
SPSC: Efficient Composition of Semantic
Services in Unstructured P2P Networks

Xiaoqi Cao, Patrick Kapahnke, and Matthias Klusch

German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany,
{Xiaoqi.Cao,Patrick.Kapahnke,Klusch}@dfki.de

Abstract. The problem of automated semantic peer-to-peer (P2P) ser-
vice composition has been addressed in cross-disciplinary research of
semantic web and P2P computing. Solutions for semantic web service
composition in structured P2P networks benefit from the underlying
distributed global index but at the cost of network traffic overhead for
its maintenance. Current solutions to service composition in unstruc-
tured P2P networks with selective flooding can be more robust against
changes but suffer from redundant messaging, lack of efficient semantics-
empowered search heuristics and proven soundness. In this paper, we
present a novel approach, called SPSC, for efficient semantic service com-
position planning in unstructured P2P networks. SPSC peers conduct a
guarded heuristics-based composition to jointly plan complex workflows
of semantic services in OWL-S. The semantic service query branching
method based on local observations by peers about the semantic overlay
alleviates the problem of reaching dead-ends in the not fully observable
and heuristically pruned search space. We theoretically prove that the
SPSC approach is sound and provide a lower bound of its completeness.
Finally, our experimental evaluation shows that SPSC achieves high cu-
mulative recall with relatively low traffic overhead.

Keywords: Semantic services, workflow composition, P2P computing

1 Introduction

In the past decade, the challenge of automated centralized and decentralized
composition of semantic web services in OWL-S, SAWSDL or WSML1 has at-
tracted considerable interest and development of various solutions in the se-
mantic web and P2P community [21]. In fact, there are quite sophisticated AI
planning based tools for centralized composition of semantic services such as
OWLS-Xplan [14] for OWL-S services [19]. Unlike web service composition, the
automated composition of semantic web services by use of AI planning tech-
niques is inherently supported by their formally grounded semantic descriptions.
However, these semantic service composition planners cannot be used for a dis-
tributed composition of semantic services for collaborative applications in P2P
settings. In these cases, any service composition approach has to cope with the

1 For an introduction to semantic web services, we refer to, for example, [16].

2

lack of a global service directory or dynamic changes of the set of service pro-
sumers and the availability of semantic services to be found and composed for
jointly accomplishing a given task.

For example, approaches to semantic web service composition in structured
or hybrid P2P networks such as [20, 24, 9] benefit from a distributed, semantics-
empowered index, but at the cost of traffic overhead for its maintenance in dy-
namic environments. On the other hand, current solutions for semantic service
composition in unstructured P2P networks can be more robust against changes
but suffer from redundant messaging, lack of efficient semantics-empowered search
heuristics and proven soundness of the distributed composition by the peers.
There are a few solutions for this problem. For example, PM4SWS [10, 11] ap-
plies classical flooding which causes heavy network traffic for on-line query an-
swering. Relying on state transition gossiping and query/network status analysis,
SCComp [6–8] enables selective flooding, but still has the risk of one peer re-
ceiving duplicated messages with the same sub-goal. AntAgt [3, 23, 4] yields less
network traffic by applying a walker-based query routing strategy, but suffers
from its dependence on user specified query plan templates. It does not perform
fully automated service composition. Besides, none of the current approaches
also takes non-functional factors such as quality of service (QoS) and composi-
tion plan length into account for the automated semantic services composition.

To this end, we present SPSC (Semantic P2P Service Composition Plan-
ning) for automated and efficient QoS-aware composition of OWL-S services in
unstructured P2P networks. The joint generation of complex service workflows
by SPSC peers basically relies on (a) the local matching of the semantic in-
put/output/preconditions/effects (IOPE) of OWL-S services with variable bind-
ings, and (b) the memorization of potentially useful services. As a result, SPSC
peers jointly explore a heuristically pruned search space using a walker-based
query branching strategy, which mitigates the risk of failure due to dead-ends.
SPSC is robust against network and service dynamics. In contrast to other ap-
proaches to the same problem, we also theoretically prove that SPSC is sound
and has a reasonable lower bound of completeness with respect to the solution
existence. Finally, our preliminary experimental evaluation revealed that SPSC
achieves high cumulative recall with low traffic overhead.

In Sect. 2, we provide preliminaries required to understand the SPSC ap-
proach which is detailed in Sect. 3. We then analyze the completeness of SPSC
and prove its soundness in Sect. 4, followed by experimental results in Sect. 5.
A discussion of related work is in Sect. 6 before we conclude in Sect. 7.

2 Preliminaries

In unstructured P2P networks, peers have no global view on network topology or
services provided by other peers. A peer p maintains its limited domain knowl-
edge in its local knowledge base, including an OWL ontology Op and a set of
predicates Ap, based on a shared primitive term vocabulary V . Each α ∈ Ap is
the first order logic interpretation of a concept or property in Op [1]. Each peer
can provide atomic OWL-S services. Besides input (I), output (O), precondition

3

(P) and effect (E), each service has its provider peer id pid and a QoS value
qos ∈ [0, 1], indicating the overall service availability. Each IO parameter con-
tains a variable ?x and its concept type X ∈ Op. P/E is a CNF formula over
predicates in Ap and IO variables. Denote Sp the set of services known by p.

Example 1 : Service S9 (cf. Fig. 1) represents an industrial production pro-
cess, which consumes some Material ?m and Softener ?so to produce Product
?pro. Its precondition P9 = tempLargerThan (?m, 60) ∧ qualityNotBad(?m)
∧ speedEq(?so, 5), requires the temperature of ?m to be larger than 60, an ad-
equate quality of ?m and the softener ?so to be added at speed 5. The effect
E9 = shaped(?pro) ensures that, after the execution, ?pro is shaped. �

In context of SPSC, a request R is defined analogously to a service, containing
IOPE, but without QoS and pid. We assume that a request can typically not be
solved by one atomic service, but a composition, i.e. a workflow. Such a workflow
includes parameter bindings to make up data flows.

Fig. 1: An example workflow with parameter bindings.

Definition 1: Service parameter binding b(?x, ?y).
A binding b(?x, ?y) of service parameters ?x and ?y of services S and respectively
S′ is a tuple 〈?x, ?y, ϕ〉 where ϕ is a substitution {?x 7→?z, ?y 7→?z}. �

That is, if an output ?x of S.O is bound to an input ?y of S′.I, the data
of ?x can be transmitted to ?y and used by S′ as input, which is modeled by
introducing the common substitute ?z.

Definition 2: Workflow wf .
A workflow is an orchestration of semantic services constructed to fulfill a request
R. It consists of a set of services and a set of parameter bindings defining the
data flow among them. Start and end of wf are defined according to R. The
side starting with R.I and R.P (ending with R.O and R.E) is called the left
side L(wf) (right side R(wf)) of wf . wf is correct wrt. R (satisfies R), iff:
(i) All inputs of services S ∈ wf are bound to outputs of other services in wf
or R.I.
(ii) The overall IO signature of wf plugs into request R:

(a) ∀S ∈ wf, ?x : X ∈ S.I : ∃S′ ∈ (wf\{S}) ∪ {R}, ?x′ : X ′ ∈ S′.I : X ′ v X;
(b) ∀?y′ : Y ′ ∈ R.O : ∃S ∈ wf, ?y : Y ∈ S.O : Y v Y ′.

(iii) With parameter bindings, no conflicting literals is in (
⋃

S in wf S.E) ∪R.P ;
(iv) With parameter bindings, preconditions of all services in wf are satisfied:
∀S ∈ wf : ∃S ⊆ wf : (

∧
S′∈S S

′.E) ∧R.P =⇒ S.P ;
(v) R.E can be implied by wf :

∧
S in wf S.E =⇒ R.E. �

4

Example 2 : Fig. 1 shows a correct workflow wf wrt. (satisfying) R: R.I = {?m0 :
Material}, R.O = {?pro0 : Product}, R.P = true and R.E = shaped(?pro0). R
asks for some service that produces a shaped product using its source material.
IO (PE) are illustrated with black (red) arrows. Parameter bindings (implica-
tions) are shown as blue dashed (solid) arrows. In brief, wf specifies the following
procedure: a source material ?m0 is applied to a filtering process to assure some
quality requirements. Then it is heated and shaped with additional softener into
a product. wf is correct wrt. R because: (i) each input of any service in wf has
been bound to an output of another service in wf . E.g. the binding between
?m4 and ?m0; (ii) wf plugs into R, because the type Material of ?m0 is equal
to the type of ?m4, and the type Product of ?pro in S9 is equal to the type
of ?pro0; (iii) there are no conflicting literals in (

⋃
S in wf S.E)∪R.P , given the

bindings; (iv) all preconditions in wf hold: S9.P is implied by S6.E, S5.E and
S1.E with b(?m3, ?m1), b(?m1, ?m) and b(?so1, ?so); S5.P is implied by S6.E
with b(?m3, ?m1). (v) R.E is implied by S9.E with b(?pro, ?pro0). �

While the former definitions focus on the workflows and its composition, the
remainder of the section will elaborate on finding such workflows in unstructured
P2P networks under assumptions stated above.
Definition 3: Distributed stateless semantic service composition problem.
The distributed stateless semantic service composition problem is a tuple 〈N ,
S, R, wf〉. Given request R, the goal is to construct a correct workflow wf
satisfying R. wf is collaboratively composed by peers in an unstructured P2P
network N based on their services S. �

In SPSC, a request R to the network is delegated to a walker-based query.
Besides R, a query contains auxiliary fields required by the proposed algorithm.
Definition 4: Semantic query (abbr. query) q for a request R.
q = 〈R, path, psug, TTL, wf , Tb, h〉, where R is the request; path is a sequence
of peer IDs that q has traversed; psug is a path suggestion for this query; TTL
is the time-to-live value of this query; wf is the workflow (initialized as empty)
answering to R; Tb is the memo table (initialized as empty), which will be used
by the memorization strategy (cf. Sect. 3.2); h (h ∈ [0, 1]) is the current guard
value of wf (initialized as 0). �

3 Distributed Semantic Service Composition

SPSC mainly builds on three aspects: local observations of peers, guarded com-
position and query routing.
Local observations of peers: In SPSC, any peer p is allowed to observe the
entire content of a received query q while it is backtracking. Any unknown service
in q.wf is added to Sp for later use. Once knowing about (not providing) S, p is
called a service signature maintainer of S. Besides, p updates its local view on
the network topology based on the observed query path and path suggestion.
Guarded composition: A query q in SPSC is an epidemic walker with TTL
limitation. A workflow wf is built collaboratively by peers on the query path
using a bidirectional chaining approach. On receiving q on its forward journey,
a peer p executes the local composition process (cf. Alg. 1) based on its local
knowledge about services. Once wf is correct or TTL=0, p makes q backtrack.

5

For composition, p locally checks whether each S ∈ Sp can be chained to the
left or right side of wf . A chaining score (cf. Sect. 3.1) is computed to measure
the chaining quality. If it is larger than a threshold (cf. Sec. 3.2), p considers S
to be potentially useful and temporarily adds it to wf , yielding a new workflow
wf ′. In order to protect wf from arbitrary augmentation, a guard value h′ wrt.
wf ′ is computed. If h′ is larger than the original guard value recorded in q, S
is treated as a useful service wrt. wf , and wf ′ will be fixed. Then, p replaces
q.h with h′. In cases that S can (a) be chained but without incrementing the
guard value, or (b) not be chained into a workflow at all, p applies memorization
strategy for carrying the potentially useful service in q. For (a), p adds S into
the memo table of q; for (b), p adds S into the memo table with a rate rm (cf.
Eq. 2). If an alternative service S′ (cf. Sec. 3.1) of a candidate service S ∈ wf is
found, p issues a sub-query with a new workflow wf∗ using S′ instead of S.
Query routing: p routes q, after the local composition process. Instead of an
immediate neighbor, p suggests a path for routing q, based on its local knowledge.
The suggested path traverses multiple key peers and its total inverse importance
score per traffic cost is minimized, under TTL limit (cf. Eq. 3). Once formed,
such a path is set to q.psug (cf.Def.4) and q is routed to the first peer on q.psug.

3.1 Chaining Between Two Services

On receiving a query, each peer checks whether a known service can be chained
to the left or right side of the current workflow. In particular, to chain service S′

after S, the following has to be considered: (i) to what extent can the variables of
S.O be accepted by S′.I, and (ii) to what extent can the effect S.E imply S′.P .
For this, the peer computes chaining scores chIO(S, S′) at IO and chPE(S, S′)
at PE levels. On top of this, the overall score ch(S, S′) is computed:

ch(S, S′) = 1
2 (chIO(S, S′) + chPE(S, S′)) · df(chIO(S, S′), chPE(S, S′));

df(t, t′) = min{ t
t′ ,

t′

t }, t, t
′ ∈ (0, 1].

(1)

This valuation considers IO and PE equally, while it further adjusts the overall
outcome by including a difference factor df(·, ·). This ensures that low quality
results with large discrepancy between chIO(S, S′) and chPE(S, S′) are down-
graded and possibly filtered out later. To compute ch(S, S′), chIO(S, S′) is con-
sidered first. This step determines which parameter in S.O can be used by which
parameter in S′.I and yields a set of parameter bindings. By applying the sub-
stitutions {?z 7→?x, ?z 7→?y} of bound parameters ?x ∈ S.O and ?y ∈ S′.I,
the S.E and S′.P formulas are adapted, in order to compute chPE(S, S′) af-
terwards. SPSC concerns IO before PE, because the latter with all possible
parameter bindings would introduce a large computational overhead.
IO Chaining Score. For each concept Y of each variable ?y ∈ S′.I, this process
tries to find its best subsumee from the set of variable/concept pairs (?x : X)
of S.O. Such a subsumee yields the largest concept subsumption similarity score
(such as [17]), compared to the others in S.O and additionally exceeds a bind-
ing threshold β ∈ (0, 1]. Once found, a binding is created. Given the bindings,

chIO(S, S′) = |M |
|S′.I| , where M ⊆ S′.I is the set of bound parameters in S′.I.

6

PE Chaining Score. The first step is to apply the substitutions of the bind-
ings above to S.E and S′.P . Subsequently, the implication S.E → cl is checked
using θ-subsumption [18], for each clause cl in S′.P that does not contain un-
bound variables. Let SC be the set of satisfied clauses in S′.P , |S′.P | the total

number of clauses S′.P : chPE(S, S′) = |SC|
|S′.P | . If there exists a contradiction in

(
⋃

S in wf S.E) ∪R.P given the variable substitutions, chPE(S, S′) is set to 0.

3.2 Semantic Composition of Services

Algorithm 1 queryProcess(q). Input: query q; Output: void.

1: if q is being forwarded
2: q.TTL← q.TTL− 1;
3: for each S ∈ Sp do {
4: ch← bidirectional chaining S into q.wf ;
5: compute the new guard value h′;
6: if h′ > q.h
7: if the workflow of q is correct, break; else update q.T b;
8: q.h← h′; goto line 3;
9: else if (ch > θ and h′ ≤ q.h) add S into memo table q.T b; goto line 3;

10: else add S into q.T b with the rate rm(S); }
11: if q.wf is correct or q.TTL = 0, make q backtrack;
12: else, make a path suggestion for q and route q;
13: if q.wf is not correct and q.TTL > 0
14: for each candidate service S in q.wf do {
15: Spred ← findAlternativePredecessorServices(S, wf);
16: for each S′ ∈ Spred do {
17: q′ ← createSubQuery(q, {S′}); if q′.wf is new, queryProcess(q′);}
18: Ssucc ← findAlternativeSuccessorServices(S, wf);
19: for each subset S ′

succ ∈ 2(Ssucc∪S)\{S} do {
20: q′ ← createSubQuery(q, S ′

succ); if q′.wf is new, queryProcess(q′);} }
21: endif
22: else q is backtracking, update the local observation;
23: if p is not the requester peer of q, force q to backtrack;

Guarded Composition: Each query q in SPSC is a TTL-restricted epidemic
walker starting from the requester peer. The workflow is collaboratively con-
structed by peers on the query path by means of bidirectional chaining. On
receiving q, each peer p executes queryProcess(q) (cf. Alg. 1). Workflow con-
structions takes places while q is being forwarded. For each S ∈ Sp, p considers to
chain S to both L(wf) and R(wf) (line 4). For this, it computes ch(L(wf), S)
and ch(S,R(wf)), where the output of L(wf) (input of R(wf)) contains all
unbound outputs (inputs) of services currently in L(wf) (R(wf)). If either
ch(L(wf), S) or ch(S,R(wf)) is larger than the chaining threshold θ ∈ (0, 1], S
will be regarded as candidate service. p temporarily makes the hypothesis that
S has been chained to wf , which results in a new hypothetical workflow wf ′.
Subsequently, p computes the guard value h′ (line 5), which is the chaining score
(cf. Eq. 1) of L(wf ′) and R(wf ′): h′ = ch(L(wf ′), R(wf ′)). If h′ > q.h, S is

7

treated as useful service for constructing the workflow and wf ′ is fixed. q.h is
replaced with h′ (line 8). In case that two observed services have the same IOPE
signature but different QoS values, the one with higher quality is used.

Memorization Strategy: A query q can encounter some service S that (a)
can be chained to one side but without increasing the guard value or (b) can
not be temporarily chained to any side at all. S potentially would work as a key
predecessor/successor of other useful services at later steps. Please note, that this
situation is considerably different from what is typically assumed for centralized
AI planners such as [14] which can fully observe the problem space. In the P2P
setting considered for SPSC however, this case may appear frequently. To avoid
missing S, a memorization strategy is introduced to carry over information about
those potentially useful services. For this, the memo table Tb (cf. Def.4) is used.
Each row in Tb corresponds to a candidate service. It contains 3 entries: (1) the
profile of S; (2) a side flag in {L,R, null}, which indicates whether S can be
chained at the left, right or none of the both sides of the workflow; (3) a pointer
that references another service S′ in this table, if S can be chained to S′ as a
direct predecessor or successor. The pointer is null, if the service of this row
can not be chained to any side or its direct predecessor/successor has not been
determined yet. The memorization strategy is as follows: In case (a), p adds S to
q.T b; sets the side flag; and sets the pointer to the direct predecessor/successor
(line 9). In case (b), p adds S to q.T b based on the usefulness rate rm(S) of S
(rm(S) ∈ [0, 1], cf. Eq. 2) (line 10).

Apart from the cases (a) and (b), when the chaining of a useful service S∗

leads to an increment of guard value, the memo table can also be updated by
removing predecessor and successor services of S∗. This can happen, when they
do not have unbound inputs or unsatisfied preconditions, due to their chaining
with S∗. p checks this and updates the memo table if needed (line 8).

To estimate the potential usefulness of an un-chainable service S wrt. wf ,
rm(S) is computed by each peer locally, based on a set QS of observed queries
in the past. Let a(S) (a′(S)) be the number of (correct) workflows that use S;
b(S) (b′(S)) be the number of (correct) workflows that do not use S.

rm(S) =

{
ω , if a′(S) = 0;
a′(S)

a(S)+1 · (1−
b′(S)

b(S)+1) , otherwise.
(2)

a′(S)
a(S)+1 (b′(S)

b(S)+1) is the statistical positive (negative) influence of treating (ignor-

ing) S as candidate. ω (ω ∈ [0, 1], ω ∈ R) is the default memorization rate.
To choose QS , one option is to collect all the observed queries. It is easy to
be applied, but rather inaccurate due to irrelevant queries. Another option is to
consider only the queries similar to q by applying service matchmakers, like iSeM
[15]. It yields better accuracy, but some computational overhead. A compromise
is to consider the relevant queries observed in a time window.

Query Branching with Alternative Service: Let S1 and S2 be two differ-
ent services. If they can be chained to the same side of another service S with
the bindings that contain the same subset of variables in S.O (S.I), S1 and S2

8

are called alternative successors (predecessors) wrt. S. For example, S10 (Shap-
ingSrv1) is an alternative predecessor service to the shapingSrv (cf .Fig. 1) wrt.
R.O: I10 = (Material ?m); O10 = (Product ?pro); P10 = tempLargerThan(?m,
200) ∧ qualityNotBad (?m); E10 = shaped(?pro). Both of S9 and S10 can be
chained to R.O with bindings on the same subset {Product ?pro0} of variables.

If a peer p can not find a correct solution locally, p tries to find the alter-
native predecessor (Spred) / successor (Ssucc) services (lines 15 and 18) for each
hypothetically chained candidate service S in memo table. On top of this, p de-
termines the possible sub-queries. For each S′ ∈ Spred, p creates a sub-query q′,
in order to investigate the possible workflow with S′ (line 17): p initializes q′ as
a copy of q. Then, it replaces S with S′ in q′.T b and unchains those candidate
services that depend on S. Further, p computes q′.h by Eq. 1. Finally, p executes
queryProcess(q′), if q′.wf has not been processed by p before. If there exists a
non-empty set Ssucc of alternative successor services of S wrt. a service S∗ in
wf , the services in any subset of Ssucc can be chained to S∗.O at the same time
by sharing the data of bound variables. Namely, after the execution of S∗, all
services in Ssucc have chance to be executed in one workflow. In this case, p will
issue (line 20) one sub-query for each element in the power set 2Ssucc∪S\{S}.
E.g. if Ssucc = {S′}, p issues the sub-queries for {S′} and {S, S′}.

3.3 Query Routing

A query q is forwarded, if its workflow wf is not correct and q.TTL > 0. For this,
p computes a path suggestion (PS) containing a sequence of key peers, for which
the total inverse importance score per traffic cost is minimized, under the TTL
limit. (line 13 in Alg.1). A key peer is either (1) the provider of a memorized
candidate service S in wf , or (2) the signature maintainer peer pm of S. From
pm, a peer p∗ ∈ q.path got to know S and p∗ is the first one (compared with the
others in q.path) that uses S for the building of wf . The reason to consider key
peers is that they have higher chances of knowing about other services chain-
able to S. The creation of PS is modeled as a relaxed variant of the travelling
salesman problem (Eq. 3): (i) no distinct return journey is needed; (ii) a peer
can be traversed by a (sub-)query multiple times, if needed to reach key peers.

minimize:
∑

p′∈Pkey
w(p′′, q, p′); s.t.:

∑
p′i, p′i+1

L(p′i, p
′
i+1) ≤ q.TTL.

w(p′′, q, p′) = L(p′′,p′)
sr(p′,S) ; sr(p′, S) = rm(S) · qos(S)

|wfH |+1−dep(S) .
(3)

where Pkey is the set of key peers and p′′ ∈ {p} ∪Pkey; w(p′′, q, p′) is the inverse
importance score per traffic cost of a key peer p′, if q is suggested to reach p′

from p′′; L(p′i, p
′
i+1) is the length of the shortest path between the i-the and the

(i+1)-th key peers in PS; sr(p′, S) is the importance score of S wrt. wf , which is
determined by the historical usefulness rate value rm(S) and the stability factor
of wf . The latter is estimated based on the service quality and the dependency
relations between S and its predecessors or successors. |wfH | is the total number
of hypothetically chained candidate services; the dependency factor dep(S) is the
number of the necessary predecessors/successors of S in Tb.

9

Inspired by the closest neighbor heuristics [13], p computes an approximately
optimal PS in a greedy manner. Based on p’s local knowledge about the network
topology, p iteratively selects the current best key peer p′best that yields the
minimal w(p′′last, q, p

′
best). p

′′
last is either the last key peer or p in current PS.

After each iteration, p concatenates the shortest path p′′last → p′best to the tail of
current PS, considering TTL limitation. When p receives q and q.psug 6= empty,
p recomputes it if p has made contribution to the building of workflow, i.e. q.T b
has been updated by p; otherwise, p routes q according to q.psug. p routes q to
a random neighbor, if q.psug is empty and p is not able to suggest a path for q.

4 Theoretical Analysis

Lower Bound of Completeness wrt. Plan Existence. Let F ∈ N+ be the
initial TTL value of each query. In unstructured P2P, approaches for solving a
query q can only be incomplete in any case, given that there is no guarantee that
peers knowing about services required for the solution can be traversed before
TTL is exceeded. Therefore, the following analysis is focused on solvable cases,
which are characterized as follows: in a connected unstructured P2P network
with N peers, all services S required for the correct solution to q.R are known
by a set P (|P | ≤ F) of peers that can be traversed in F hops from q’s requester.
The collaborative composition process is modeled by a finite Markov process.
Let v (1 − v) be the probability of q being (not) forwarded to a peer in P .
Once q.wf is correct (final state), q is not forwarded anymore with probability
1. If |P | ≤ F , the probability Pr of reaching the final state within F hops is:

Pr =
∑F

j=|P |+1

(
j−1
|P |−1

)
· v|P | · (1− v)j−|P | + v|P |; otherwise, Pr = 0.

In the worst case, |P | = F and each p ∈ P knows at least one service
in S. This yields the generic lower bound v|P |. By memorization strategy and
peers observation, a request then can be solved by less than |P | peers. Namely,

v =
n
(t)
S ·dg
N · 1

dg =
n
(t)
S

N increases over queries. n
(t)
S is the total number of peers

that know S after the t-th query; dg is the maximum peer connectivity; ω∗ is
the average memorization rate wrt. a service S ∈ S. The propagation of the

signature of S can be modeled by a recursive function (cf. Eq. 4) with n
(0)
S = 1:

n
(t)
S = n

(t−1)
S +

F 2

N2
ω∗ · n(t−1)S · (N − n(t−1)S), (4)

We investigate the following: (1) Will all N peers eventually know about S or
not? (2) How fast will the epidemic process converge? For (1), it holds that

n
(∞)
S = N and moreover v → 1 for t → ∞; For (2), the right-hand part (N −
n
(t−1)
S) of Eq. 4 will eventually reach some fixed ε > 0, allowing for the following

substitution: n
(t)
S = n

(0)
S · (1 + F 2ω∗ε

N2)t. This indicates that n
(t)
S converges sub-

linearly to N with the rate (1 + F 2ω∗ε
N2).

Proof of Correctness. The correctness of SPSC consists of two aspects: (1)
correctness of the guard heuristics and (2) correctness of the collaborative com-
position. Intuitively, (1) means that a correct workflow is achieved when its guard
value equals to 1 (Theorem 4.1), while (2) indicates that the guard value of a

10

workflow is monotonically increasing during the distributed composition process
and reaches 1 within a lower bound (Theorem 4.2).
Theorem 4.1. A workflow wf is correct, if h = 1.
Proof : We prove this by contradiction. Assuming that h = 1, but wf is not
correct, it follows that at least one criteria in Def.4 is not satisfied. By Eq. 1,
the violation of any criterion leads to h < 1. Contradiction. �
Lemma 4.1. The guard value of a (sub-)query q is monotonically increasing
during the entire query processing on all its traversed peers.
Proof : According to Alg.1, no peer decreases the guard value by its local com-
position process. During query routing, no process changes the guard value. �

Inspired by the Floyd-Hoare theory [2] and Polyhedral Compilation Foun-
dations lecture notes 2 of the UCLA, we reduce the joint composition of SPSC
into a loop algorithm, and prove the correctness of it. Consider the whole P2P
network as a huge computer containing lots of processing units (peers). A query
is a task that is processed by peers in turn until TTL=0 or it is resolved (correct
workflow composed). Each unit (peer) executes Alg. 1 on receiving the query.
This corresponds to an iteration. Following [2], we prove the preservation of evi-
dencing invariants: (a): h of each (sub-)query q is monotonically increasing. This
means that the joint composition process leads any intermediate partial solution
(workflow) strictly towards a better follow-up step; (b): No alternative branch
is missed. This indicates that all possible workflow options will be investigated.
Theorem 4.2. SPSC is correct: Given a query, SPSC returns a correct solution
with lower bound probability, if that solution exists within F hops.
Proof : Initialization: q.h is initialized with 0. Before the composition starts, h
is not decreasing. The workflow container is empty. Hence, no alternative can be
missed. Maintenance: By Lemma 4.1, q.h is monotonically increasing during
local composition. Moreover, Alg. 1 ensures that it checks all alternative services
for each service in wf . No alternative service is missed at p. Termination: The
entire process terminates, if q.TTL = 0 or h = 1. At this time, h is not smaller
than its initial value. No alternative service for each service in wf has been
missed, as no one was missed in each iteration. Overall, q.h is not decreasing
and has a lower bound probability to reach 1 (q.wf is correct). �
Complexities. Denote N (E): the total number of peers (edges) in an unstruc-
tured P2P network; m1: the number of primitive terms in V ; m2 (m3): the max-
imum number of PE predicates (IO parameters) in a service; lch: the complexity
for computing service chaining score: lch = lbp + lsat, where lbp = O(m2

3 ·m
m1
1)

is the complexity for determining parameter bindings; lsat = O(|Op|m3 ·m2) is
the complexity for checking whether a service effect is satisfied [18], where |Op|
is the number of concepts in a peer’s local ontology. O(mm1

1) is the cost for
measuring concept similarity; n: the number of services a peer can know about;
F: the initial value of query TTL; lsp = O(E +NlogN): the cost for computing
a shortest path [5]; L: the number of services in a workflow.

Computational complexity. In Alg.1, p attempts to chain local services ex-
haustively to the current workflow. This yields the worst case complexity O(nn ·
2 http://www.cs.ucla.edu/~pouchet/lectures/doc/888.11.algo.6.pdf

11

lch). p also checks alternative services for each candidate service in wf yielding
the process of up to L ·2n sub-queries. Thus, the complexity of local composition
is O(L · 2n · nn · lch + nn · lch) ∼ O(L · (2n)n · lch). To suggest a routing path, p
computes the w(·, ·, ·) value (cf.Eq.3) for each candidate service S. rm(S) is com-
puted in O(1) incrementally. The actual workflow size and dependencies can be
computed in O(L). For augmenting a suggested path, p selects the best key peer.
This costs at most O(L2 · lsp). Further, there can be at most F augmentations.
Overall, the computation complexity for path suggestion at p is O(L2 · F · lsp).

Traffic complexity. For a query, p issues O(L · 2n) sub-queries at most, of
which each inherits the current TTL value. Thus, the total number of forwarding
messages of a query is 2 ·

∑F−1
j=0 ((L · 2n + 1)j) ∼ O((L · 2n + 1)F).

Robustness. Unstructured P2P networks are ad hoc environments. SPSC han-
dles the dynamics of the network topology and services. The arrival of a new
service provider or the addition of a new service S matters, if the provider peer
p in the meanwhile processes a query q. In this case, p performs the local com-
position process against S. If q is backtracking, p issues a sub-query q from itself
when S can work as an alternative service. The departure of a service provider or
the deletion of a service can cause in incorrect path suggestions. In SPSC, peers
react passively in this situation, without extra message exchange. If a depar-
ture event is detected (messaging timeout) by another peer p′ with routing q, p′

deletes the reference of S from Sp′ and q.wf . Subsequently, p′ recomputes q.psug.
Service signature update is treated as a sequence of deletion and addition.

5 Experimental Evaluation

Settings. Based on our P2P framework3, we simulated random graph (RG)
and random power law graph (RPLG) based unstructured P2P networks with
1000 peers. Their average connectivity degrees are 10.295 and 4.457, respectively.
To enable large scale evaluation, we disabled peer IP-based communication and
simulated this by using global data structures and function calls. The initial
query TTL is 10. θ = 0.3 and β = 1.0. To the best of our knowledge, no test
collection is suited for stateless composition of semantic services with IOPE. The
IPC 20114 test collection is well-known in stateful AI planning. However, the
factual representations of initial and goal states of IPC queries are not suitable
for applying SPSC. The WSC5 test bed supports only IO but not PE. Therefore,
we developed a preliminary test collection6 with 40 IOPE semantic services
and 7 requests. Each request is labeled with one or two correct solutions with
different groups of services. The service and query distributions are random. The
experiments has been done on a PC with Core i7 CPU (2.80GHz), 8 GB RAM.
Evaluation Measures. Let Q be the set of issued queries. ECm,q ∈ {0, 1}
means whether (or not) there exists a set of services at remote peers reachable
withinm hops from the requester. Cm,q ∈ {0, 1}means whether (or not) a correct

3 http://sourceforge.net/p/mymedia-peer/code/HEAD/tree/trunk/
4 http://www.plg.inf.uc3m.es/ipc2011-deterministic/Resources.html
5 http://www.ws-challenge.org/
6 http://sourceforge.net/projects/mymedia-peer/files/

12

solution of q has been composed within m hops. We check: (1) CREm: average

cumulative recall within distance m: CREm = 1
|Q|
∑

q∈Q
Cm,q

ECm,q
.

Cm,q

ECm,q
is 0, if

ECm,q = 0. (2) QUR: average QoS rate of resolved queries. Besides the services
in the test collection with their pre-defined QoS, another copy of them with 50%
lower QoS has been deployed. Let rtquq be the run time quality of a resolved
query q, defined as the average quality of all services used in the result workflow,
and exquq the average quality of the optimal solution wrt. service quality (100%

QoS). QUR = 1
|Q|
∑

q∈Q
rtquq

exquq
. (3) #M: average number of forwarded messages

per query. (4) average traffic load size (in KB) of query. (5) total number of
forward messages of each peer. (6) AQRT: average query response time.
Cumulative Recall and Workflow Quality. We compare the average cumu-
lative recall after 1000 queries using different memorization rates ω, in RG and
RPLG networks (cf Fig. 2a and 2b). Baseline results for composition without
memorization and without guard value mechanism are also shown. As can be
seen, SPSC with memorization largely outperforms the baselines, which either
are not able to keep track of potentially useful services, or perform arbitrary
chaining. In addition, SPSC achieves 10% ∼ 20% higher cumulative recall in RG
compared to RPLG, as the latter may contain islands, while the RG does not.

(a) CREm (RG) (b) CREm (RPLG) (c) QUR (d) #PM (RPLG)

(e) #M (RG) (f) AQRT (RG) (g) CRM10 (RPLG) (h) CRM10 (RG)

Fig. 2: Experimental evaluation results of SPSC with different settings.

For both configurations, it holds that higher ω values yield better recall. In
RG, more than 90% of queries are resolved before their TTL limit is reached.
Particularly, the correct solutions for at least 90% of the queries are composed
at early hops already when the memorization rate was relatively high (ω ≥ 0.6).
This indicates that necessary services for resolving requests are propagated effec-
tively and path suggestions support proper routing. Further, we check the system
evolution speed with the CRE10 value (CRE at 10th hop) over time. After about

13

(200) 500 queries, more than (60%) 80% requests are correctly resolved. This ev-
idences the effectiveness of peer local observation and memorization mechanism.
SPSC query routing also effectively considers QoS (cf.Fig. 2c) as a criterium for
path suggestions, ultimately leading to an increase of QUR over time.

Network Traffic Overhead. The average number of messages per query #M
decreases as the number of queries increases, and converges to a value less than
3 for RG (cf. Fig. 2e) and 2 for RPLG. The number of messages for successful
queries #MC also decreases similarly, since the knowledge about services from
observations at peers is enriched over time. The number of messages for unre-
solved queries #MNC is large and increases over time. However, the #M values
imply that query branching occurs more rarely, since queries are solved in a few
hops. Overall, SPSC in RG costs larger network traffic than with RPLG, since
peers in RG have similar connectivity, while in RPLG, some “backbone” peers
are better connected. They are easier to observe queries and hence obtain more
knowledge to solve queries. Investigation of the traffic load size per query shows
results in line with the previous observations. The average size of resolved queries
was 60KB (RPLG) and 75KB (RG), while for unresolved queries, messages of
about 200KB (RPLG) and 620KB (RG) size have been sent on average. Fig. 2d
depicts the number of messages received at each peer of the RPLG network in
descending order. The overall maximum is only 13 without bottleneck problem,
even with RPLG, as peers learn over time and resolve queries in few hops.

Query Response Time. Similar to #M , the overall AQRT in RG (cf. Fig.
2f) and RPLG decreases over queries, due to the peers increasingly observed
knowledge, helping to resolve queries in few hops. Less messaging and query
processing decrease AQRT in the long run for RG and RPLG.

Robustness. We test CRE10 of SPSC in RG and RPLG based configurations
with network topology dynamics. For this, we programmatically force, after each
SR queries (called a stable round), a percentage (FR) of randomly selected peers
to leave off and the departed peers in the last round to re-join the network.
System starts with all peers online and no dynamics event occurs during a stable
round. The results with RPLG (cf. Fig. 2g) and RG networks show that the
system can recover given the network dynamics, since peer observation helps to
repair the semantic overlay. More frequent (SR) or heavier (FR) dynamics yields
stronger impact, but SPSC still gives acceptable performance, as the chance of
losing “backbone” peers in RPLG is relatively small given the random selection.
To test SPSC performance with service dynamics, we programmatically force a
percentage (PR) of randomly selected peers to forget all their knowledge about
services after each stable round. The results with RG (cf. Fig.2h) and RPLG show
that the system can recover under service dynamics. The impact is stronger, if
dynamics is more frequent or heavier.

6 Related Work

PM4SWS [10, 11] performs IO-level semantic service composition. Each peer
records observed compositions in a lookup table. Given a query, if no correct
solution found in the table, it tries to chain a known service to the current

14

workflow. Using the classic flooding, it can cause in immense network traffics.
In contrast, SPSC peer issues sub-queries for only the new partial solutions.

In [7, 8, 6], Furno et.al. present the probabilistic flooding-based stateful ser-
vice composition method SCComp. Peers route queries to a set of selected helpful
neighbors to resolve the sub-goals. Once a sub-goal has been resolved, extra tran-
sitive messages are sent for re-constructing the overall solution. Despite the se-
lective flooding, network traffic can still be heavy, since a peer still has chance to
receive duplicate queries with the same sub-goal. In contrast, SPSC uses walker-
based routing with search space pruning and memorization strategy. SCComp
needs extra messages to adapt to network dynamics, but SPSC does not.

AntAgt [4, 3, 23] utilizes an ant-inspired and agend-based approach. Peers
maintain co-use matrices that contain pairs of classified reusable services ob-
served in historical plans. A composition task is assumed to be pre-configured in
terms of a set of key classes, forming a workflow template. Give a query, a peer
selects its local services matching some keys and forward queries to another peer
for the remaining keys. SPSC does not depend on plan templates but actually
finds workflows at runtime. Similar efforts [12, 22] also rely on design phase.

Approaches based on (semi-)structured overlay, e.g. DHT [20, 24] or super
peers [9], can assure certain completeness. However, to adapt to the network
dynamics, approaches in this kind cost large traffics to maintain overlay. Using
super peers introduces bottlenecks and single points of failure. In contrast, SPSC
operates unstructured and does not require additional coordination effort.

7 Conclusion
The presented SPSC approach solves the problem of efficient and distributed
OWL-S service composition planning in unstructured P2P networks. In con-
trast to related work, it mitigates composition failures caused by dead-ends and
prunes the search space for efficient joint composition through heuristics-based
semantics-empowered memorization and query branching. SPSC has been the-
oretically proven to be sound with reasonable lower bound of completeness.
The experiments revealed its high cumulative recall with low network traffic
overhead, and robustness to dynamic changes. Acknowledgment. This work
is supported by the German ministry for education and research (BMBF) in
the projects Collaborate3D and Inversiv under grant numbers 01IW1102 and
01IW14004.

References

1. Baader, F. (2003): The description logic handbook: theory, implementation, and ap-
plications. 154–155. Cambridge university press.

2. Floyd, R. W. (1967): Assigning meanings to programs. Mathematical aspects of
computer science. 19(1). 19–32. American Mathematical Society.

3. Forestiero, A.; Mastroianni, C.; Papadakis, H.; Fragopoulou, P.; Troisi, A.; Zimeo,
E.(2008): A scalable architecture for discovery and planning in P2P service networks.
Grid Computing. 97–108. Springer US.

4. Forestiero, A.; Mastroianni, C.; Papuzzo, G.; Spezzano, G. (2010): A proximity-
based self-organizing framework for service composition and discovery. Proc. of the
10th Int. Symposium on Cluster, Cloud and Grid Computing. 428–437. IEEE.

15

5. Fredman, M. L.; Tarjan, R. E. (1987): Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM. 34(3). 596–615. ACM.

6. Furno, A.; Zimeo, E. (2013): Efficient cooperative discovery of service compositions
in unstructured P2P networks. Proc. of the 21st Euromicro Int. Conf. on Parallel,
Distributed and Network-Based Processing (PDNBP). 58–67. IEEE.

7. Furno, A.; Zimeo, E. (2014): Gossip strategies for service composition. Euromicro
Int. Conf. on Parallel, Distributed and Network-Based Processing. 27–35. IEEE.

8. Furno, A.; Zimeo, E. (2014): Self-scaling cooperative discovery of service composi-
tions in unstructured P2P networks. Journal of Parallel and Distributed Computing.
74(10). 2994–3025. Elsevier.

9. Galatopoullos, D. G.; Kalofonos, D. N.; Manolakos, E. S. (2008): A P2P SOA en-
abling group collaboration through service composition. Proc. of the 5th Int. Conf.
on Pervasive Services. 111–120. ACM.

10. Gharzouli, M.; Boufaida, M. (2011): PM4SWS: A P2P model for semantic web
services discovery and composition. Journal of Advances in Information Technology.
2(1). Acadamy publisher.

11. Gharzouli, M.; Boufaida, M. (2009): A generic P2P collaborative strategie for dis-
covering and composing semantic web services. Proc. of the 4th Int. Conf. on Inter-
net and Web Applications and Services. 449–454. Venice/Mestre, Italy.

12. Gu, X.; Nahrstedt, K. (2006): Distributed multimedia service composition with
statistical QoS assurances. IEEE Transactions on Multimedia. 8(1). 141–151. IEEE.

13. Johnson, D. S.; McGeoch, L. A. (1997): The traveling salesman problem: A case
study in local optimization. Local search in combinatorial optimization. 1. 215–310.

14. Klusch, M.; Gerber, A.; Schmidt, M. (2005): Semantic web service composition
planning with owls-xplan. AAAI Fall Symposium on Semantic Web and Agents.

15. Klusch, M.; Kapahnke P. (2012): The iSeM matchmaker: a flexible approach for
adaptive hybrid semantic service selection. Web Semantics, 15. 1–14. Elsevier.

16. Klusch, M. (2008): Semantic Web Service Description. In: M. Schumacher, H. Helin,
H. Schuldt (Eds.) CASCOM - Intelligent Service Coordination in the Semantic Web.
Chapter 3. Springer.

17. Li, Y. and Bandar, Z. A and McLean, D. (2003): An approach for measuring seman-
tic similarity between words using multiple information sources. IEEE Transactions
on Knowledge and Data Engineering. 15(4). 871–882. IEEE.

18. Maloberti, J.; Sebag, M. (2004): Fast theta-subsumption with constraint satisfac-
tion algorithms. Machine Learning, 22(2). 137–174. Springer.

19. Martin, D. et. al. (2004): OWL-S: Semantic Markup for Web Services. http://
www.w3.org/Submission/OWL-S/

20. Qin, P.; Liu, R. (2010): Search and combination of semantic web services based on
chord. Computer Knowledge and Technology, 28.

21. Staab, S.; Stuckenschmidt, H. (2006): Semantic web and peer-to-peer. Springer.
22. Tao, F.; LaiLi, Y.,; Xu, L.,; Zhang, L. (2013): FC-PACO-RM: a parallel method for

service composition optimal-selection in cloud manufacturing system. IEEE Trans-
actions on Industrial Informatics. 9(4). 2023–2033. IEEE.

23. Zimeo, E.; Troisi, A.; Papadakis, H.; Fragopoulou, P.; Forestiero, A.; Mastroianni,
C. (2008): Cooperative self-composition and discovery of grid services in P2P net-
works. Parallel Processing Letters, 18(3). 329–346. World Scentific.

24. Zhu, Z.;Hu, Y.; Lan, R.;Wu, W.;Li, Z. (2009): A P2P-based semantic web services
composition architecture. Proc. of ICEBE. 403–408. IEEE.

