in Section 5.

2 The AJAN Framework

AJAN (Accessible Java Agent Nucleus) is an agent and multi-agent system
framework primarily designed for the use in the Semantic Web. This framework
consists of multiple RDF based languages to model agents, a RDF triplestore for
data management, the AJAN-service to execute agents and the AJAN-editor to
model them. In general, with AJAN, Linked Data (LD) based deliberative agents
can be modeled and executed. These agents are equipped with a RDF-based
agent knowledge. The behavioral model of an AJAN agent is defined through
SPARQL-extended Behavior Trees, known as SPARQL-BT. With this graphical

AJAN 3

Fig. 2: a) Agent Model Overview; b) RDF example of an agent template

scripting language designed for the Semantic Web, the internal decision-making
process of an agent as well as its interaction with LD environments and RDF
triplestores can be realized. Due to the modular nature of the SPARQL-BT ap-
proach (see Section 2.2), it can be easily extended with additional primitives for
the use in various domains or to integrate other AI approaches. One goal is not
only to realize agents interacting with LD-resources, the whole AJAN system has
to act as one. Therefore, with the AJAN-service, agents can be created, executed,
monitored and deleted via LD-interfaces. Furthermore, the whole agent model,
including SPARQL-BTs and the knowledge of individual agents, are completely
defined in RDF and accessible via a RDF triplestore. Through the chosen archi-
tecture, an AJAN agent can basically interact with its own service, e.g. to create
new agents, but it is also possible to give the agent a kind of ’self-awareness’,
since it can access its own model and monitor running behaviors at any time
via SPARQL-BTs and adapt these dynamically. The AJAN-editor (see Figure 1)
offers a GUI for agent and behavior modeling, which can be used at design time
but also runtime, to create or delete agents and to monitor their knowledge and
behaviors. A detailed description of AJAN can be found in the AJAN Wiki1.

2.1 AJAN Agent Model

The agent model used in AJAN follows the principles of the BDI [12] paradigm,
in which agents have a knowledge base and autonomously attempt to achieve
agent goals using its plan library. While processing these goals, the agent can
also set itself new context-based intermediate goals in order to be able to react
dynamically to its agent environment. As shown in Figure 2a, an AJAN agent
has a plan or behavior library in which the respective behaviors are linked to
events. When an event is created, it triggers the behavior associated with it. In
addition to events, an AJAN agent also has semantic goals, a subclass of events,
described with pre- and postconditions. Depending on the agent’s state, events
and goals can be created via behaviors, thus the behavior execution can be seen
as a Hierarchical Task Network. As an interface to the agent environment, an
agent can have multiple LD endpoints (REST/RDF) that, when they receive
data, also generate events and goals. The beliefs of an agent are stored in a
RDF based agent knowledge base (KB), which can be accessed and updated
through agent behaviors, implemented as SPARQL-BTs. Figure 2b shows an

1 AJAN Agent Model Wiki: https://github.com/aantakli/AJAN-service/wiki

4 A. Antakli et al.

Fig. 3: SPARQL Behavior Tree Overview

example of a RDF-based agent template. An AJAN agent template can be seen
as a blueprint for an AJAN agent, and thus reflects the AJAN agent model. In
addition to the specification of endpoints, events or goals and behaviors, initial
knowledge can also be defined. This knowledge is available to an agent from the
beginning via its local knowledge base. In addition to providing domain-specific
assertional knowledge, the agent model itself can be extended via the initial
knowledge. For example, an agent can be assigned additional properties such as
organizational affiliation or roles via the ’keyword’ ajan:This. To model agent
templates the AJAN Agent Vocabulary2 is used. These templates are stored in an
RDF triplestore as well as the local agent knowledge, terminological knowledge
about the domain in which the agent acts and the plan library. Event data is
also represented in RDF and is available to the triggered behaviors, via SPARQL
queries. SPARQL queries (ASK queries) are also used to represent the pre- and
postconditions of goals, which are validated directly on the agent knowledge.

2.2 SPARQL-BT

For modeling AJAN agent behavior, the SPARQL-BT (SBT in short) approach is
used. As shown in Figure 3, SBTs are SPARQL extended Behavior Trees (BT,
see [10]), for which Spieldenner et. al presented a formal specification based
on the Milner Calculus in [17]. Basically, SBTs are used as an agent behav-
ior scripting language to perform contextual SPARQL queries and to execute
functionalities through nodes. In depth-first execution of these nodes, they only
communicate their status such as RUNNING, SUCCEEDED or FAILED to their
parent nodes. Thus, SBTs are processed like typical BTs3 and use standard BT
composite and decorator nodes, with the difference that SBTs are executed via
events or goals. In general SPARQL is used in SBTs for state checking, knowl-
edge retrieval, and manipulation. To reduce agent knowledge base requests, each

2 AJAN agent vocabulary: http://ajan-agents.de/vocabularies/ajan-ns
3 Used BT lib.: https://github.com/libgdx/gdx-ai/wiki/Behavior-Trees

AJAN 5

Fig. 4: Example SPARQL Behavior Tree

SBT has its own KB to store behavior specific data. To model AJAN behav-
iors the SPARQL-BT vocabulary4 was defined. An example of a simple SBT,
consisting of a Root, Sequence and a Condition node is shown in Figure 4. :Ex-
ampleBT is the root RDF resource of the SBT. If an AJAN Event appears
which is triggering an initiated SBT, the child of the Root node is executed first.
This node points to its child via bt:hasChild, and therefore to the RDF resource
:SequenceX which is from type bt:Composite and bt:Sequence. If this sequence
is executed, it executes its children (bt:hasChildren) one after the other until all
children SUCCEEDED or one FAILED. In this example, its only child is from
type bt:Condition, which executes for state checking a SPARQL ASK Query
(bt:query) on the agent knowledge (ajan:AgentKnowledge). In AJAN, there are
a number of other SBT nodes. For example the Update node, which manipulates
the agent knowledge via SPARQL UPDATE; or the Handle Event node, which
reads event and goal information via a CONSTRUCT query. Since AJAN be-
havior models are stored in RDF triplestores, the Load Behavior node can access
them via a SELECT query and then initiate and execute them. Thus, an AJAN
agent has the ability to dynamically generate new SBTs using Update nodes and
subsequently execute these SBTs.

2.3 Agent Environment Interaction

There are two ways to implement an interaction between AJAN agents and their
environment: passively via AJAN agent endpoints; or actively via SBT nodes:
Passive Interaction: An AJAN agent is primarily designed to interact with and
as a LD resource and thus, offers multiple HTTP/RDF endpoints. In addition to
a general LD endpoint to query the current agent state, including behavioral and
knowledge state information, further endpoints can be defined. Such endpoints
generate internal events after receiving data, which are triggering linked SBTs.
Standard events are linked RDF graphs, which are available to the respective
SBT for querying. To access event information within a executed SBT and store
it in an agent KB, the aforementioned Handle Event node must be used.
Active Interaction: With the SBT Query Domain node a selected LD resource
can be actively requested using HTTP GET. The received RDF-based data is
then stored in a selected knowledge base. The SBT Message node can be used to

4 SPARQL-BT vocabulary: http://ajan-agents.de/vocabularies/behavior/bt-ns

6 A. Antakli et al.

Fig. 5: FIPA Request Interaction Protocol implemented as SPARQL-BTs

configure a detailed HTTP request. Besides selecting the HTTP method to be
used, additional HTTP headers can be defined, using a SPARQL SELECT query.
Additionally, the Message node can generate a RDF-based message payload
via a SPARQL CONSTRUCT query and control which data received from the
requested LD resource should be stored. The Action node is a message node, but
with pre- and postconditions like a AJAN goal. After the RDF based payload is
created via CONSTRUCT, it is validated via the precondition before being sent
to the LD resource, and the response is validated via the postcondition. If the
validations are failing, the node status is FAILED otherwise SUCCEEDED.

2.4 Interaction Between Agents

To enable communication between agents within AJAN, the Message node pre-
viously described is required, as it allows to send HTTP/RDF requests to LD
resources like AJAN agents. Accordingly, each AJAN agent can directly (peer-
to-peer) communicate with other AJAN agents via their individual endpoints.
Each agent can make use of its agent knowledge which can contain information,
e.g. originating from an agents registry, about other agents in the cloud (end-
points, roles and activity status) with which they can communicate. By default,
an agent has knowledge of the AJAN-service in which the agent ’lives’. With this
knowledge in form of a URI, an agent can not only query its own agent model
via the service’s LD interface, but also other AJAN agents for communication
purposes or to create or delete agents with a Message node.
Implementing Protocols: To ensure that agents speak the same ’language’
among themselves and follow the same communication rules, the used ontologies
to formulate exchanged data must not only be coordinated within the MAS the
interacting agents should also use same communication protocols. In the agent
context, reference must be made to FIPA, which has standardized protocols
for the use in MAS to improve the interoperation of heterogeneous agents and
services that they can represent [18]. For the purpose of communication of agents,
these standards include e.g., speech act theory-based communicative acts or

AJAN 7

content languages. As an example of how a FIPA protocol can be modeled in
AJAN, the Request Interaction protocol is implemented using four SBTs, see
Figure 55. The Request-Initiator-BT (BT 1) sends a request to given agents via
a SBTMessage node (purple node), listens for responses via a SBT Handle Event
node (green node), and checks for a quorum (minimum number of agents required
to execute and proceed with the coordination protocol) via a SBT Condition
node. The Request-Participant-Agreement-BT (BT 2) is used by the participant
agent to accept or reject the request. The Request-Initiator-Receive-Response-
BT (BT 3) receives and saves the results, and the Request-Participant-Result-
BT (BT 4) sends the results back to the initiator agent.

2.5 Plug-In System

In order to be able to react flexibly to domain-specific circumstances and to ex-
tend the reactive planning of an agent, AJAN has a JAVA-based Plug-In system
(see Figure 2a). This system uses several SBT and SPARQL related interface
definitions with which new SBT nodes or new SPARQL functions can be imple-
mented and integrated into AJAN. In [3] for example Answer Set Programming
(ASP) is integrated to solve combinatorial problems and to extend SBTs with
foresighted action sequences. In addition, classical action planning is integrated,
where new SBTs are generated to achieve an RDF-described goal state. There-
fore, AJAN actions and goals are translated into PDDL operators, and the agent
knowledge is interpreted as the initial state. To avoid having to implement the
logic of a new SBT node in JAVA, a Python interpreter is integrated as a SBT
node, allowing the implementation of new SBT nodes in Python. To enable
AJAN to interact not only with LD domains and thus not only via RDF mes-
sages, the Mapping plug-in can be used to map incoming JSON, XML or CSV
information to RDF data via RML (RDF Mapping Language). To send messages
with native JSON-based content, mapped from a RDF dataset, POSER [16] is
used. To process telemetry data in low-bandwidth networks, MQTT (Message
Queuing Telemetry Transport) SBT nodes have been integrated as well.

2.6 MAJAN: Multi-Agent Coordination Plug-In

MAJAN6 is an extension of the agent engineering tool AJAN which provides
features to implement and evaluate SPARQL-BT-based coordination of AJAN
agents. As an example, we discuss how the coordination problem class Optimal
Coalition Structure Generation (CSGP) can be solved with MAJAN. CSGP is
defined as follows: Given a coalition game (A, v) with set A of agents, real-valued
coalition values v(C) for all non-empty coalitions C among agents in A, then find
a partition (coalition structure) CS∗ of A (out of all possible coalition structures
CS) with maximum social welfare:

CS∗ = argmaxCS∈A

|CS|∑
m=1

cv(CSm) (1)

5 The presented SBTs are available under https://github.com/AkbarKazimov/MAJAN
6 MAJAN plug-in with documentation: https://github.com/AkbarKazimov/MAJAN

8 A. Antakli et al.

Fig. 6: Generic MAJAN MAC protocol for agent coalition structure generation

The value v(C) of coalition C is the utility its members can jointly attain cal-
culated as the sum of weighted individual utilities of coalition members, and
the social welfare of a coalition structure is the sum of its coalition values. To
solve CSGP problems, the BOSS algorithm [6] is used in MAJAN. As shown
in Figure 6, the protocol implemented in MAJAN with template SPARQL-BTs
for solving the clustering problem of the above-mentioned type is an appropri-
ate adaptation of the standard FIPA-Request-Interaction protocol (see Section
2.4) for multi-agent coordination. The initiator agent of the coordination pro-
cess collects profile information (e.g. individual agent properties) from all other
participating agents (steps 1, 2). It then generates possible coalitions C of agents
(step 3) subject to given constraints on coalition size and broadcasts them to-
gether with the collected profile information to all other participating agents
(step 4). To constitute the coalition game (A, v) of the CSGP to be solved, the
value of each of these coalitions must be determined. For this purpose, each
agent locally computes its individual utility values for only those coalitions it is
a member of and returns them to the initiator agent (steps 5, 6). Each individual
utility value of an agent in some coalition is calculated only by this agent as the
extent to which (the profile information of) other members of this coalition sat-
isfy its individual preferences (that are not shared with any agent). Finally, the
initiator agent computes the coalition values as the sum of relevant individual
utility values collected from participating agents, calls a given CSGP solver (in
MAJAN that is the BOSS algorithm, which is executed with the yellow-colored
CSGP node) to compute the optimal coalition structure for the actual coalition
game, and broadcasts the solution to participating agents (steps 7, 8).

2.7 AJAN Implementation

The AJAN framework consists of the AJAN-service7 and the AJAN-editor8,
which are available on GitHub as open source software under the LGPL 2.1 and
MIT licenses, respectively. Both components are executable on Windows, Linux
and Mac OS. The AJAN-service is JAVA 11-based and uses Spring Boot9 to
realize it as a web service. RDFBeans10 translates the RDF-based AJAN agent

7 AJAN-service on GitHub: https://github.com/aantakli/AJAN-service
8 AJAN-editor on GitHub: https://github.com/aantakli/AJAN-editor
9 Spring Boot: https://spring.io/

10 RDFBeans: https://rdfbeans.github.io/

AJAN 9

model into executable JAVA code, and with PF4J11, plug-ins are integrated into
AJAN. With RDF4J12 the interaction with RDF triplestores and data process-
ing is realized. With it, W3C standards like OWL, SPIN (SPARQL Inferencing
Notation) or SHACL (Shapes Constraint Language) can be used natively for
e.g., building an agent knowledge graph with the corresponding reasoning tech-
niques. The individual agent models and knowledge bases are stored in external
triplestores which are accessible through standardized SPARQL endpoints13.
Thus, RDF triplestores like RDF4J-server or GraphDB14 can be used. To de-
crease the execution time of SBTs, and to allow that only the individual SBT
has access to its own SBT knowledge base, the SBT KBs are kept in-memory
RDF repositories and not externally like the agent KB. Access authorization to
the AJAN-service and single triplestores, is realized using JSON Web Tokens
(JWT)15. The AJAN-editor is based on NodeJS16 and Ember17.

3 Selected Applications

AJAN has already been used in various LD and non-LD based domains to im-
plement agent and multi-agent systems. For example, AJAN has been used to
control simulated humans, to act in a Smart Living environment or to optimize
production in an Industry 4.0 context.

Human simulation. AJAN was used to control simulated entities in virtual pro-
duction and traffic environments. In a human-robot collaboration scenario pre-
sented in [2], AJAN agents control simulated workers and mobile robots with
LD interfaces to coordinate them for joint fulfillment of production steps. As
presented in [3], AJAN was used to simulate pedestrians based on real human
behavior. To realize this, an ML-based imitation model is integrated into AJAN
to generate new trajectories, based on the simulated pedestrian’s history and
inferred targets, to steer the imitated pedestrian in a game engine.

Smart living environments. In [1], a smart living environment with AJAN agents
uses the W3C Web of Things (WoT) architecture, where IoT resources have
RDF-based Thing descriptions. In this scenario, AJAN agents are generating
and executing new SBTs based on WoT resource descriptions to dynamically
interact with these resources. For example to orchestrate them, to notify care-
givers when a resident needs help.

Production optimisation. The paper [17] describes a scenario where the produc-
tion within a virtual factory floor is optimized. The factory floor, production
units, product plans, and available products are all represented as web resources

11 PF4J: https://pf4j.org/
12 RDF4J: https://rdf4j.org/
13 SPARQL HTTP Protocol: https://www.w3.org/TR/sparql11-http-rdf-update/
14 GraphDB: https://www.ontotext.com/products/graphdb
15 JWT for Apache tomcat: https://github.com/andreacomo/tomcat-jwt-security
16 NodeJS: https://nodejs.org/en
17 EmberJS: https://emberjs.com/

10 A. Antakli et al.

Fig. 7: Language course coordination by AJAN agents

using the Linked Data Platform18 specification. In this scenario AJAN agents
represent these units and can initialize additional agents to distribute the produc-
tion load. Coordination between agents is achieved through the LD environment
as the communication layer, which allows agents to store RDF information that
other agents can indirectly perceive. This approach is elaborated further in [15].

Language course coordination. In this application, AJAN agents help to coor-
dinate language courses for third-country nationals (TCNs) as social services
in the European project WELCOME19. Each TCN is registered at a mobile
cloud-based MyWELCOME app with an AJAN agent as personal assistant for
service provision and coordination. The agents perform semantic service selection
with an appropriate OWL-S service matchmaker, and can coordinate with each
other to plan optimal groupings of TCNs for each lesson of a Language Learning
Course (LLC, cf. Fig. 7). The goal is to assign TCNs to working groups that
optimize their language learning based on individual preferences, progress, and
teacher-specified constraints, such as group size and course progress level. Such
constraints can be set in a teacher panel, and participants can set their individ-
ual preferences in their app. The agents aim to coordinate a maximally suitable
working group structure for each lesson, which can be mapped to the multi-agent
coalition structure generation problem. The MAJAN plug-in of AJAN (cf. Sec-
tion 2.6) was used to enable agents to solve this problem with the corresponding
BT-based multi-agent coordination protocol where each agent has a protocol-
specific SBT executed in an event-based distributed fashion. The multi-agent
coordination is performed in two phases initiated by the teacher at the end of
each course lesson: In the Assessment phase, the MyWELCOME app used dur-
ing the lesson by participants calculates appropriate scores and reports them to
the respective agent of a participant, which, in turn, stores the overall course
progress level of its TCN in its agent knowledge. In the Coordination phase, the
agents coordinate to compute an optimal working group assignment and send
the top-k ranked list of participants working group structures to the teacher for
approval. This application has been implemented and evaluated successfully by
user partners with selected TCNs.

18 LinkedDataPlatform:https://www.w3.org/TR/ldp/
19 WELCOME Project: https://welcome-h2020.eu/

AJAN 11

4 Related Work

Semantic Web standards have been incorporated into agents and MAS since
the idea of a Semantic Web appeared [9]. For example, in [13], OWL and RDF
knowledge graphs have been utilized to train machine learning-based systems
to interface a learning agent with the Semantic Web. [9], on the other hand,
presents a web-based MAS for manufacturing, that interacts with LD and WoT
environments to derive new behaviors from the semantic environment.
However, these systems are implemented for specific applications. In general,
established agent system and MAS frameworks need to be adapted for use in
the Semantic Web, as they have not been developed natively for it. To address
this issue, [4] introduced an OWL-based ontology to describe agents and their
agent-to-agent interaction, which can be translated into JADE agents, where ba-
sic FIPA specifications can be used. Other related works present ontologies and
interpreters needed to translate semantically described agents into executable
code for different BDI frameworks, such as [7] for JaCaMo, [11] for Jason, and
[5] for JACK. However, these approaches limit the agent engineer’s ability to
specify behavior using Semantic Web standards and achieve a homogeneous
modeling of the agent’s interaction with its environment or knowledge, such as
using SPARQL. Additionally, they lack flexibility in extending the agent model,
necessitating adaptations to the interpreter, framework, and ontology used. An
agent engineering framework that was developed specifically for the use in the
Semantic Web is presented in [14]. Here, the agent behavior and its interac-
tion with LD environments is described and executed via N3 rules, where even
HTTP messages are defined in RDF. However, this framework allows to model
only reflexive agents that can act only in an LD environment.

5 Conclusion

We presented AJAN, an open-source, modular and highly extensible agent engi-
neering framework that particularly allows for the development of semantic web-
enabled agents and MAS. AJAN relies on the paradigm of event-based SPARQL
Behavior Tree processing and RDF for the modeling of deliberative agents and
their interaction with the environment. Moreover, AJAN offers predefined Be-
havior Tree templates for implementing multi-agent coordination protocols such
as clustering and coalition formation. AJAN has already been used for the de-
velopment of agent-based applications in various domains such as human simu-
lation, social services and production optimization.

Acknowledgements

This work has been supported by the German Federal Ministry of Education and
Research (BMBF) in MOMENTUM project (01IW22001), and the European
Commission in WELCOME project (870930).

References

1. Alberternst, S., Anisimov, A., Antakli, A., Duppe, B., Hoffmann, H., Meiser, M.,
Muaz, M., Spieldenner, D., Zinnikus, I.: From things into clouds–and back. In:

12 A. Antakli et al.

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). pp. 668–675. IEEE (2021)

2. Antakli, A., Spieldenner, T., Rubinstein, D., Spieldenner, D., Herrmann, E.,
Sprenger, J., Zinnikus, I.: Agent-based web supported simulation of human-robot
collaboration. In Proc. of the 15th Int. Conf. on Web Information Systems and
Technologies (WEBIST) pp. 88–99 (2019)

3. Antakli, A., Vozniak, I., Lipp, N., Klusch, M., Müller, C.: Hail: Modular agent-
based pedestrian imitation learning. In: Proc. 19th Int. Conf. on Practical Appli-
cations of Agents and Multi-Agent Systems (PAAMS). Springer (2021)

4. Bella, G., Cantone, D., Asmundo, M.N., Santamaria, D.F.: The ontology for agents,
systems and integration of services: recent advancements of oasis. In: Proceedings
of the 23th Workshop From Objects to Agents. pp. 1–2 (2022)

5. Challenger, M., Tezel, B.T., Alaca, O.F., Tekinerdogan, B., Kardas, G.: Develop-
ment of semantic web-enabled bdi multi-agent systems using sea ml: An electronic
bartering case study. Applied Sciences 8(5), 688 (2018)

6. Changder, N., Aknine, S., Ramchurn, S.D., Dutta, A.: Boss: A bi-directional search
technique for optimal coalition structure generation with minimal overlapping. In:
Proc. of the AAAI Conf. on Artificial Intelligence. vol. 35, pp. 15765–15766 (2021)

7. Charpenay, V., Zimmermann, A., Lefrançois, M., Boissier, O.: Hypermedea: A
framework for web (of things) agents. In: Companion Proceedings of the Web
Conference 2022. pp. 176–179 (2022)

8. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: AAMAS (2019)

9. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing manufacturing lines on the fly
with multi-agent systems for the web of things. In: AAMAS. pp. 813–822 (2018)

10. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: An introduction.
CRC Press (2018)

11. Demarchi, F., Santos, E.R., Silveira, R.A.: Integration between agents and remote
ontologies for the use of content on the semantic web. In: ICAART. pp. 125–132
(2018)

12. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proc. of the
First Inter. Conf. on Multi-Agent Systems (ICMAS-95). pp. 312–319. AAAI (1995)

13. Sabbatini, F., Ciatto, G., Omicini, A.: Semantic web-based interoperability for
intelligent agents with psyke. In: Explainable and Transparent AI and Multi-Agent
Systems: 4th Inter. Workshop (EXTRAAMAS 2022). pp. 124–142. Springer (2022)

14. Schraudner, D.: Stigmergic multi-agent systems in the semantic web of things. In:
The Semantic Web: ESWC 2021 Satellite Events: Virtual Event, June 6–10, 2021,
Revised Selected Papers, pp. 218–229. Springer (2021)

15. Schubotz, R., Spieldenner, T., Chelli, M.: stigld: Stigmergic Coordination of Linked
Data Agents. In: The 6th International Conference on Bio-inspired Computing:
Theories and Applications (BIC-TA 2021) (2021)

16. Spieldenner, D.: Poser: A semantic payload lowering service. In: Proc. of the
18th Inter. Conf. on Web Information Systems and Technologies (WEBIST).
SCITEPRESS (2022)

17. Spieldenner, T., Antakli, A.: Behavior trees as executable representation of milner
calculus notations. In: 2022 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE (2022)

18. Suguri, H.: A standardization effort for agent technologies: The foundation for
intelligent physical agents and its activities. In: Proc. of the 32nd Annual Hawaii
Int. Conf. on Systems Sciences (HICSS-32). p. 10. IEEE (1999)

