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Abstract—In this paper, we present a semantic-driven k-
walkers-based search scheme, called S2P2P, for data information
dissemination and query routing in unstructured peer-to-peer
(P2P) networks. In S2P2P, each peer maintains its observation on
the semantics of received queries (demands) and data information
(supplies), as well as a local view on network topology. On top
of this, each peer, in line with forwarding a query, disseminates
its known data information to a selected set of remote peers
by taking advantage of query piggybacked data. For routing a
query, each peer, instead of merely introducing an immediate
neighbor or remote peer, suggests a query routing path containing
a sequence of peers with expertise on the similar topic of query.
This is achieved by a path suggestion heuristics that iteratively
applies Dijkstra’s algorithm in a greedy manner. Each iteration
manages to detect one more expert peer and augments the current
path suggestion with the shortest path from its tail to the detected
expert peer. The comparative experimental evaluation shows that
S2P2P outperforms a semantic flooding based search strategy in
terms of search precision and recall. In addition, our evaluation
reveals that S2P2P is as least as robust against the network
dynamics than the semantic flooding approach.

I. INTRODUCTION

Unstructured P2P networks like Gnutalla, eMule, FreeNet
and Morpheus are widely used for decentralized file sharing.
Flooding and k-walkers [17] are two of the classic ways for
searching data items. The performance of their variants in
terms of search precision/recall and network traffic highly
depends on item information dissemination and query routing
strategy. Many contributions take advantage of (restricted)
flooding [11], [16], [18] or selectivity enforced gossiping
mechanism [5], [12], [22], [26] to propagate query or item
information to remote peers. These approaches commonly
offer fairly high recall but almost suffer from a relatively large
network traffic cost. Besides, periodically fashioned gossiping
of item information dissemination has the risk of propagating
duplicated messages for identical item. Those messages does
not pay off for the unpopular data that exists very commonly
in social networks. K-walkers based approaches, such as [2],
[25], [27], [9], [15], provide intelligent query routing strategies
by means of machine learning techniques, network topology
and query analysis. Although these variants are capable of
alleviating the network traffic problem above, unfortunately,
their routing suggestion almost contains mere the next peer
(commonly one of the immediate neighbors or a remote peer)
that maintains the information helpful to answering the current
query. This could yield the insufficient use of item expertise

information and further the loss of relevant results. How
to efficiently disseminate item information and sufficiently
make use of them for query answering is one of the main
challenges in the field of information retrieval in unstructured
P2P networks.

On the other hand, k-walkers based searching strategies
will almost fail if relevant items are not reachable under TTL
limitation. Data replication strategies are able to break this
bottleneck via demand-driven transitive replication of items.
It is known that the classic k-random walkers combined with
the non-semantic near-optimal replication strategy P2R2 [24]
or the semantic replication scheme DSDR [4] can achieve
much better search performance for rare items than its running
alone. An open question is whether the search performance
of a semantic search can be to what extent improved by
its combination with a non-semantic or semantic replication
strategy.

To this end, we propose S2P2P, a k-walkers based semantic
search scheme for item information dissemination and query
routing in unstructured P2P networks. Based on its demand-
driven selective item information dissemination strategy, each
peer in S2P2P is able to suggest a path for query routing, which
contains as many known expert peers as possible, instead
of mere a direct neighbor or remote peer. S2P2P scheme is
agnostic to the kind of semantic description of data items and
the data similarity measurements used by each peer for item
selection. Our experimental evaluation evidences the outper-
formance by S2P2P in terms of search precision@recall and
averaged precision regardless of item popularity distribution,
in comparison with a selective flooding based search approach
[16]. In addition, our experiments also reveal that S2P2P is as
least as robust against network topology dynamics than [16].

Moreover, we present our experimental investigation on
the performance of semantic search S2P2P and non-semantic
k-random walkers when each of the both is combined with
different replication strategies DSDR and P2R2. The result
shows that S2P2P combined with semantic replication scheme
DSDR achieves the best averaged precision in comparison
with the run of S2P2P without replication and its combination
with the non-semantic replication strategy P2R2 as well as
k-random search with P2R2 or DSDR.

In the following Sect.II, we introduce the background and
definitions for understanding our approach, which is detailed
in Sect.III. The experimental evaluation results are presented



in Sect.IV. We discuss the related work in Sect.V and conclude
this paper in Sect.VI.

II. BACKGROUND AND PRELIMINARIES

In this section, we briefly introduce the background knowl-
edge, definitions and assumptions which are necessary to
understand our approach.

A. Semantic Similarity

The classic way of describing data (e.g. a 3D model) residing
in the Internet is by natural language and meta-properties, such
as name, author, etc.. Lots of text similarity measures like strict
string/word matching, n-gram, etc., have been derived for the
purpose of retrieval. Inspired by the growth of Semantic Web
[3], more and more data is described with semantic annotations
in different logic-based formalisms, in terms of their formation,
content, property and functionalities. A merit of semantically
annotated data is that logic-based reasoning can be applied
to their machine understandable descriptions, and therefore
alleviate the risk of mismatching due to the ambiguity and
multiplicity of word meaning. Logical concept subsumption
determination [21] can be applied for the similarity measure of
data annotated with conceptual description (e.g. by concepts
in a standard OWL21 ontology). Once data annotation is in
the form of RDF2, graph pattern matching based similarity
measures like [7] are preferred. A formal way of describing
the functionalities and interacting behaviors of data (e.g. the
transportation service of a conveyor belt 3D model) is to spec-
ify proper semantic service in standard description languages,
like OWL-S3. For comparing data in terms of functionalities,
semantic service matchmaking techniques, such as [13], [14],
are often used.

We assume that item selection process (for query answer-
ing) of each peer is capable of determining the relevance
between a query and local items described in one or a com-
bination of these formalisms above. In addition, the semantic
similarity function sim(·, ·) ∈ [0, 1] (cf.Sect.III) of S2P2P is
designed to be agnostic to the kind of semantic description,
which facilities the adoption of our approach to difference
systems with customized concerns. Further, we assume that
all peers share a minimal vocabulary of primitive concepts,
roles and predicates, out of which each peer p can canonically
build its local knowledge base KBp (e.g. a local ontology Op
of p) for specifying query and item in needed formalism.

B. Preliminaries

Definition 1: Item, item concept.
An item i provided and maintained by peer p consists of both
data and metadata as defined by the item tuple i = 〈td, sd,
URI , pid, isz, ns, da〉 where td is the text-based description
of i; sd the semantic annotation of i based on the local
knowledge base KBp of peer p; URI the item identifier; pid
the id of the owner peer p providing i (including i.da); da
the item data (e.g. mpeg file of a movie); isz the size of i.da;
and ns the number of available copies of i at p. The item

1http://www.w3.org/TR/owl2-overview/
2http://www.w3.org/RDF/
3http://www.w3.org/Submission/OWL-S/

tuple without the item data i.da is called metadata or item
description (i.desc) of i. �

By k-walkers based search, a requester peer delegates a
user query to a set of k (k > 0, k ∈ N) walkers. With a
time-to-live (TTL) limitation, each walker is forwarded by a
peer with S2P2P query routing strategy to one of its direct
neighbor peers according to the routing path suggestion. In
case that the TTL value of a walker is exhausted, the walker
backtracks along the inverted path targeting to the requester
peer. The latter subsequently determines the satisfaction of the
request based on the selected items by walkers. If the request is
determined to be satisfied (unsatisfied), each of the k walkers
is set with a Success (Fail) status (cf. Def.2).

Definition 2: Query, query satisfaction.
A query q of a peer req is defined by the query tuple q =
〈td, sd, req, A, Pa, Pasug , t, st, pbd, TTL, nd〉 where td
denotes the query keyword (or topic of the query item); sd
the semantic annotation used to describe the semantics of the
requested item; req the identifier of the requesting peer; A =
{(res, its)} the actual answer set for the query which consists
of pairs of identifiers res of peers who respond to the query
with an array its of item descriptions; Pa the path of this
query; Pasug the suggested path, which consists of a sequence
of peers for routing q afterwards. It is empty, if no suggestion
is available or q is backtracking; t the query issuing time; st ∈
{Issued, Success, Fail} the query status where Success (Fail)
means that the query q is satisfied (unsatisfied) and Issued
indicates that the satisfaction of q has not been determined by
the original requestor peer req yet (or else that q is not issued
by the current peer); pbd the piggybacked data set of a query;
TTL the query time-to-live value; nd the requested number
of copies of the query item. �

We assume that each peer can provide and request any
data item from known peers under the copyright restriction,
which in our context limits the number of replicas of an
item an individual peer can supply (i.ns in Def.1) or request
(q.nd in Def.2). The item information dissemination process
(cf.Sect.III-D) of each peer, in our context, is propagating
item description only (cf. i.desc in Def.1.) rather than the
whole item with actual data file. As S2P2P is designed to
be not adhering to specific kind of data description, it is
convenient to use the terminology semantic topic (abbr. topic)
tp, instead of those formalism-sensitive terms, such as concept,
semantic service, etc., when describing the semantics of an
observed query q or item i. Each peer p maintains a set of
topics TPd(p) (TPs(p)) (cf.Sect.III-B) derived based on the
semantic descriptions of queries and items. In the following,
we define the topic of observed demand (supply) and introduce
the construction of TPd(p) (TPs(p)) in Sect.III-B.

Definition 3: Topic of demand (supply) observed by peer p.
A topic tpd (tps) of demand (supply) observed by peer p is
defined by the topic tuple: tpd (tps) = 〈tsd, tlst, P 〉, where tsd
denotes the semantic description of this topic; tlst the receiving
time of the latest query (item description) that semantically
similar to tpd (tps); P is a list of membership entries. Each
entry (p′, Qp′ , str) stands for the membership of a remote
peer p′ to a topic tpd (tps). Qp′ (Ip′) is the set of queries
Qp′ (item descriptions Ip′ ) issued by (propagated from) p′
and sufficiently semantically similar with topic tpd (tps). str
(str ∈ R) is the overall strength value of the observed demand



(supply) of p′ on topic tpd (tps). Each remote peer corresponds
to at most one entry (p′, Qp′ , str) ∈ P . �

III. SEMANTIC SEARCH SCHEME

A. Overview

Besides local item selection, each peer p in unstructured P2P
network performs path suggestion-based query routing as well
as selectively propagates the descriptions of its known items
via query piggybacked data. On receiving a query q, the local
item selection process of p adds the item description i.desc
of a known item i to the query answer set q.A, once i is
determined to be similar with q.

On forwarding a query q, each peer p suggests not only an
immediate neighbor peer to which q should be forwarded but
a path of peers with expertise that is relevant to the demand
topic of q. Briefly, p computes the routing path suggestion
with maximal total expertise gain with respect to the query
demand topic q.sd under TTL restriction. It contains as many
relevant expert peers as possible. This is done by our greedy
path augmenting algorithm that iteratively applies Dijkstra’s
algorithm for finding next expert peer in order to augment the
current suggest path. If q contains a non-empty path suggestion
q.Pasug , p adjusts q.Pasug by means of comparing the total
expertise gains of q.Pasug with a new path Pa′sug computed
by p. The latter considers the relevant expert peers known by
p together with the ones suggested by q.Pasug . This results
in a new path suggestion for routing q.

In addition, each peer p is able to selectively propagate its
known item information along the path of a query q, which is
currently being forwarded. For this purpose, a subset D(p, i) of
peers on the (suggested) query path are selected as the destina-
tions for the propagation of the description of a known item i.
The completion of destination peer selection triggers the copy
operation on i to the piggybacked data of q, which transmits
the item (supply) information to remote peers. In case that a
peer p receives a query q that is backtracking, p maintains
a copy of the item description i from the query piggybacked
data set q.pbd, if p is the dissemination destination of i.

B. Peer Local Observation

The path suggestion based query routing and item description
dissemination processes performed by each peer p are depend-
ing on p’s local observation in terms of queries (demands)
and items (supplies). The queries comprise the ones issued
or routed by p, while the items mean the item descriptions
propagated to p or the items owned by p. On top of this, the
local observation of p can be derived as follows:

p’s local view to network topology: G(p) = (V (p), E(p))
where V (p) denotes the set of known peers by p (including
p itself); E(p) the set of known direct connections between
peers in V (p).

A set of topics of demands observed by p: TPd(p). Each
peer p maintains a set TPd(p) of demand topics based on the
continuously observed queries. For this, a revised version of
k-nearest neighbor clustering is applied when a new query q is
observed. In addition, we apply a simple sliding time window
strategy that collects the queries received during the last t0
time units (e.g. in last t0 mins). Let Q(t0) the set of queries

observed in time window t0; δ (δ ∈ (0, 1], δ ∈ R) the similarity
threshold; rt(q) the receiving time of q:
(i) If TPd(p) = ∅, p creates a new topic tpd = 〈tsd, tlst, P 〉,
where tsd = q.sd, tlst = rt(q) and P = (q.req, {q}, str). The
computation of str will be presented later on.
(ii) If TPd(p) 6= ∅, p computes a set Qk(q) containing at most
k queries from Q(t0), which demands are most semantically
similar with q.sd and simsd(q.sd, q

′.sd) > δ holds for each
q′ ∈ Qk(q). If Qk(q) = ∅, create a new topic for q. Let
TPd(p, q) ∈ TPd(p) be the subset of involved topics. Each
contains at least one query in Qk(q). The final topic tp∗d for q
is determined by:

tp∗d = maxargtpd∈TPd(p,q)

{ ∑
q′ in tpd

sim(q′sd, q.sd)
}
. (1)

(iii) If the nearest topic tp∗d of q has been determined during
step (ii), p updates the triple of tp∗d: tsd = q.sd, tlst = rt(q).
If tp∗d.P does not contain a triple corresponding to q.req, p
adds a new triple (q.req, {q}, str) for the requester peer of
q; otherwise updates the existing triple (q.req,Qq.req, str) by
adding q to Qq.req and recalculating the demand strength str
of peer q.req:

str(q.req, tp∗d) =

∑
q∈Qq.req

q.nd∑
∀(p′,Qp′ ,str)∈tp∗d.P

∑
q′∈Qp′

q′.nd
. (2)

Expertise of peer p′ ∈ V(p) on topic tps: Each peer
iteratively constructs the supply topic set TPs(p) based on
its observed items I(p). On receiving the disseminated item
description of i, p executes an iteration to classify i to a topic
in TPs(p), which is similar with the formation of TPd(p)
above. k semantically nearest items Ik(i) are selected from
I(p) but without considering the time window. Instead, the
temporal factor of receiving i is taken into account during the
estimation of the trustiness tr(i, p) of i:

tr(i, p) = [tcr − tfd(i)]−1 · topoDist(i.pid, p)−1. (3)

where tfd(i) is the time point when the description of i is dis-
seminated by its owner peer (cf.Def.1); tcr is the current time;
while topoDist(p, i.pid) is the topological distance from i’s
owner peer to p. It equals to the length of the concatenated path
from i.pid to p. tr(i, p) = 1, if p is the owner of i (cf.Def.5).
tr(i, p) measures (from p’s local view) the availability of the
disseminated information of i by its (dissemination latency)
temporal and (concatenated path length) spatial factors. On
top of this, the expertise exp(p′, tps) of a remote peer p′ on
each topic tps ∈ TPs(p) can be estimated:

exp(p′, tps) =
∑
i∈Ip′

{
tr(i, p) · sim(i, tps.tsd)

}
. (4)

C. Semantic Query Routing

On forwarding a query q, instead of introducing mere one
immediate neighbor to which q will be forwarded, each peer p
computes a path Pasug as a suggestion for routing q (within
TTL limitation). It contains a sequence of peers p1, . . . , pn
that have expertise with respect to answering q. By properly
selecting and arranging the order of known expert peers, our
goal is to obtain a path with as much total expertise gain
(cf.Def.4.) as possible. For this purpose, a heuristics is derived



(cf.Alg.1), which computes the path by iteratively applying
Dijkstra’s algorithm in a greedy manner.

Definition 4: Expertise gain of peer p w.r.t. answering query
q.
Expertise gain eg(p, q) measures the expertise of a peer p with
respect to answering a given query q. It is determined by the
peer expertise exp(p, tps) on a topic tps as well as the semantic
similarity between tps and q.sd.

eg(p, q) = maxtps∈TPs(p)

{
exp(p, tps) · sim(q.sd, tps.tsd)

}
.

(5)
The total expertise gain egT (Pa, q) of peers in a path Pa w.r.t.
answering q is the sum of eg(p, q) for all peers p in Pa �

Algorithm 1 suggestPath(p, Pexp(q), q)

1: Pasug ← {};
2: egT (Pasug, q)← 0;
3: Cand← Pexp(q);
4: curMin←∞;
5: curBP ← null;
6: csp← p;
7: for each p′ ∈ Cand do
8: compute the shortest path sPa(csp, p′) from csp to p′;
9: if len(sPa(csp, p′) < curMin) then

10: curMin← len(sPa(csp, p′));
11: curBP ← p′;
12: end if
13: end for
14: if curBP 6= null and

len(Pasug) + len(sPa(csp, curBP )) ≤ q.TTL then
15: concatenate sPa(csp, curBP ) to the tail of Pasug;
16: egT (Pasug, q)← egT (Pasug, q) + eg(csp, q);
17: csp← curBP ;
18: Cand← Cand \ csp;
19: curMin←∞;
20: curBP ← null;
21: goto line 7;
22: else
23: return Pasug and egT (p, q);
24: end if

In Alg.1, we denote sPa(pi, pj) the shortest path from peer
pi to pj ; Pasug the current path suggestion; egT (Pasug, q)
the total expertise gain of the peers in the current Pasug;
Cand the set of remote candidate peers that have expertise
exp(p′, tps) on a topic tps, which is sufficiently semantically
relevant to q.sd. curMin the length of the current shortest
path that will be used to augment Pasug; len(·) the function
that computes the topological length of a path; curBP the
nearest expert peer from the current starting peer csp. Alg.1
builds path suggestion iteratively. Taking p itself as the starting
peer for building the path suggestion, p computes the nearest
expert peer curBP (lines 7 – 13). Subsequently, if the length
of path that is being formed is smaller than current q.TTL,
p concatenates the sub-path from the starting peer to curBP
with Pasug and updates the total expertise gain (lines 14–19).
This triggers a new iteration (line 21) which regards curBP in
the last iteration as the new starting peer. The algorithm runs
until the length of concatenated path is larger than q.TTL or
no new expert peer is found.

In order to decide the candidate expert peers Pexp(q) as an
input for Alg.1, p computes a subset of topics TPs(p, q) from
TPs(p) by measuring the semantic-based similarity of q.sd
with each supply topic tps ∈ TPs(p). If sim(tps.tsd, q.sd) is
larger than a threshold θ (θ ∈ (0, 1], θ ∈ R), p adds the peers
in tps.P (cf.Def.3.) to Pexp(q).

In case that q contains a path suggestion Pa′sug associ-
ated with a total expertise gain value egT (p

∗, q) made by
some peer p∗ before, p updates its local view on network
topology based on Pa′sug and recomputes a path suggestion
Pasug with its corresponding total expertise gain egT (p, q). If
egT (p

∗, q) < egT (p, q) , p routes q according to the new path
suggestion; otherwise, q will be routed according to the old
path suggestion. p randomly forwards q to one of its immediate
neighbor, if q.Pasug = {} and no path suggestion can be made
by p based on its current knowledge.

D. Item Information Dissemination

According to S2P2P scheme, each peer p is able to perform
demand-driven item description dissemination to remote peers.
This process is triggered by the completion of the query
routing decision (cf.Sect.III-C) and finished before the query
is forwarded. Inspired by [26], without issuing any specific
message, the transmission is done by wrapping the description
of an item i into a data structure called item dissemination
package idp (cf.Def.5) and copying idp into the piggybacked
data of a query being forwarded. When receiving a query q that
is backtracking, p checks the piggybacked item descriptions.
It keeps a copy of the description of an item i ∈ q.pbd if p is
in the receiver set (cf.Def.5.) of i. Subsequently p updates its
local knowledge of remote peer expertises.

Definition 5: Item dissemination package of item i.
The item dissemination package idp of an item i being prop-
agated is defined by a tuple: idp = 〈idesc, tfd(i), rcv, Pac〉
where idesc is the item description of i; tfd(i) the time point
when i is disseminated by its owner peer (cf.Def.1); rcv the
receiver peer set of this package; and Pac the concatenated
path from the item owner peer to the current peer that is
initializing this package. �

Peer selection for dissemination: Each peer p decides to
propagate an item i (description) to a set D(p, i) of destination
peers. The latter is a subset of peers selected out of the current
query path D1(p, i) and the ones D2(p, i) in the suggested
query path:
(i) For each p′ ∈ D0(p, i) = D1(p, i)∪D2(p, i), p estimates the
semantic utility U(p, p′, i) value of propagating the description
of i from p to p′:
U(p, p′, i) =

∑
tpd∈TPd(p,p′)(str(p

′,tpd)·sim(tpd,i.sd)·tr(i,p))∑
tpd∈TPd(p,p′) str(p

′,tpd)
,

TPd(p, p
′) = {tpd|tpd ∈ TPd(p) and ∃(p′′, Qp′′ , str) ∈

tpd.P s.t. p′′ = p′},
where TPd(p, p′) is the set of demand topics of p′, which have
been observed by p; sim(tpd, i.sd) is the semantic similarity
between each topic tpd ∈ TPd(p, p′) and i; str(p′, tpd) refers
to the strength of the observed demand of p′; and tr(i, p) is
the trustiness of i according to the observation of p;
(ii) Select the top m (m ∈ N, 0 ≤ m < |D0(p, i)|) peers with
maximal utility values from D0(p, i) as the set of receiver peers
of i. In case that m > |D0(p, i)|, all the peers in D0(p, i) will
be selected (D(p, i) = D0(p, i)).



Subsequently, for each item i which description will be prop-
agated, p instantiates a dissemination package idp. It sets
rcv = D(p, i) and computes concatenated path Pac from p to
i.pid. If p is the owner of i, idp.Pac contains p itself only.

Remote peer expertise maintenance: On receiving a query q
that is backtracking, p checks the item dissemination package
idp of item i in q.pbd. If p /∈ idp.rcv, p skips to react on i;
otherwise p adds i to local observed item set I(p) and updates
its observed expertise of remote peers (cf.Sect.III-B).

E. Robustness

S2P2P requires minimal amount of messages to be exchanged
to react on dynamic changes such as peers leaving or joining
the network. The arrival of a peer in S2P2P enabled P2P
network triggers a simple handshake-advertisement: A arriving
peer p broadcasts a one-hop advertisement (TTL = 1) to peers
in its neighborhood, and waits for acknowledgement-messages.
If at least one peer answers, p considers itself to be online
and both peers mutually add each other into their local view
of the network topology. No action will be triggered by the
departure of a peer p from the network. If a peer stops to
answer messages, the other part p′ of the communication will
detect its absence. Subsequently, the local view on network
topology on p′ is updated.

Furthermore, the maintenance of the demand/supply topic
sets on each peer enabled with S2P2P scheme behaves in a
lazy manner under the network dynamics in terms of peer
arrival/departure. Each allocated membership entry (cf.Def.3.)
is associated with a boolean flag indicating its availability. If
the absence of p is detected by p′, the latter sets the flags
of those entries about p with ”0”, instead of deleting them.
It means that they will no longer be taken into account by
query routing and item description dissemination, until the
flags are set to ”1”. This would save the cost for memory/disk
(re-)allocation, in case that the absence of p is caused by a
temporary network disconnection. Likewise, when p′ knows
the arrival of p, p′ searches for the membership entries of p
in its maintained demand/supply topics structure. If there exist
some entries of p, p′ sets the flags of them to ”1”. If no entry
about p has been found, p′ does nothing, as no demand/supply
of p is detect at this moment.

F. Complexity

As no extra message is needed for path suggestion and item
information dissemination processes, we discuss the computa-
tional complexities of the both in this section. Let v (e) be the
total number of peers (edges); m the total number of distinct
demand topics; l the initial time-to-live value for each walker.
For routing a query, each peer computes a path suggestion
contains up to l expert peers on a requested topic. Each is
computed via Dijkstra’s algorithm that in worst case costs
O(e+vlogv) [10]. Therefore, the computational complexity of
the path suggestion for routing a query is O(l(e+vlogv)). For
disseminating the description of an item, each peer p computes
the semantic utility values for at most l peers. For candidate
destination peer p′, p measures the semantic similarity between
i and m demand topics (in worst case). As the computation
for demand strength and supply trustiness is done in advance,
the complexity of deciding the information dissemination for

i is O(lm · s) where s is the computational complexity of
the semantic similarity measure used by the system. This can
vary from polynomial to NEXP depending on the types of
formalisms.

IV. EXPERIMENTAL EVALUATION

We present and discuss the results of our preliminary compar-
ative experimental evaluation of the performance of S2P2P
search scheme in unstructured P2P networks with different
configurations.

A. Experimental Settings

For our experiments, we created unstructured P2P networks
with 10000 peers and topologies based on random graphs
(RG) with averaged connectivity 3.2 and random power law
graphs (RLPG). The latter is known to be a realistic model
in particular for social networks. Each peer in our testing
environment is implemented as an independent thread with
capacity of interacting with other thread via IP layer. Each
experiment is conducted by employing two computers: a
standard PC with COREi7 2.8GHz CPU, 8G RAM and a
laptop with COREi7 2GHz CPU, 4G RAM, which support
7000 and 3000 threads, respectively. Further, we employed
two models of item popularity distribution in these networks
which are used for many real-world item popularity rankings:
Uniform at random (R) and Zipf’s law (Z) based distribution.
The initial value of TTL of each walker in S2P2P is 10 and
the number of walkers is 4. Both similarity thresholds δ and
θ are 0.5. The time window size t0 is set to be 600 seconds.

As a test collection we use a random subset of 20k RDF
linked data items (in files: instance types en.nt.bz2 and map-
pingbased properties en.nt.bz2) taken from DBpedia4 with its
ontology (dbpedia 3.7.owl.bz2) O of 319 defined concepts
and 1635 roles. We built peer ontologies through random
sampling of 250 concepts and 1450 roles taken from O on
average. For non-semantic random search the relevance of
items for queries is based on the Levenstein edit distance
between their topic terms. Since DBpedia does not provide the
relevance sets for item queries, we use the following heuristics
for relevance judgments: Item i about concept i.sd = τ(C)
is relevant (a true positive) for query item i′ about concept
q.sd = τ(C ′), if any of the logic-based concept relations in
{C ≡ C ′, C v1 C

′, C w1 C
′} holds. For query-item similar-

ity determination, each peer simply checks the data concept
subsumption relations based on mere concept hierarchy but
ignores the matching on properties.

B. Evaluation Metrics

Let Q the set of queries in the network; Iq (Iq,j) the set
of items collected by a query q ∈ Q (at its j-th hop,
1 ≤ j ≤ TTLinit; j ∈ N); I∗q (I∗q,j ) the set of relevant items
in Iq (Iq,j); I∗tq (I∗tq,j) the set of relevant items for q at all
peers (the j-th peer) on the query path;
• Macro-averaged precision (MAPλ) at 11 recall
levels (REλ) with equidistant steps of 0.1: MAPλ =
1
|Q|
∑
q∈Qmax{preq,m|req,m ≥ REλ, for ∀〈preq,m,

req,m〉 ∈ PRq}. A set PRq of precision-recall

4http://downloads.dbpedia.org/3.7/en/



〈preq,m, req,m〉 pairs is computed for each query
q at different number of hops m. Nearest-neighbor
interpolation is used for estimation of missed precision
values for some queries at some recall levels:
PRq = {〈preq,m, req,m〉} = {〈

∑m
j=1 |I

∗
q,j |∑m

j=1 |Iq,j |
,

∑m
j=1 |I

∗
q,j |∑m

j=1 |I∗tq,j |
〉}.

• Averaged precision ap = 1
|Q|
∑
q∈Q

|I∗q |
|Iq| .

C. Comparative Approaches

We compare S2P2P with INGA [16] in terms of search
performance and robustness. The latter introduces a shortcut
based restricted semantic flooding search strategy. Particularly,
each peer of INGA system creates a semantic network overlay
(shortcuts of data) by query analysis, which is the common
feature with S2P2P. We implemented two global table data
structures for the access of shortcuts in content provider and
recommender layers. In addition, both the maximum fanout
k and maxTTL of the flooding are set with 3. This setup
ensures that a query of INGA can traverse about 40 peers in
a random graph based network with averaged connectivity 3.1
(cf.Sect.IV-A). It is fair to S2P2P based query, which issues
k=4 walkers with initial TTL=10 each.

For testing the search performance of the combination
of S2P2P with data replication strategies, we choose the
combinations of the same k-random search with different data
replication strategies: a near-optimal non-semantic replication
strategy P2R2 [24] and a semantic data replication scheme
DSDR [4].

D. Experiment Results

Experiment 1 (Search performance): We compare the search
performance of S2P2P and INGA in random graph based
network. The item popularity distributions are uniform at
random (R) distribution over all items and Zipf (Z) distribution
(β = 1.03) over pre-clustered 79 topics. Our experiments
revealed that S2P2P can significantly outperform INGA in
terms of macro-averaged precision at recall (cf.Fig.1.) and
averaged precision (cf.Fig.2.) regardless of the kind of item
popularity distribution. Particularly, it achieved around 24%
more precision at intermediate recall levels (cf.Fig.1.) and
around 20% more averaged precision (cf.Fig.2.). The reason is
that an INGA-enabled peer can not transitively propagate its
detected shortcuts information; while a peer in S2P2P system
is able to propagate the received item description information
to those groups of peers located topologically farther. In the
latter system, a request is therefore having a higher chance of
meeting more relevant items. This merit of S2P2P effects when
the maximal numbers of peers a (S2P2P or INGA) query can
access are similar (cf.Sect.IV-C). In addition, both semantic
search strategies appear to be relatively not sensitive to the
kind of item popularity distribution. This is caused by a feature
of search: the item information dissemination is mainly driven
by the existence of item than the observed demands. In INGA
system, the detecting flooding for building shortcuts is issued
independently from the query.

Experiment 2 (Robustness): Our second experiment analyses
the robustness of S2P2P and INGA for networks with random
graph-based topology. After the processing of 8k and 18k
queries, we randomly delete 25% peers from the network while

Fig. 1: Macro-averaged precision at recall of S2P2P and INGA.

Fig. 2: Averaged precision of S2P2P and INGA.

add them randomly to the network after 15k queries were
processed. The results reveals that the departure of peers results
in a decrease of precision, since the semantic overlay structure
was partially destroyed through peers leaving the network.
The precision of both systems is not sensitive to the arrival
of peers. Although the shortcuts of INGA or disseminated
item information of S2P2P are diluted by the arrival of peers,
the knowledge of the shortcuts and the paths targeting to
disseminated items are remained. The averaged precision of
both semantic search methods drops at each departure event
(Fig.3) but both systems were able to recover within almost
the same time period.

Experiment 3 (Search combined with replication): In ex-
periment 3, we test the search performance of (non-)semantic
search approaches combined with replication strategies in a
network with random power law graph-based topology. The
configurations includes the run of S2P2P without replication,
and the runs of k-random search (abbr. KW. k=4, TTL=10)
or S2P2P combined with the non-semantic replication method



Fig. 3: Robustness: Averaged precision of S2P2P and INGA.

P2R2, as well as the same searches with the semantic repli-
cation scheme DSDR. The experiment result evidences the
effectiveness of data replication, which is able to increase
the performance of search in unstructured P2P networks.
Particularly, the combination of S2P2P with semantic data
replication strategy DSDR yields best precision after its stable
network overlay has been established. In comparison with the
combination of S2P2P with P2R2, the incentive by DSDR
is larger. The reason is that a P2R2 enabled peer needs to
know the query satisfaction of its observed query in order
to judge the replication. However, this information is not
provided by S2P2P peer as the query satisfaction is determined
by the requester peer. In contrast, the group formation and
subsequent replication decision of DSDR are conducted by a
peer which request was judged to be unsatisfied by itself. This
leads to adequate information to perform replication decision.
Not surprisingly, k-random search can take advantage of P2R2
because of the syntactic matching happened during each peer’s
item selection process. It directly provides the information of
”hit”, by which the peer concludes the demand strength for its
data replication based on P2R2.

Moreover, the evaluation shows that the search precision
of S2P2P enabled configurations increases relatively more
faster than the k-random search based systems. The reason
is that S2P2P is capable of forming its own semantic overlay
for conducting query routing, but k-random search can not.
This is evidenced by the independent run of S2P2P without
replication. However, this result also reveals that k-random
search can be more robust under the network dynamics be-
cause of its capacity of working without semantic overlay.
Further, after a sufficiently large number of queries (6000
in Fig.4.), the precision of k-random search combined with
the both replication methods increases faster than the S2P2P-
enabled system without replication. This evidences the merit
of replication strategy, which can transitively propagate the
item data (not only the item description) to remote peers. This
is not achievable by S2P2P since the latter disseminates item
description only.

Fig. 4: Averaged precision of S2P2P, KW+DSDR, KW+P2R2,
S2P2P+DSDR, S2P2P+P2R2.

V. RELATED WORK

Majority of search strategies in unstructured P2P networks is
mainly the variants of the classic flooding- or walker-based
search. In the following, we present representative solutions
from each of the both.

Flooding-based search strategies, such as [11], [16], [15],
[18], commonly offer high search recall but suffer from
relatively large network traffic cost. In the expertise-based
semantic search Bibster [11], each peer advertises the topics of
its maintained items via TTL-bounded flooding. Semantic links
are distributively built among peers. Each peer is therefore
enabled to route a query to at most s peers which are expertise
on similar topic. Besides the risk of excessive message load
in the network, a limitation of this approach comes into that
the quality of semantic links is subject to network dynamics,
as the links are built in one shot at the stage of peer arrival. In
contrast, S2P2P maintains the expertise of peers dynamically
in line with the query routing. In P-grid system [1], a virtual
distributed search tree is holding by peers. A binary query
is routed from a peer to at least one peer whose encoded
expertise is determined to be ”closer” to the query. Löser et.al.
proposes a shortcut-based approach INGA [16], which enables
a peer to perform selective flooding relying on the overlay
built upon query analysis. A shortcut of the item on a remote
peer is created if a query gets answers from it or detected
by flooding. This would lead to large amount of comparisons
during shortcut selection strategy for forwarding a query. The
effort [18] introduces probabilistic flooding strategy aiming at
minimizing the cost of excessive message transmissions via
the proposed hop distance measure. Whether a peer forwards
a query to its neighbors depends on the probability of this
query hitting a matched resource. The latter is estimated based
on the ratio of the nodes flooded over all in the network.
The underlying assumption is that the resource distribution is
uniformly random, which is not always true in practice.

K-walkers based search strategies commonly generate
much less network traffic than the former flooding based
variants. Biased query routing is always a feature of them. For



this, machine learning, query analysis, item information dis-
semination, etc. techniques are used in order to build/maintain
a network overlay, by which a peer obtains more information
for routing decision. In RS2D [2] and ACS [23], query routing
relies on the learned network overlay, which is achieved
by training the system with a set of labeled queries or by
collaborative graph investigation. Likewise, peer in [19] is
enabled to route a query to one of its semantic neighbor
peers according to the local view of semantic network overlay.
The latter is established by broadcasting peer profile when
each peer joins in the network. The search performance of
those systems built by means of similar ways is subject to the
network dynamics. Liu et.al. proposes a method [15] to build
super-peers that form a semantic overlay by enabling peers to
cache the data of in particular the popular items according to
storage capacities of peers. Despite the increment of search
precision/recall, hot spots are prone to appear in the network.
The effort [27] presents a path-traceable query routing strategy
based on the propagation of gains of query hits. For this, each
peer analyzes the traversing queries and maintains a dynamic
traceable gain matrix, which comes into the base of further
query routing decision. In addition to the network load balance
issue, the approach works relying on an assumption that a ”hit”
is a ”match”, which is not always true in decentralized retrieval
system for complex objects, as the query satisfaction should
be decided by the requester. Filali et.al. proposes walker-based
search strategy [9] based on item information advertising and
dynamic TTL heuristics. The latter offers incentive to a walker
by decreasing TTL with a probability less than 1 when the
walker finds relevant resource. Unfortunately, this would not
to large extent increase the chance of find matching results,
since the radio of a walker hitting a relevant result can be a
constant if the overlay is fixed.

VI. CONCLUSION

In this paper, we presented a semantic based search scheme
called S2P2P for item information dissemination and query
routing in unstructured P2P networks. The main contribution
is that S2P2P offers a novel query path suggestion heuristics,
which provides a query with a sequence of expert peers on
demand topics. Our experimental evaluation shows that S2P2P
outperforms the semantic flooding based approach INGA in
terms of search precision@recall and averaged precision. Be-
sides, our experiment reveals that S2P2P search is at least as
robust against network dynamics than INGA.
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