
BSCA-P: Privacy Preserving Coalition
Formation

Bastian Blankenburg and Matthias Klusch

DFKI - German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{blankenb,klusch}@dfki.de

Abstract. In the setting of cooperation of rational web service agents
via coalition formation, we devise an algorithm BSCA-P to form recur-
sively bilateral Shapley value stable coalitions. The main focus lies on
privacy aspects: we show that the BSCA-P enables the formation of sub-
game stable and individually rational coalitions while hiding absolute
coalition values and payoffs, as well as allowing for anonymous service
requests and access.

1 Introduction

Coalition formation (CF) is the coming together of a number of distinct, au-
tonomous agents in order to act as a coherent grouping in which they increase
their individual gains by collaborating. As such, it is an important form of inter-
action in multi-agent systems (MAS) and has been advocated in task allocation
scenarios[9]. In this context, cooperative game theory (CGT) provides a well de-
veloped and mathematically founded framework to determine which coalitions
should be formed and how the respective coalition values should be distributed
in an individually rational and stable manner [5] (i.e. no agents has an incentive
to break away from its coalition).

In recent years, a number of CF methods which account for different real-
world problems have been proposed in the literature. Examples include [2, 4] for
CF under uncertainty of coalition values, or [11, 1] which consider inter-agent
trust in CF. The development of privacy preserving CF protocols, however, has
not received much attention yet. This is the problem that we address in this paper
for the setting of cooperative web service agents. More precisely, we present a
CF protocol which allow participating agents to

1. hide its (exact) payoff from all but one other agents,
2. hide its individual utility from all other agents,
3. anonymously request and access offered services,
4. hide the fact that a service from a specific agent has been accessed also from

other agents and
5. hide input/output data for services from all agents except the recipient.

The remainder of this paper is organized as follows: in section 2 we introduce
our model of web service agents and the coalition game model. In section 3 we
show how this model can be exploited to negotiate coalitions while hiding infor-
mation about coalition values, local worths and payoffs. In section 4 we adopt
an anonymous routing protocol to enable anonymous service access and intro-
duce other notions of anonymity. Finally, we propose and discuss the coalition
formation protocol BSCA-P in section 5, and conclude in section 6.

2 Coalitions of Web Service Agents

We define a web service as any computational process for which all input and
output data can be transferred over the internet. If a web service involves the
execution of other web services, it is called a composed web service. Otherwise,
it is called a primitive web service. A formal specification of a web service in an
appropriate language L is called a web service description (L-WSD). Examples
for L include WSDL for traditional web services or OWL-S for semantic web
services. A message containing an offer to execute a web service ws and an L-
WSD of ws is called a web service advertisement (L-WSA). A message containing
a request for the execution of a web service ws and an L-WSD of ws is called a
web service request (L-WSR). A comparison of two L-WSDs in order to find out
wether an advertised web service and a requested web service match is called a
web service matching (L-WSM). We then define an L-web service agent as an
agent which

1. offers any number (including zero) of web services,
2. is able to send L-WSAs for its offered web services,
3. requests any number (including zero) of web services,
4. possesses L-WSDs of its requested web services and
5. is able to perform L-WSMs.

In the following, we consider only sets of web service agents using the same
language L, and thus omit the ’L’ in our notation. Also, instead of ’web service
agent’, we also say just ’agent’. We denote by Ra the set of all requests by agent
a, and by OSa the set of all offered services by agent a.

For simplicity, we assume that each agent only offers primitive web services.
However, the requesting agents might compute compositions of these primitive
services. We further assume each agent a to have a certain private monetary
valuation wa(WS) for the accomplishment of each service it requests. Finally,
the execution of service WS by an agent a has a cost ca(WS).

We can now model this setting as a coalition game. Let A denote the set of
all agents in a given system. We call subsets C ⊆ A executing services for each
other a coalition. Let Ea(C) denote the set of all services executed by a, and
Ra(C) the set of all services of other members of C which are accessed by a.
Then, a’s immediate monetary result (that is, without side-payments) of being
a member of C, which we call local worth of a in C, is determined by

lwa(C) :=
∑

WS∈Ra(C)

wa(WS)−
∑

WS∈Ea(C)

ca(WS) (1)

Thus, we can define an overall value

v(C) :=
∑
a∈C

lwa(C) (2)

of C, which we call C’s coalition value. The pair (A, v) then defines the coaltion
game. In cooperative game theory, coalitions may not overlap. A configuration
(S, u) for a game (A, v) specifies a payoff distribution u : A 7→ R for a coalition
structure S, a partition of A. u(a), a ∈ A denotes the payoff for agent a. u is
called individually rational iff ∀a ∈ A : u(a) ≥ v(a) and efficient iff ∀C ∈ S :∑

a∈C u(a) = v(C) We also write ∀C ⊆ A : u(C) :=
∑

ai∈C ui.
In order to implement a payoff distribution u, each agent generally will have

to make/receive side-payments. Keeping in mind the local worths we define the
total amount of side-payment that a has to receive from other agents in C as

spu(a,C) := u(a)− lwa(C) (3)

Of course, spu(a,C) can be negative, meaning that a has to make a side-payment
of |spu(a,C)| to other agents in C. We also write for C∗ ⊆ C:

spu(C∗, C) :=
∑

a∈C∗

spu(a,C) (4)

If C∗ = C, we just write spu(C)

Corollary 1 Let C ∈ S. Then spu(C) = 0 if an only if u is efficient wrt. S.

Example 1. Consider a game of three agents: A = {a1, a2, a3}. They offer and
request services according to table 1. Considerin coalition C1 = {a1, a2}, we have

agent a offers ca(.) requests wa(.)

a1 ws1 1 ws2 2
ws3 2 ws3 3

a2 ws2 1 ws4 2
a3 ws4 1 ws1 3

Table 1. Offered/requested services in example game

lwa1(C1) = wa1(ws2) + wa1(ws3) − ca1(ws3) = 3, lwa2(C1) = −ca2(ws2) = −1
and v(C1) = 2.

A solution to a game is given by an individually rational and efficient con-
figuration which satisfies a chosen stability concept. Unfortunately, the classical
stability concepts are of high computational complexity, i.e. at least exponential.
However, we consider only the case where coalitions are built up by a bilateral
merging process. We thus utilize a simplified version of the Shapley value[8], the
(recursive) bilateral Shapley value:

The union C of two disjunkt coalitions C1, C2 ⊂ A \ ∅ is called a bilateral
coalition. C1 and C2 are called subcoalitions of C. A bilateral coalition C is
called recursively bilateral iff it is the root node of a binary tree denoted TC for
which (a) every non-leaf node is a bilateral coalition and its subcoalitions are its
children and (b) every leaf node is a single-agent coalition.

A coalition structure S for (A, v) is called (recursively) bilateral if ∀C ∈
S : C is (recursively) bilateral or C = a, a ∈ A. The bilateral Shapley value
σb(C, Ci, v),Ci, i ∈ {1, 2} in the bilateral coalition C is defined as the Shapley
value of Ci in the game ({C1, C2}, v):

σb(Ci, C, v) =
1
2
v(Ci) +

1
2
(v(C)− v(Ck)) (5)

with k ∈ {1, 2}, k 6= i.
Given a recursively bilateral coalition structure S for a game (A, v), a payoff

distribution u is called recursively bilateral Shapley value stable iff for each C ∈ S,
every non-leaf node C∗ in TC : u(C∗

i) = σb(C∗
i , C∗, vC∗), i ∈ 1, 2 with ∀C∗∗ ⊆

A :

vC∗(C∗∗) =

σb(C
p
k , Cp, vCp) if Cp ∈ TC , C∗ = C∗∗ = Cp

k ,
k ∈ 1, 2

v(C∗∗) otherwise
(6)

In other words, for a merge of two recursively bilateral coalitions, the coalition
value is distributed down the coalition tree applying the bilateral Shapley value
to the actual payoffs of the respective parent coalitions instead of their coalition
values.

Example 2. Consider again the game from example 1 and the bilateral coalition
C1 = {a1} ∪ {a2}. Since v({a1}) = 1 and v({a2}) = 0, we have σb({a1}, {a1} ∪
{a2}, v) = 1

2 + 1
2 (2− 0) = 1.5 and σb({a2}, {a1} ∪ {a2}, v) = 1

2 (2− 1) = 0.5
Now consider a merge of C1 with C2 = {a3} (C = C1∪C2). We have v(C) = 5

and v(C2) = 0, thus σb(C1, C, v) = 1+ 1
25 = 3.5 and σb(C2, C, v) = 1

2 (5−2) = 1.5
For a recursively bilateral Shapley value stable payoff distribution we have

to consider v∗ with v∗({a1, a2}) = 3.5 and for all other coalitions v∗(C) =
v(C): u(a1) = σb({a1}, {a1} ∪ {a2}, v∗) = 1

2 + 1
2 (3.5 − 0) = 2.25 and u(a2) =

σb({a2}, {a1} ∪ {a2}, v∗) = 1
2 (3.5− 1) = 1.25.

3 Hiding Local Worths and Coalition Values

In this section we show that the recursively bilateral Shapley value is well-suited
when hiding coalition values and local worths. It is easy to see that (5) can be
rewritten as

σb(Ci, C, v) = v(Ci) +
1
2
· (v(C)− v(C1)− v(C2)) (7)

with i ∈ {1, 2}. Thus, the additional value

av(C1, C2) := v(C1 ∪ C2)− v(C1)− v(C2) (8)

produced by forming coalition C1 ∪ C2 is evenly distributed among C1 and C2.
For recursively bilateral Shapley value stable payoff distributions, this means
that each child node in the coalition tree gets half of the additional payoff of
its parent node. The share of the total payoff that a node gets is thus directly
dependent on its depth in the tree, which is shown by the following lemma.

Lemma 1 Let (S1, u1) and (S2, u2) configurations for a game (A, v), with u1

and u2 being recursively bilateral Shapley value stable, and ∃C1, C2 ∈ S1 : C =
C1 ∪ C2 ∈ S2. Then

∀C∗ ∈ TC : u2(C∗) = u1(C∗) +
av(C1, C2)
2d(C∗,TC)

Proof. We use induction over d(C∗, TC): the case d(C∗, TC) = 0 is obvious be-
cause of the efficiency of σb and the definition of av.

For d(C∗, TC) = 1, we have C∗ = Ci, i ∈ {1, 2} and u2(Ci) = σb(Ci, C, v) =
v(Ci) + 1

2av(C). Again because of the efficiency of σb, v(Ci) = u1(Ci), and thus
v(Ci) + 1

2av(C) = u1(Ci) + av(C)

2d(C∗,TC) .
For d(C∗, TC) = k > 1, assuming the lemma is true for all C∗∗ with d(C∗∗, TC) <

k, we have C∗ = Cp
i , i ∈ {1, 2}, Cp ∈ TC , d(Cp

i , TC) = d(Cp, TC) + 1 and
u2(C

p
i) = σb(C

p
i , Cp, vCi) with vCp

i
(Cp) = u2(Cp) = u1(Cp) + av(C)

2d(Cp,TC) . Apply-
ing 6 and 7, we get

u2(C
p
i) = v(Cp

i) +
1
2
(u2(Cp)− v(Cp

i)− v(Cp
k))

= v(Cp
i) +

1
2
(u1(Cp) +

av(C)
2d(Cp,TC)

− v(Cp
i)− v(Cp

k))

= v(Cp
i) +

1
2
(u1(Cp)− v(Cp

i)− v(Cp
k)) +

av(C)
2d(Cp,TC)+1

= u1(C
p
i) +

av(C)
2d(Cp

i ,TC)

For the merge of C1 and C2 to form C = C1 ∪ C2, we further definine the
additional local worth of agent a ∈ Ci, i ∈ {1, 2}:

alwa(Ci, C) := lwa(C)− lwa(Ci), (9)

and the summarized additional local worth for a subcoalition C∗ ∈ TCi

alw(C∗, Ci, C) :=
∑

a∈C∗

(alwa(Ci, C)) (10)

Also, note that

av(C1, C2) =
∑
a∈C

lwa(C)−
∑

a∈C1

lwa(C1)−
∑

a∈C2

lwa(C2)

= alw(C1, C1, C) + alw(C2, C2, C) (11)

The following theorem shows that in order to compute its side-payment when
merging coalitions C1 and C2, each subcoalition C∗ ∈ TCi

only needs to consider
its side-payment for the case without the merge, the additional value av(C1, C2)
and its additional local worth alw(C∗, Ci, C):

Theorem 1 Let (S1, u1) and (S2, u2) configurations for a game (A, v), with
u1 and u2 being recursively bilateral Shapley value stable, and ∃C1, C2 ∈ S1 :
C = C1 ∪ C2 ∈ S2. Then ∀C∗ ∈ TCi

, i ∈ {1, 2}:

spu2(C
∗, C) = spu1(C

∗, Ci) +
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)
− alw(C∗, Ci, C)

Proof. Remember that for any u, spu(C∗, C) =
∑

a∈C∗ u(a)− lwa(C) = u(C∗)−∑
a∈C∗ lwa(C) (see 4). Because of lemma 1, 9 , 10 and 11, we can rewrite

spu2(C
∗, C) = u1(C∗) +

av(C1, C2)
2d(C∗,TC)

−
∑

a∈C∗

lwa(C)

= u1(C∗) +
av(C1, C2)
2d(C∗,TC)

−
∑

a∈C∗

(lwa(Ci) + alwa(Ci, C))

= spu1(C
∗, Ci) +

av(C1, C2)
2d(C∗,TC)

− alw(C∗, Ci, C)

= spu1(C
∗, Ci) +

alw(C1, C1, C) + alw(C2, C2, C)
2d(C∗,TC)

− alw(C∗, Ci, C)

Please note that in the case of C∗ = Ci, spu1(C
∗, Ci) = 0 because Ci ∈ S1 and

corollary 1. It is thus clear that in order to obtain recursively bilateral Shapley
value stable payoff distributions by repeatedly merging coalitions, subcoalitions
have to inform each other only about their additional local worths. Absolute
local worths need not to be communicated, and absolute coalition values do not
have to be known at all.

The results of this section are employed in the specification of the coalition
formation protocol BSCA-P in section 5, but we give an example here:

Example 3. Consider again the situation from example 2. At first {a1} and {a2}
merge to form C1, with alwa1({a1}, C1) = 3 − 1 = 2 and alwa2({a2}, C1) =
−1− 0 = −1. According to theorem 1 we get

spu({a1}) = 0 +
2 + (−1)

21
− 2 = −1.5 and

spu({a2}) = 0 +
2 + (−1)

21
− (−1) = 1.5

Thus, the net amount received by a1 is

u(a1) = lwa1(C1) + spu({a1}) = 3− 1.5 = 1.5 = σb({a1}, {a1} ∪ {a2}, v)

and that of a2 is

u(a2) = lwa2(C1) + spu({a2}) = −1 + 1.5 = 0.5 = σb({a2}, {a1} ∪ {a2}, v)

Second, C1 merges with C2 = {a3} to form C = C1 ∪ C2. By looking at
the service offers and requests, the agents (and coalition C1 determine their
additional local worths:

alwa1({a1}, C) = 2− 3 = −1,

alwa2({a2}, C) = 1 + 1 = 2,

alw(C1, C1, C) = alwa1({a1}, C) + alwa2({a2}, C) = 1 and
alw(C2, C2, C) = 2− 0 = 2

The additional coalition value is thus

av(C1, C2) = alw(C1, C1, C) + alw(C2, C2, C) = 3

Applying theorem 1 again, we get for the new payoff distribution u∗

spu∗(C1) = 0 +
1 + 2
21

− 1 = 0.5 and

spu∗(C2) = 0 +
1 + 2
21

− 2 = −0.5.

The net payoffs of C1 and C2 are of course equal to their resp. bilateral Shapley
values:

u∗(C1) = lwa1(C) + lwa2(C) + spu∗(C1)
= 2 + 1 + 0.5 = 3.5 = σb(C1, C, v) and

u∗(C2) = lwa3(C) + spu∗(C2) = 2− 0.5 = 1.5 = σb(C2, C, v)

For the side-payments within C1 we again apply theorem 1:

spu∗({a1}, C) = spu({a1}, C1) +
1 + 2
22

− (−1) = −1.5 + 0.75 + 1 = 0.25 and

spu∗({a2}, C) = 1.5 + 0.75− 2 = 0.25

4 Anonymous Service Access

In this section, we introduce some anonymity and encryption concepts that en-
able anonymous and secure web service access.

To achieve this, we use an anonymous communication protocol based on
rerouting. In a rerouting protocol, a message is not directly sent to the receiver,
but travels over intermediate network nodes, or agents in our case. The specific
protocol we utilize is roughly based on onion routing [10]. It was originally defined
for HTTP-connections, but we adapt it here for our agent coalition formation
setting, by looking only at high-level messages sent between the agents instead of
technical details of an underlying protocol. Our focus is to enable the agents to
request and access services within their coalition anonymously. We thus also do

not bother about problems like possible eavesdropper agents or traffic analysis,
as such problems are out of scope of this paper.

The basic idea of the onion routing protocol is to wrap a message in sev-
eral layers of encryption and reroute it over several rerouting nodes such that
no single node is able to determine the sender and receiver of a message. Also,
when one agent contacts another, the nodes over which messages are sent are
chosen randomly. Figure 1 illustrates this for a three-agent case. It incorpo-

Fig. 1. Two ways of a2 contacting a3 via Onion Routing.

rates a public/private key encryption method, such as the well-known RSA
method (originally proposed in [7]). Thus, we extend our agent model such
that every agent a is required to possess a private key privkeya and a match-
ing public key pubkeya for the chosen encryption method. Further, a needs to
be able to execute according encryption/decryption functions. In the following,
enc(pubkey,m) denotes a function that encrypts message m using the public key
pubkey, and dec(privkey, em) denotes the corresponding decryption function for
the encrypted message em using the private key privkey. To let agent a1 send an
enctypted message m to agent a2, a1 encrypts m by executing enc(pubkeya2 ,m),
sends the result em to a2 which decypts it by executing dec(privkeya2 , em. Thus,
the agents need to perform an initial public key exchange. In the onion proto-
col, actually only a part of a message is encrypted with the public key method.
This part contains a key for a symmetric encryption method, i.e. one that uses
the same key for encryption and decryption. The remainder of the message is
encrypted with this method. This is done because of performance reasons, since
symmetric encryption methods usually are much faster than public key methods.
However, we go not into those details here, and consider such optimizations as
part of the implementation of the enc and dec functions.

We are now ready to define our anonymous message sending algorithm:

Algorithm 1 To anonymously send a message m to agent a2 over i interme-
diate agents, agent a1 performs the following:

1. Randomly generate an ordered list L with length i + 1 of agents, such that
Lj 6= Lj+1, ∀1 ≤ j < i, and Li+1 = a2, where Lj is the agent at position j
in L.

2. Set emi+1 := enc(pubkeya2 ,m).

3. For l = i to 1 do:
(a) Set m∗ := (Ll+1, eml+1).
(b) Set eml := enc(pubkeyLl

,m∗).
4. Send em1 to L1.

For this to work, each agent also needs to implement an algorithm to handle
incoming encrypted messages:

Algorithm 2 When receiving an encrypted message em, agent a1 performs:

1. Set m := dec(privkeya1 , em)
2. If m is of the form (a2, em), a2 ∈ A, send em to a2; else process m like an

incoming unencrypted message.

To measure a degree of anonymity, different notions have been proposed in the
literature, such as total or group anonymity, under possibilistic or probabilistic
interpretations (see e.g. [6, 3]. Here, we will apply the concept of possibilistic
agent k-anonymity, which requires only that there exists some set of agents K
with size k, such that each a ∈ K is a possible sender. Specifically, this anonymity
is measured in the following way. When the two coalitions C1 and C2 perform a
merge to form C = C1 ∪C2, they need to compute and inform each other about
alw(C1, C1, C) and alw(C2, C2, C) (see section 3). Because of the definition of
the local worths, alw(Ci, Ci, C) > 0, i ∈ {1, 2}, means that in coalition Ci, more
worth is produced by agents getting services executed than costs are produced
due to agents executing services. All Agents in C thus can infer that at least
one agent a ∈ Ci accesses a service in Ck, k ∈ {1, 2}, k 6= i. We thus obtain the
degree of agent k-anonymity for agents in Ci wrt. agents in Ck :

aa(Ci, Ck) = |Ci|

However, the degree of agent k-anonymity of a wrt. other agents in Ci is in
general only k = 1. This is because in order to compute alw(Ci, Ci, C), each
subcoalition C∗ ∈ TCi

has to compute alw(C∗, Ci, C) first. In particular, agent
a has in general to inform some other agent in Ci about alw({a}, Ci, C).

Thus, we also use the concept of service k-anonymity, expressing that an
agent a accesses any one of k possible services. In the case of agent a ∈ Ci

accessing a service in Ck, the degree of service k-anonymity for a wrt. to the
agents in Ci is equal to the total number of services offered by agents in Ck:

sa(Ci) = |
⋃

a∈Ck

OSa|

In the following, we assume that each agent maintains minimum k-anonymity
degrees aamin(WS) ∈ N and samin(WS) ∈ N for each service it is interested
in requesting. When forming the coalition C, agent a ∈ Ci then only requests a
service WS from an agent in Ck if these minimum degrees are met, i.e. WS ∈
Ra(C) if

aa(Ci, Ck) ≥ aamin(WS) and (12)
sa(Ci) ≥ samin(WS) (13)

hold.

5 Coalition Formation Protocol BSCA-P

In this section, we finally propose the coalition formation protocol BSCA-P
applying the concepts that have benn introduced in the previous sections. In the
BSCA-P, each coalition is represented by one agent which is responsible for the
communication with other coalitions. To simplify the choice of a representative,
we assume there exists an ordering function o defined on the set of all agents.
We also assume that service offers, along with the service execution costs, are
made public beforehand (e.g., by broadcasting).

Algorithm 3 For a game (A, v), S0 := {{a}|a ∈ A}, r := 0 and ∀C ∈ S0 :
sp0(C) := 0. In every coalition C ∈ Sr, every agent a ∈ C performs:

1. Let C ∈ Sr, a ∈ C and S∗ := S \ C.
2. Communication:

(a) For all C∗ ∈ S∗ do:
i. Determine Ra(C∗) using the sets OSa∗ for each a∗ ∈ C∗, accounting

for costs and ensuring compliance with 12 and 13.
ii. For each service request which is both in Ra(C) and Ra(C∗), keep

only the least costly one.
iii. Set alwsa(C∗) := alwa(C,C∗).
iv. For each bilateral coalition Ca, Ca ∈ TC , a ∈ Ca, a = Rep(Ca),

wait for a message from Rep(Ca
i), i ∈ 1, 2, a /∈ Ca

i containing alwsRep(C)(C∗)
and set alwsa(C∗) := alwsa(C∗) + alwsRep(C)(C∗).

v. If a = Rep(C) then send alwsa(C∗) to Rep(C∗); else send alwsa(C∗)
to Rep(C+) with C+ ∈ TC , a = Rep(C+

i), i ∈ 1, 2, a 6= Rep(C+).
(b) If a = Rep(C) then receive alwsRep(C∗)(C) and set alws(C∗) := alwsRep(C∗)(C)+

alwsa(C∗) for all C∗ ∈ S∗; else go to step 3i.
3. Coalition Proposals:

(a) Set Candidates := S∗, New := ∅ and Obs := ∅
(b) Determine a coalition C+ ∈ Candidates with ∀C∗ ∈ Candidates :

alwsa(C+) ≥ alwsa(C∗).
(c) Send a proposal to Rep(C+) to form coalition C ∪ C+.
(d) Receive all coalition proposals from other agents.
(e) If no propsal from Rep(C+) is received and Candidates 6= ∅, set Candidates :=

Candidates \ {C+} and go to step 3b.
(f) If a proposal from Rep(C+) is received, then form the coalition C ∪C+:

i. If o(Rep(C)) < o(Rep(C+)) then set Rep(C ∪ C+) := Rep(C); else
set Rep(C ∪ C+) := Rep(C+).

ii. Inform all other Rep(C∗), C∗ ∈ S∗\C+ and all a∗ ∈ C, a∗ 6= a about
the new coalition and Rep(C ∪ C+)

iii. New := {C ∪ C+}, Obs := {C,C+}
(g) Receive all messages about new coalitions. For each new coalition C1 ∪

C2 and RepC1∪C2 , set Candidates := Candidates \ {C1, C2}, New :=
New ∪ {C1 ∪ C2} and Obs := Obs ∪ {C1, C2}.

(h) Send the sets New and Obs to all other coalition members a∗ ∈ C, a∗ 6= a

(i) If a 6= Rep(C) then receive the sets New and Obs from Rep(C).
(j) Set r := r + 1, Sr := (Sr−1 \Obs) ∪New.
(k) For each (sub-)coalition C∗ ∈ TC with Rep(C∗) = a, determine spr(C∗)

according to theorem 1 (using spr−1(C∗) instead of spu(C∗)).
(l) If Cr = Cr−1then stop; else go to step 2

Theorem 2 With n = |A| and m := maxa∈A{|Ra|} , the computational com-
plexity of the BSCA-P is in O(n3m2).

Proof. In any round r, Sr ≤ n. The iteration in step 2a is thus done at most n
times. In step 2(a)i, for each service in Ra, a has to find an agent in the potential
partner coalition which offers this service at the least cost. The conditions 12
and 13 only have to be checked once for each service, for which we assume
negligible complexity. Thus, at most nm operations are required in this step.
Step 2(a)ii can be done in less than m2 steps. All other steps within and outside of
the iteration in step 2a are of less complexity. Thus, the complexity of one round
of the BSCA-P is in O(n)(O(nm) + O(m2)) = O(n2m2). Since the maximum
number of coalition merges is smaller than n (because after at most n−1 merges,
the grand coalition is formed), the number of rounds is also bound by n. The
overall complexity of the BSCA-P is thus O(n)O(n2m2) = O(n3m2).

Theorem 3 In the BSCA-P, the number of messages sent by an agent is in
O(n2).

Proof. During each iteration in step 2(a)i, in step 2(a)v a message to the agent’s
subcoalition representative or to Rep(C∗). Assuming that agents which are rep-
resentatives of several subcoalitions omit sending messages to themselves, and
with at most n iterations in step 2(a)i (see above), the number of messages sent
during the iteration is in O(n). The number of messages sent in step 3(f)ii is
also in O(n). Thus, with at most n rounds, the overall number of messages sent
by an agent in the BSCA-P is in O(n2)

When the protocol is finished and thus coalitions are formed, agents still have
to execute the following steps in order to implement the coalitions:

1. Each agent runs algorithm 2 continously in order to enable anonymous ser-
vice access.

2. Concurrently, algorithm 1 is executed by the agents requesting services to
actually access these services at their providers.

3. All (sub-)coalition representatives execute their respective side-payments spr

for their (sub-)coalitions. Each representative only makes/receives payments
to/from representatives of immediate parent and child coalitions, such that
no additional information about payments is gained by any agent.

The last step ensures that only a representative of a two-agent coalition is
informed about individual side-payments, and only about two of them: its own,
and the other agent of the two-agent coalition. Therefore, only the first partner
agent that an agent a coalesces with might ever know a’s exact side-payment.
However, the individual utilities still remain hidden from all other agents.

6 Conclusions

In this paper, a privacy-preserving coalition formation protocol was proposed.
We have shown that in order to form recursively bilateral Shapley value stable
coalitions, individual payoffs may be hidden from most agents while individual
utilites can be completely hidden, and absolute coalition values need not to be
known at all. Also, we showed that within a coalition, services can be accessed
by cooperating agents with certain degrees of anonymity. Thus, agents can hide
the fact that they access specific services even from agents which are members
of the same coalition.

References

1. B. Blankenburg, R.K. Dash, S.D. Ramchurn, M. Klusch, and N.R. Jennings.
Trusted kernel-based coalition formation. In Proc. 4th Int. Conf. on Autonomous
Agents and Multi-Agent Systems, Utrecht, Holland, 2005. to appear.

2. Georgios Chalkiadakis and Craig Boutilier. Bayesian reinforcement learning for
coalition formation under uncertainty. In Proc. 3rd Int. Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), New York, USA, New York, USA,
2004. ACM Press.

3. Joseph Halpern and Kevin O’Neill. Anonymity and information hiding in multia-
gent systems. Journal of Computer Security, Special Edition on CSFW 16:75–88,
2003.

4. S. Kraus, O. Shehory, and Gilad Taase. The advantages of compromising in coali-
tion formation with incomplete information. In Proc. 3rd Int. Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004), New York, USA, New
York, USA, 2004. ACM Press.

5. Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
Cambridge MA, USA, 1994.

6. A. Pfitzmann and M. Köhntopp. Anonymity, unobservability and pseudonymity:
a proposal for terminology. In International Workshop on Designing Privacy En-
hancing Technologies, pages 1–9, New York, 2001. Springer-Verlag.

7. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 26(1):96–99,
1983.

8. L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, edi-
tors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics
Studies, pages 307–317. Princeton University Press, Princeton, 1953.

9. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence Journal, 101 (1-2):165–200, May 1998.

10. P F Syverson, D M Goldschlag, and M G Reed. Anonymous connections and onion
routing. In IEEE Symposium on Security and Privacy, pages 44–54, Oakland,
California, 4–7 1997.

11. J. Vassileva, S. Breban, and M. Horsch. Agent reasoning mechanism for long-
term coalitions based on decision making and trust. Computational Intelligence,
4(18):583–595, 2002.

