
Chapter 3

Semantic Web Service
Description
Matthias Klusch

3.1 Introduction

The convergence of semantic Web with service oriented computing is manifested
by Semantic Web Services (SWS) technology. It addresses the major challenge
of automated, interoperable and meaningful coordination of Web Services to be
carried out by intelligent software agents. In this chapter, we briefly discuss promi-
nent SWS description frameworks, that are the standard SAWSDL, OWL-S and
WSML1. This is complemented by main critics of Semantic Web Services, and
selected references to further readings on the subject.

3.2 Issues of Semantic Service Description

Each semantic service description framework can be characterised with respect to
(a) what kind of service semantics are described, (b) in what language or formal-
ism, (c) allowing for what kind of reasoning upon the abstract service descriptions?
Further, we distinguish between an abstract Web Service, that is the description
of the computational entity of the service, and a concrete service as one of its
instances or invocations that provide the actual value to the user [21]. In this
sense, abstract service descriptions are considered complete but not necessarily
correct: There might be concrete service instances that are models of the capa-
bility description of the abstract service but can actually not be delivered by the
provider.

1Due to space limitations other description frameworks like SWSL (Semantic Web Service
Language) and the DIANE service description language are excluded.



42 Chapter 3. Semantic Web Service Description

3.2.1 Functional and Non-Functional Service Semantics

In general, the functionality of a service can be described in terms of what it does,
and how it actually works. Both aspects of its functional semantics (or capability)
are captured by a service profile, respectively, service process model. The profile
describes the signature of the service in terms of its input (I) and output (O)
parameters, and its preconditions (P) and effects (E) that are supposed to hold
before or after executing the service in a given world state, and some additional
provenance information such as the service name, its business domain and provider.
The process model of atomic or composite services describes how the service works
in terms of the interplay between data and control flow based on a common set of
workflow or control constructs like sequence, split+join, choice, and others.

This general distinction between profile and process model semantics is com-
mon to structured Web Service description frameworks, while differences are in the
naming and formal representation of what part of service semantics. We can fur-
ther differentiate between stateless (IO), respectively, state-based (PE) abstract
service descriptions representing the set of its instances, that are concrete ser-
vices providing value to the user. The non-functional service semantics are usually
described with respect to a quality of service (QoS) model including delivery con-
straints, cost model with rules for pricing, repudiation, availability, and privacy
policy.

3.2.2 Structured Representation of Service Semantics

A domain-independent and structured representation of service semantics is of-
fered by upper (top-level) service ontologies and languages such as OWL-S and
WSML with formal logic groundings, or SAWSDL which comes, in essence, with-
out any formal semantics. Neither OWL-S nor WSML provide any agreed formal
but intuitive, standard workflow-based semantics of the service process model
(orchestration and choreography). Alternatively, for abstract service descriptions
grounded in WSDL, the process model can be intuitively mapped to BPEL or-
chestrations with certain formal semantics.

3.2.3 Monolithic Representation of Service Semantics

The formal specification of service semantics agnostic to any structured service
description format can be achieved, for example, by means of a specific set of
concept and role axioms in an appropriate logic (cf. Section 3.6). Since the service
capability is described by means of one single service concept, this representation
of service semantics is called monolithic and allows to determine the semantic
relations between service descriptions fully within the underlying logical formalism
based on concept satisfaction, subsumption and entailment. However, it does not
provide any further information on how the service actually works in terms of the
process model nor any description of non-functional semantics.



3.3. SAWSDL 43

3.2.4 Data Semantics

The domain-dependent semantics of service profile parameters (also called data
semantics) are described in terms of concepts, roles (and rules) taken from shared
domain, task, or application ontologies. These ontologies are defined in a formal
semantic Web language like OWL, WSML or SWRL. If different ontologies are
used, agents are supposed to automatically resolve the structural and semantic
heterogeneities for interoperation to facilitate better Web Service discovery and
composition. This process of ontology matching is usually restricted to ontologies
specified in the same language, otherwise appropriate inter-ontology mappings
have to be provided to the agents.

In subsequent sections, we briefly introduce prominent approaches to both
types of service representation. For structured semantic service descriptions, we
focus on OWL-S, WSML, and SAWSDL, and omit to discuss alternatives like DSD
(DIANE service description format) and SWSL (Semantic Web Service Language).

3.2.5 Reasoning about Semantic Service Descriptions

The basic idea of formally grounded descriptions of Web Services is to allow agents
to better understand the functional and non-functional semantics through appro-
priate logic-based reasoning. For this purpose, it is commonly assumed that the
applied type of logic reasoning complies with the underlying semantic service de-
scription framework. Further, the concept expressions used to specify the data
semantics of service input and output parameters are assumed to build up from
basic concepts and roles taken from formal application or domain ontologies which
the requester and provider commonly refer to. We survey approaches to non-logic-
based, logic-based, and hybrid reasoning means for Semantic Web Service discov-
ery, and composition planning in the next chapter.

3.3 SAWSDL

The standard language WSDL for Web Services operates at the mere syntactic
level as it lacks any declarative semantics needed to meaningfully represent and
reason upon them by means of logical inferencing. In a first response to this prob-
lem, the W3C Working Group on Semantic Annotations for WSDL and XML
Schema (SAWSDL) developed mechanisms with which semantic annotations can
be added to WSDL components. The SAWSDL specification became a W3C can-
didate recommendation on January 26, 20072, and eventually a W3C recommen-
dation on August 28, 2007.

2http://www.w3.org/2002/ws/sawsdl/



44 Chapter 3. Semantic Web Service Description

3.3.1 Annotating WSDL Components

Unlike OWL-S or WSML, SAWSDL does not specify a new language or top-
level ontology for semantic service description but simply provides mechanisms
by which ontological concepts that are defined outside WSDL service documents
can be referenced to semantically annotate WSDL description elements. Based on
its predecessor and W3C member submission WSDL-S3 in 2005, the key design
principles for SAWSDL are that (a) the specification enables semantic annotations
of Web Services using and building on the existing extensibility framework of
WSDL; (b) it is agnostic to semantic (ontology) representation languages; and (c)
it enables semantic annotations for Web Services not only for discovering Web
Services but also for invoking them.

Based on these design principles, SAWSDL defines the following three new
extensibility attributes to WSDL 2.0 elements for their semantic annotation:

• An extension attribute, named modelReference, to specify the association
between a WSDL component and a concept in some semantic (domain)
model. This modelReference attribute is used to annotate XML Schema com-
plex type definitions, simple type definitions, element declarations, and at-
tribute declarations as well as WSDL interfaces, operations, and faults. Each
modelReference identifies the concept in a semantic model that describes the
element to which it is attached.

• Two extension attributes (liftingSchemaMapping and loweringSchema-
Mapping) are added to the set of XML Schema element declarations, com-
plex type definitions and simple type definitions. Both allow to specify map-
pings between semantic data in the domain referenced by modelReference
and XML, which can be used during service invocation.

An example of a SAWSDL service, that is a semantically annotated WSDL
service with references to external ontologies describing the semantics of WSDL
elements, is given in Figure 3.1: The semantics of the service input parameter
of type “OrderRequest” is defined by an equally named concept specified in an
ontology “purchaseorder” which is referenced (URI) by the element tag “model-
Reference” attached to “OrderRequest”. It is also annotated with a tag A tag
“loweringSchemaMapping” which value (URI) points to a data type mapping, in
this case an XML document, which shows how the elements of this type can be
mapped from the referenced semantic data model (here RDFS) to XMLS used in
WSDL.

3.3.2 Limitations

Major critic of SAWSDL is that it comes, as a mere syntactic extension of WSDL,
without any formal semantics. In contrast to OWL-S and (in part) WSML, there is

3http://www.w3.org/Submission/WSDL-S/



3.3. SAWSDL 45

Figure 3.1: Example of semantic annotation of WSDL elements in SAWSDL.

no defined formal grounding of neither the XML-based WSDL service components
nor the referenced external metadata sources (via modelReference). Quoting from
the SAWSDL specification: “Again, if the XML structures expected by the client
and by the service differ, schema mappings can translate the XML structures
into the semantic model where any mismatches can be understood and resolved.”
This makes any form of logic-based discovery and composition of SAWSDL service
descriptions in the semantic Web rather obsolete but calls for “magic” mediators
outside the framework to resolve the semantic heterogeneities.

Another problem with SAWSDL today is its –apart from the METEOR-S
framework by the developers of SAWSDL (WSDL-S) and related ongoing de-
velopment efforts at IBM– still very limited software support compared to the
considerable investments made in research and development of software for more
advanced frameworks like OWL-S and WSMO world wide. However, the recent
announcement of SAWSDL as a W3C recommendation does not only support a
standardized evolution of the W3C Web Service framework in principle (rather
than a revolutionary technology switch to far more advanced technologies like
OWL-S or WSML) but certainly will push software development in support of
SAWSDL and reinforce research on refactoring these frameworks with respect to
SAWSDL.



46 Chapter 3. Semantic Web Service Description

Figure 3.2: OWL-S service description elements.

3.4 OWL-S

OWL-S is an upper ontology used to describe the semantics of services based on
the W3C standard ontology OWL and is grounded in WSDL. It has its roots
in the DAML Service Ontology (DAML-S) released in 2001, and became a W3C
candidate recommendation in 2005. OWL-S builds on top of OWL and consists of
three main upper ontologies: the Profile, the Process Model, and the Grounding
(cf. Figure 3.2).

In the following, we briefly summarize the underlying standard ontology lan-
guage OWL and then present each of the main elements of OWL-S service de-
scriptions.

3.4.1 Background: OWL

The standard ontology language for the semantic Web is OWL [2, 4, 12] which
is formally grounded in description logics (DL). OWL has its roots in the joint
initiative DAML+OIL of researchers from the US and Europe in 2000 to develop a
formal annotation or mark-up language for the Web. Only three years later, OWL
became a W3C recommendation, and has been widely adopted by both industry
and academics since then. The current version of OWL is OWL 1.14.

Variants

OWL comes in several variants, that are OWL-Full, OWL-DL, and OWL-Lite.
Each variant corresponds to a DL of different expressivity and complexity. OWL-
Lite and OWL-DL are an abstract syntactic form of the description logic SHIF(D),
respectively, SHOIN(D). The most expressive variant OWL-Full provides full com-
patibility with RDFS and covers the expressivity of SHOIQ(D) which offers not
only simple data types (D) but primitive transitive roles in qualified role cardinality
restrictions (Q), and derived classes together with non-primitive roles Figure 3.3.

4http://www.w3.org/Submission/2006/10/



3.4. OWL-S 47

Figure 3.3: DL constructors of OWL variants (SHIF, SHOIN, SHOIQ)



48 Chapter 3. Semantic Web Service Description

The syntactic transformation from OWL-Lite and OWL-DL ontologies to
corresponding DL knowledge bases is of polynomial complexity.

Relation to RDFS The abstract syntax of OWL can be mapped to the normative
syntax of RDF5. OWL adds constructors to RDFS for building class and prop-
erty descriptions (vocabulary) and new axioms (constraints) with model-theoretic
semantics. That is, OWL extends the expressivity of RDFS. In particular, the
RDFS fragment of OWL-DL does not permit, for example, stating that a prop-
erty P is transitive or the inverse of another property Q, and using intersec-
tion (union) within (sub-)class descriptions, or universal/existential quantifications
within super-/subclasses [13].

It has been shown only recently [20], that the formal semantics of a sublan-
guage of RDFS is compatible with that of the corresponding fragment of OWL-DL
such that RDFS could indeed serve as a foundational language of the semantic
Web layer stack. Though checking whether a RDF graph is an OWL ontology and
upgrading from RDFS to OWL remains hard in practice. For a detailed treatment
of this subject, we refer to [7].

Complexity

For OWL-Lite and OWL-DL, concept satisfiability and ABox consistency is decid-
able in EXPTIME complete, respectively, NEXPTIME complete [11, 25]. Though
SHOIQ(D) with primitive non-transitive roles is intractably co-NEXPTIME hard
[25]6, its variant with non-primitive transitive roles, hence OWL-Full, is unde-
cidable [4]7. The same even holds for the subset SHN+ of OWL-DL with role
cardinality restrictions (N) and role hierarchies (H).

Figure 3.4 shows the relation of OWL to other prominent (polynomially
reducable) tractable DL subsets like EL++, Horn-SHIQ, and DLPs (Description
Logic Programs) together with related complexity results [2].

As mentioned above, efficient query answering over DL knowledge bases with
large ABoxes (instance stores) and static TBoxes is of particular interest in prac-
tice. Unfortunately, OWL can be considered insufficient for this purpose in general:
Conjunctive query answering (CQA) for SHIQ and SHIF underlying OWL-Lite is
decidable but only in time exponential in the size of the knowledge base (taxo-
nomic complexity) and double exponential in the size of the query [7] (query and

5RDFS statements are equivalent to DL axioms of the form C � D, � � ∀P : C, � � ∀P−.C,
P � Q, a : C and (a, b) : P .

6Reasoning with data types and values (D) can be separated from reasoning with classes
and individuals by allowing the DL reasoner to access a datatype oracle that can answer simple
questions with respect to data types and values; this way, the language remains decidable if data
type and value reasoning is decidable, i.e., if the oracle can guarantee to answer all questions of
the relevant kind for supported datatypes.

7Allowing relationships to be asserted between property chains, like the rule that an uncle
is precisely a parents brother, would make OWL entailment reduced to concept satisfiability
undecidable.



3.4. OWL-S 49

Figure 3.4: Tractable fragments of OWL ([2])

combined complexity); the CQA complexity for OWL-DL is still unknown.
Another important inference on OWL ontologies is defined in terms of ontol-

ogy entailment: Ontology O1 entails another O2, O1 |= O2, iff all interpretations
that satisfy O1 also satisfy O2 in the DL sense. For both OWL-DL (SHOIN(D))
and OWL-Lite (SHIF(D)), ontology entailment checking can be polynomially re-
duced to the checking of the satisfiability of the corresponding DL knowledge bases
O1, O2 (ontology consistency checking) which is decidable for both variants.

3.4.2 Service Profile

The OWL-S profile ontology is used to describe what the service does, and is
meant to be mainly used for the purpose of service discovery. An OWL-S service
profile or signature encompasses its functional parameters, i.e. hasInput, hasOut-
put, precondition and effect (IOPEs), as well as non-functional parameters such
as serviceName, serviceCategory, qualityRating, textDescription, and meta-data
(actor) about the service provider and other known requesters. Please note that,
in contrast to OWL-S 1.0, in OWL-S 1.1 the service IOPE parameters are defined
in the process model with unique references to these definitions from the profile
(cf. Figure 3.5).

Inputs and outputs relate to data channels, where data flows between pro-
cesses. Preconditions specify facts of the world (state) that must be asserted in
order for an agent to execute a service. Effects characterize facts that become
asserted given a successful execution of the service in the physical world (state).
Whereas the semantics of each input and output parameter is defined as an OWL



50 Chapter 3. Semantic Web Service Description

Figure 3.5: OWL-S service profile structure.

concept formally specified in a given ontology, typically in decidable OWL-DL or
OWL-Lite, the preconditions and effects can be expressed in any appropriate logic
(rule) language such as KIF, PDDL, and SWRL. Besides, the profile class can
be subclassed and specialized, thus supporting the creation of profile taxonomies
which subsequently describe different classes of services. An example of a Semantic
Web Service profile in OWL-S 1.1 is given in figure 3.6.

3.4.3 Service Process Model

An OWL-S process model describes the composition (choreography and orches-
tration) of one or more services, that is the controlled enactment of constituent
processes with respective communication pattern. In OWL-S this is captured by
a common subset of workflow features like split+join, sequence, and choice (cf.
Figure 3.7). Originally, the process model was not intended for service discovery
but the profile by the OWL-S coalition.

More concrete, a process in OWL-S can be atomic, simple, or composite.
An atomic process is a single, black-box process description with exposed IOPEs.
Simple processes provide a means of describing service or process abstractions
which have no specific binding to a physical service, thus have to be realized by an
atomic process, e.g. through service discovery and dynamic binding at runtime,
or expanded into a composite process. The process model of the example OWL-S
service above is provided in Figure 3.8.

Composite processes are hierarchically defined workflows, consisting of atomic,
simple and other composite processes. These process workflows are constructed
using a number of different control flow operators including Sequence, Unordered
(lists), Choice, If-then-else, Iterate, Repeat-until, Repeat-while, Split, and Split+Join.
In OWL-S 1.1, the process model also specifies the inputs, outputs, preconditions,



3.4. OWL-S 51

Figure 3.6: Example of OWL-S 1.1 service profile.

Figure 3.7: OWL-S service process model.



52 Chapter 3. Semantic Web Service Description

Figure 3.8: Example of OWL-S service process model.

and effects of all processes that are part of a composed service, which are ref-
erenced in the profiles of the respective services8. An OWL-S process model of a
composite service can also specify that its output is equal to some output of one of
its subprocesses whenever the composite process gets instantiated. Moreover, for a
composite process with a Sequence control construct, the output of one subprocess
can be defined to be an input to another subprocess (binding).

Unfortunately, the semantics of the OWL-S process model are left undefined
in the official OWL-S documents. Though there are proposals to specify these
semantics in terms of, for example, the situation calculus [18], and the logic pro-
gramming language GOLOG based on this calculus [19].

3.4.4 Service Grounding

The grounding of a given OWL-S service description provides a pragmatic bind-
ing between the logic-based and XMLS-based service definitions for the purpose
of facilitating service execution. Such a grounding of OWL-S services can be, in
principle, arbitrary but has been exemplified for a grounding in WSDL to prag-
matically connect OWL-S to an existing Web Service standard (cf. Figure 3.9).

In particular, the OWL-S process model of a service is mapped to a WSDL
description through a thin (incomplete) grounding: Each atomic process is mapped

8This is in opposite to OWL-S 1.0, where the IOPES are defined in the profile and referenced
in the process model.



3.4. OWL-S 53

Figure 3.9: Grounding of OWL-S in WSDL.

to a WSDL operation, and the OWL-S properties used to represent inputs and
outputs are grounded in terms of respectively named XML data types of corre-
sponding input and output messages. Unlike OWL-S, WSDL cannot be used to
express pre-conditions or effects of executing services. Any atomic or composite
OWL-S service with a grounding in WSDL is executable either by direct invoca-
tion of the (service) program that is referenced in the WSDL file, or by a BPEL
engine that processes the WSDL groundings of simple or orchestrated Semantic
Web Services.

3.4.5 Software Support

One prominent software portal of the semantic Web community is SemWebCen-
tral9 developed by InfoEther and BBN Technologies within the DAML program in
2004 with BBN continuing to maintain it today. As a consequence, it comes at no
surprise that this portal offers a large variety of tools for OWL and OWL-S service
coordination as well as OWL and rule processing. Examples of publicly available
software support of developing, searching, and composing OWL-S services are as
follows.

9http://projects.semwebcentral.org/



54 Chapter 3. Semantic Web Service Description

• Development.
OWL-S IDE integrated development environment10, the OWL-S 1.1 API11

with the OWL-DL reasoner Pellet12 and OWL-S editors.

• Discovery.
OWL-S service matchmakers OWLS-UDDI13, OWLSM14 and OWLS-MX15

with test collection OWLS-TC2.

• Composition.
OWL-S service composition planners OWLS-XPlan16, GOAL17.

3.4.6 Limitations

Main critics of OWL-S concern its limited expressiveness of service descriptions
in practice which, in fact, corresponds to that of its underlying description logic
OWL-DL. Only static and deterministic aspects of the world can be described
in OWL-DL, since it does not cover any notion of time and change, nor uncer-
tainty. Besides, in contrast to WSDL, an OWL-S process model cannot contain
any number of completely unrelated operations.

However, OWL-S bases on existing W3C Web standards, in particular the
Web Services protocol stack: It extends OWL and has a grounding in WSDL.
Furthermore, the large set of available tools and applications of OWL-S services,
as well as ongoing research on semantic Web rule languages on top of OWL such
as SWRL and variants still support the adoption of OWL-S for Semantic Web
Services, though this might be endangered by the choice of SAWSDL as a W3C
standard just recently.

3.5 WSML

The WSMO (Web Service Modelling Ontology) framework18 provides a conceptual
model and a formal language WSML (Web Service Modeling Language)19 for
the semantic markup of Web Services together with a reference implementation
WSMX (Web Service Execution Environment). Historically, WSMO evolved from
the Web Service Modeling Framework (WSMF) as a result of several European
Commission funded research projects in the domain of Semantic Web Services like

10http://projects.semwebcentral.org/projects/owl-s-ide/
11http://projects.semwebcentral.org/projects/owl-s-api/
12http://projects.semwebcentral.org/projects/pellet/
13http://projects.semwebcentral.org/projects/mm-client/
14http://projects.semwebcentral.org/projects/owlsm/
15http://projects.semwebcentral.org/projects/owls-mx/
16http://projects.semwebcentral.org/projects/owls-xplan/
17http://www.smartweb-project.de
18http://www.wsmo.org/TR/d2/v1.4/20061106
19http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/



3.5. WSML 55

DIP, ASG, Super, TripCom, KnowledgeWeb and SEKT in the ESSI (European
Semantic Systems Initiative) project cluster20.

3.5.1 WSMO Conceptual Model in Brief

WSMO offers four key components to model different aspects of Semantic Web
Services in WSML: Ontologies, goals, services, and mediators. Goals in goal reposi-
tories specify objectives that a client might have when searching for a relevant Web
Service. WSMO ontologies in WSML provide the formal logic-based grounding of
information used by all other modeling components. Mediators bypass interoper-
ability problems that appear between all these components at data (mediation of
data structures), protocol (mediation of message exchange protocols), and process
level (mediation of business logics) to “allow for loose coupling between Web Ser-
vices, goals (requests), and ontologies”. Each of these components, called top-level
elements of the WSMO conceptual model, can be assigned non-functional prop-
erties to be taken from the Dublin Core metadata standard by recommendation.
More details and examples of services and goals are given below.

WSML is particularly designed for describing a Semantic Web Service in
terms of its functionality (service capability), imported ontologies in WSML, and
the interface through which it can be accessed for the purpose of orchestration and
choreography. The formal semantics of elements within the description of goals and
services capabilities (pre- and postconditions) are specified as logical axioms and
constraints in ontologies using one of five WSML variants.

3.5.2 WSML Variants

The syntax of WSML is mainly derived from F-Logic extended with more verbose
keywords and varies with respect to the logical expressions allowed to describe
the semantics of service and goal description elements. WSML has a normative
human-readable syntax, as well as an XML and an RDF syntax for exchange be-
tween machines. The language comes in different variants each grounded on a par-
ticular logic with different expressivity and computational complexity, namely, DL
(WSML-DL), LP (WSML-Flight, WSML-Rule), and nonmonotonic logic (WSML-
Full) (cf. Figure 3.10).

1. WSML-Core corresponds with the intersection of DL (SHIQ(D)) and defi-
nite Horn logic with datatype support, and is grounded on description logic
programming (DLP) [9]. The semantics of WSML-Core is defined through
direct mapping to function-free Horn logic with satisfiability of WSML-Core
expressions under model-theoretic semantics and classical entailment relation
of PL1. It is fully compliant with a subset of OWL-DL, and is extended both
in the direction of DL (WSML-DL) and LP (WSML-Flight).

20http://www.sdkcluster.org/



56 Chapter 3. Semantic Web Service Description

Figure 3.10: WSML language variants.

2. WSML-DL is a decidable DL variant of F-Logic, extending WSML-Core to
SHIQ(D) that subsumes SHIF(D) underlying OWL-Lite and is subsumed by
SHOIN(D) underlying OWL-DL. The model-theoretic semantics of WSML-
DL generalizes that of WSML-Core and is defined through a mapping to
function-free PL1 with equality. WSML-DL provides only limited modeling
of restrictions (no closed world constraints) and no arbitrary rules.

3. WSML-Flight is a decidable Datalog variant of F-Logic (function-free, non-
recursive and DL-safe rules). Its modeling primitives allow to specify differ-
ent aspects of attributes, such as value constraints and integrity constraints
(via built-ins), while safe Datalog rules extended with inequality and (lo-
cally) stratified negation allow efficient decidable reasoning. In other words,
in WSML-FLight, concepts, instances and attributes are interpreted as ob-
jects in F-Logic with (nonmonotonic) default negation under perfect model
semantics [22] of locally stratified F-Logic programs with ground entailment.

4. WSML-Rule extends WSML-Flight to a fully-fledged LP language, i.e. with
function symbols and allowing arbitrary, unsafe rules with inequality and
unstratified negation. It also provides meta modeling such as treating con-
cepts as instances, but does not feature existentials, classical (monotonic)
negation, and equality reasoning. The semantics of WSML-Rule is defined in
the same way as WSML-Flight but through a mapping to full LP, that is to
the Horn fragment of F-Logic extended with inequality and default negation
under well-founded semantics [26] in the body of the rule instead of through
a mapping to Datalog. In brief, the semantics of WSML-Rule bases on the
well-founded semantics applied to the LP fragment of F-Logic [27].



3.5. WSML 57

Figure 3.11: WSML service and goal description.

5. WSML-Full shall unify the DL and LP paradigms as a superset of FOL with
non-monotonic extensions to support the nonmonotonic negation of WSML-
Rule via Default Logic, Circumscription or Autoepistemic Logic. However,
neither syntax nor semantics of WSML-Full have been completely defined
yet.

In general, the description of the semantics of a service and request (goal) in
WSML is structured into the parts of the service capability, the service interface
used for orchestration and choreography, and the shared variables.

3.5.3 Goal

Like in OWL-S, a goal in WSMO represents the desired WSML service which is
indicated with a special keyword “goal” instead of “webservice” in front of the
service description. A goal refers to a desired state that can be described by help
of a (world state) ontology. Such an ontology provides a basic vocabulary for
specifying the formal semantics of service parameters and transition rules (TBox),
and a set of concept and role instances (ABox) which may change their values from



58 Chapter 3. Semantic Web Service Description

Figure 3.12: Example of a service request (goal) in WSML.

one world state to the other. It also specifies possible read-write access rights to
instances and their grounding. A state is the dynamic set of instances of concepts,
relations and functions of given state ontology at a certain point of time. The
interpretation of a goal (and service) in WSML is not unique: The user may want
to express that either all, or only some of the objects that are contained in the
described set are requested [15].

Figure 3.12 gives an example of a goal in WSML to find a service, which as
a result of its execution, offers to reserve a ticket for the desired trip. In this case,
the only element of the capability the user is interested in, is the postcondition of
the desired service.

3.5.4 Service Capability

A WSML service capability describes the state-based functionality of a service in
terms of its precondition (conditions over the information space), postcondition
(result of service execution delivered to the user), assumption (conditions over the
world state to met before service execution), and effect (how does the execution
change the world state). Roughly speaking, a WSML service capability consists
of references to logical expressions in a WSML variant that are named by the
scope (precondition, postcondition, assumption, effect, capability) they intend to
describe. It also specifies non-functional properties and all-quantified shared vari-
ables (with the service capability as scope) for which the logical conjunction of
precondition and assumption entails that of the postcondition and the effect.

Figure 3.13 provides an example of a Web Service capability specified in
WSML. This example service offers information about trips starting in Austria and
requires the name of the person and credit card details for making the reservation.
The assumption is that the credit card information provided by the requester
must designate a valid credit card that should be of type either PlasticBuy or



3.5. WSML 59

Figure 3.13: Example of service capability in WSML.

GoldenCard. The postcondition specifies that a reservation containing the details
of a ticket for the desired trip and the reservation holder is the result of the
successful execution of the Web Service. Finally, the effect in the world state is
that the credit card is charged with the cost of the ticket.

3.5.5 Service Interface

A WSML service interface contains the description of how the overall functionality
of the Web Service is achieved by means of cooperation of different Web Service
providers (orchestration) and the description of the communication pattern that
allows to one to consume the functionality of the Web Service (choreography).
A choreography description has two parts: the state and the guarded transitions.
As mentioned above, a state is represented by an WSMO ontology, while guarded
transitions are if-then rules that specify conditional transitions between states in
the abstract state space.

Figure 3.14 provides an example of a service interface with choreography,
and a guarded transition rule which requires the following to hold: If a reservation
request instance exists (it has been already received, since the corresponding con-
cept in the state ontology currently has the mode “in”) with the request for a trip
starting in Austria, and there exists a ticket instance for the desired trip in the
Web Service instance store, then create a temporary reservation for that ticket.



60 Chapter 3. Semantic Web Service Description

Figure 3.14: Example of WSML service interface.

3.5.6 Software Support

The project web site www.wsmo.org provides, for example, a comprehensive set of
links to software tools for developing WSMO oriented services (in WSML) most
of which available under open source related licenses at sourceforge.net. Examples
include the WSMO4J API21, the WSMO studio22 with WSML service editor,
WSML-DL and WSML-Rule reasoner, WSML validator, and the WSMX service
execution environment23.

Remarkably, there are still neither implemented semantic WSML service
composition planners nor full-fledged WSML service matchmakers available apart
from a rather simple keyword-based and non-functional (QoS) parameter oriented
WSML service discovery engine as part of the WSMX suite, and the hybrid match-
maker WSMO-MX. This situation of weak software support of services in WSML,
however, could drastically improve in near future for various reasons of both pol-
itics and science.

3.5.7 Limitations

The WSMO conceptual model and its language WSML is an important step for-
ward in the SWS domain as it explicitly overcomes some but not all limits of

21http://wsmo4j.sourceforge.net/
22http://www.wsmostudio.org/download.html
23http://sourceforge.net/projects/wsmx/



3.6. Monolithic DL-Based Service Descriptions 61

OWL-S. Unfortunately, the development of WSMO and, in particular, WSML has
been originally at the cost of its connection to the W3C Web Service standard
stack at that time. This raised serious concerns by the W3C summarized in its
official response to the WSMO submission in 2005 from which we quote24: “The
submission represents a development, but one which has been done in isolation of
the W3C standards. It does not use the RDFS concepts of Class and Property for
its ontology, and does not connect to the WSDL definitions of services, or other
parts of the Web Services Architecture. These differences are not clearly explained
or justified. The notion of choreography in WSMO is obviously very far from the
definition and scope presented in WS-CDL. The document only gives little detail
about mediators, which seem to be the essential contribution in the submission.”
To date, however, the connection of WSML with WSDL and SAWSDL (WSDL-S)
has been established in part, and is under joint investigation by both WSMO and
SAWSDL initiatives in relevant working and incubator groups of the standardis-
ation bodies OASIS and W3C.

Another main critic on WSML concerns the lack of formal semantics of service
capabilities in both the WSMO working draft as of 2006, and the WSML speci-
fication submitted to the Web consortium W3C in 2005. Recently, this problem
has been partly solved by means of a semi-monolithic FOL-based representation of
functional service semantics over abstract state spaces and (guarded) state space
transitions by service execution traces [23]. Though, the formal semantics of the
WSML service (orchestration and choreography) interface part is still missing —
which is not worse than the missing process model semantics of OWL-S.

Further, principled guidelines for developing the proposed types of WSMO
mediators for services and goals in concrete terms are missing. Besides, the software
support for WSML services provided by the WSMO initiative appears reasonable
with a fair number of downloads but is still not comparable to that of OWL-S in
terms of both quantity and diversity.

Finally, as with OWL-S, it remains to be shown whether the revolutionary but
rather academic WSMO framework will be adopted by major business stakeholders
within their service application landscapes in practice. In general, this also relates
to the key concern of insufficient scaling of logic-based reasoning to the Web scale
as mentioned in the previous chapter.

3.6 Monolithic DL-Based Service Descriptions

As mentioned above, an alternative to formally specifying the functional semantics
of a Web Service agnostic to any structured service description formats like OWL-
S, SAWSDL, or WSML, is the pure DL-based approach: The abstract service
semantics is defined through an appropriate set of concept and role axioms in
a given description logic. Any instantiation of this service concept corresponds
to a concrete service with concrete service properties. That is, the extension SI

24http://www.w3.org/Submission/2005/06/Comment



62 Chapter 3. Semantic Web Service Description

Figure 3.15: Example of a monolithic DL-based semantic service description.

of a service concept S representing the abstract service to be described in an
interpretation I of the concept over a given domain contains all service instances
the provider of S is willing to accept for contracting with a potential requester of
S. An example of a monolithic DL-based description of an abstract service and
possible service instances is shown in Figure 3.15 ([8]).

In this example, the functional semantics or capability of the abstract Web
Service S is described by a set DS of two DL concept axioms: The service concept
S for the shipping of items with a weight less than or equal to 50kg from cities
in the UK to cities in Germany; the concept Shipping (used to define S) which
assures that instances of S specify exactly one location for origin and destination
of the shipping. Semantic relations between such monolithically described service
semantics can be determined fully within the underlying logical formalism, that
is by DL-based inferencing. For a more detailed treatment of this topic, we refer
to [8].

3.7 Critics

Main critics of Semantic Web Services (SWS) range from limitations of proposed
frameworks via the lack of appropriate means of service coordination and software
support to the legitimation of the research field as a whole. As one consequence,
SWS technology still appears too immature for getting adopted by both common
Web users and developers in practice, and industry for its commercial use on a
large scale.

Do we really need formal service semantics? Some recent critics of SWS tech-
nology argue against the significance of its claimed benefits for practical Web



3.7. Critics 63

Service applications in general. Key justification of this argument, is related to
the general critics on semantic Web technologies. In fact, the need of having for-
mal logic-based semantics specified for Web Services in practical human-centred
applications is often questioned: It is completely unclear whether the complete
lack of formal service semantics turns out to be rather negligible, or crucial for
what kinds of service applications for the common Web user in practice, and on
which scale.

Just recently, van Harmelen and Fensel [6] argued for a more tolerant and
scalable semantic Web reasoning based on approximated rather than strict logic-
based reasoning. This is in perfect line with experimental results available for hy-
brid SWS matchmakers that combine both logic and approximated reasoning like
the OWLS-MX [16], the WSMO-MX [14] and the syntactic OWLS-iMatcher [1].

Where are all the Semantic Web Services? Another interesting question concerns
the current reality of SWS technology in use. According to a recent survey of pub-
licly available Semantic Web Service descriptions in the surface Web [17], revealed
that not more than around 1500 indexed semantic services in OWL-S, WSML,
WSDL-S or SAWSDL are accessible in the Web of which only about one hundred
are deployed outside special test collections like the OWLS-TC25. Though we ex-
pect the majority of Semantic Web Services being maintained in private project
repositories and sites of the deep Web [10], it certainly does not reflect the strong
research efforts carried out in the SWS domain world wide.

Of course, one might argue that this comes at no surprise in two ways. First,
SWS technology is immature (with a standard announced just recently, that is
SAWSDL) which still provides insufficient common ground supporting its exploita-
tion by end users. Though this is certainly true, the other related side of this
argument is that massive research and development of the field around the globe
should have produced a considerable amount of even publicly visible Semantic
Web Service descriptions within the past half dozen of years.

Second, one might argue that it is not clear whether the surface Web and
academic publications are the right place to look for Semantic Web Service de-
scriptions, as many of them would be intended for internal or inter-enterprise use
but not visible for the public. Though this is one possible reason of the low num-
bers reported above, it indicates some lack of visibility to the common Web user
to date.

Where are the easy to use SWS tools for the public? As with semantic Web
application building in general, apart from the project prototypes and systems
there is hardly any easy to use software support off the shelves available to the
common user for developing, reusing and sharing her own Semantic Web Services
— which might hamper the current confluence of the field with the Web 2.0 into
the so called service Web 3.0 in practice.

25projects.semwebcentral.org/projects/owls-tc/



64 Chapter 3. Semantic Web Service Description

How to efficiently coordinate Semantic Web Services? Despite tremendous progress
made in the field in European and national funded research projects like DIP,
Super, CASCOM, Scallops and SmartWeb, there still is plenty of room for fur-
ther investigating the characteristics, potential, and limits of SWS coordination
in both theory and practice. The Semantic Web Services Challenge26 attempts to
qualitatively measure the minimal amount of programming required to adapt the
semantics of given systems to new services. This acknowledges that the complete
automation of composing previously unknown services is impossible, rather being
a kind of Holy Grail of modern semantic technologies. Besides, the comparative
evaluation of developed SWS discovery tools is currently hard, if not impossible,
to perform since the required large scale service retrieval test collections are still
missing even for the standard SAWSDL. Related to this, there are no large scale
experimental results on the scalability of proposed service coordination means in
practice available.

Apart from the problem of scalable and efficient SWS discovery and composi-
tion, another open problem of SWS coordination as a whole is privacy preservation.
Though there are quite a few approaches to user data privacy preservation for each
of the individual coordination processes (discovery, composition, and negotiation),
there is no integrated approach that allows to coherently secure SWS coordination
activities.

3.8 Discussion

This chapter briefly introduced prominent frameworks of describing services in the
semantic Web together with some major critics of the domain. Overall, the inter-
disciplinary, vivid research and development of the semantic Web did accomplish
an impressive record in both theory and applications within just a few years since
its advent in 2000. Though we identified several major gaps to bridge before the
still immature Semantic Web Services technology will make it to the common user
of the Web, the ongoing convergence of the semantic Web, Web 2.0, and services
into a so called service Web 3.0 indicates its potential for future Web applica-
tion services. In the next chapter, we survey prominent approaches to semantic
discovery and composition planning of services in the semantic Web.

Further readings For more comprehensive information on Semantic Web Services
in general, we refer to the accessible readings on the subject [24, 3, 5]. Examples
of major funded research projects on Semantic Web Services are

• the European funded integrated projects DIP27 and ASG (Adaptive semantic
services grid technologies)28

26http://sws-challenge.org
27dip.semanticweb.org/
28asg-platform.org



References 65

• SmartWeb — Mobile multi-modal provision of Semantic Web Services29,

• SCALLOPS30 — Secure Semantic Web Service coordination,

• the European funded specific targeted research projects CASCOM31, ARTEMIS32

— Semantic Web Services for e-health applications (mobile, P2P)

For more information about Semantic Web Service description frameworks,
we refer to the respective documents submitted to the W3C:

• OWL-S33

• WSMO34

• SAWSDL35

• Semantic Web Services Framework SWSF36 with SWSL-Rule37 for mono-
lithic FOL-based service representation by means of different variants of rule
languages (DLP, HiLog, etc).

References

[1] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in On-
tologies Using Similarity Joins. Proc. ACM Symposium on Applied Computing,
Dijon, France, ACM Press, 2006.

[2] D. Calvanese, G. De Giacomo, I. Horrocks, C. Lutz, B. Motik,
B. Parsia, P. Patel-Schneider: OWL 1.1 Web Ontology Language
Tractable Fragments. W3C Member Submission, 19 December 2006.
www.w3.org/Submission/2006/SUBM-owl11-tractable-20061219/.
Updated version at www.webont.org/owl/1.1/tractable.html (6 April 2007)

[3] J. Cardoso, A. Sheth (Eds.): Semantic Web Services: Processes and Applica-
tions. Springer book series on Semantic Web & Beyond: Computing for human
Experience, 2006.

[4] D. Connolly, F. van Harmelen, I. Horrocks, D. McGuinness, P. Patel-Schneider,
L. Stein: DAML+OIL reference description. W3C Note, 18 December 2001.
Available at www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218.

29http://www.smartweb-project.de/
30http://www-ags.dfki.uni-sb.de/k̃lusch/scallops/
31http://www.ist-cascom.org
32http://www.srdc.metu.edu.tr/webpage/projects/artemis/
33http://www.w3.org/Submission/OWL-S/
34www.w3.org/Submission/WSMO/
35www.w3.org/2002/ws/sawsdl/
36www.daml.org/services/swsf/
37www.w3.org/Submission/SWSF-SWSL/)



66 References

[5] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, J.
Domingue: Enabling Semantic Web Services — The Web Service Modeling
Ontology. Springer, 2006.

[6] D. Fensel, F. van Harmelen: Unifying reasoning and search to Web scale. IEEE
Internet Computing, March/April 2007.

[7] B. Glimm, I. Horrocks, C. Lutz, U. Sattler: Conjunctive Query Answering for
the Description Logic SHIQ. Proceedings of International Joint Conference on
AI (IJCAI), 2007.

[8] S. Grimm: Discovery — Identifying relevant services. In [24], 2007.

[9] B. Grosof, I. Horrocks, R. Volz, S. Decker: Description Logic Programs: Com-
bining Logic Programs with Description Logic. Proceedings of the 12th Inter-
national World Wide Web Conference (WWW), 2003.

[10] B. He, M. Patel, Z. Zhang, K.Chang: Accessing the Deep Web. Communica-
tions of the ACM, 50(5), 2007.

[11] I. Horrocks, P. Patel-Schneider: Reducing OWL entailment to description
logic satisfiability. Proceedings of International Semantic Web Conference
(ISWC), 2003, Springer, LNCS, 2870, 2003.

[12] I. Horrocks, P. Patel-Schneider: A proposal for an OWL rules language. Pro-
ceedings of 13th International World Wide Web Conference (WWW), 2004.

[13] I. Horrocks, P. Patel-Schneider, F. van Harmelen: ¿From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. Web Semantics, 1, Elsevier,
2004.

[14] F. Kaufer and M. Klusch: Hybrid Semantic Web Service Matching
with WSMO-MX. Proc. 4th IEEE European Conference on Web Services
(ECOWS), Zurich, Switzerland, IEEE CS Press, 2006

[15] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel: Automatic Location of
Services. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

[16] M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service Discovery
with OWLS-MX. Proc. 5th Intl. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, ACM Press, 2006

[17] M. Klusch, Z. Xing: Semantic Web Service in the Web: A Preliminary Re-
ality Check. Proc. First Intl. Joint ISWC Workshop SMR2 2007 on Service
Matchmaking and Resource Retrieval in the Semantic Web, Busan, Korea,
2007.

[18] S. Narayanan, S. McIllraith: Simulation, verification and automated compo-
sition of Web Services. Proc. of 11th International COnference on the World
Wide Web (WWW), Hawaii, 2002.



References 67

[19] S. McIllraith, T.C. Son: Adapting Golog for composition of Semantic Web
Services. Proc. International Conference on Knowledge Representation and
Reasoning KRR, Toulouse, France, 2002.

[20] J. Pan, I. Horrocks: RDFS(FA): Connecting RDF(S) and OWL DL. IEEE
Transactions on Knowledge and Data Engineering, 19(2):192-206, 2007.

[21] C. Preist: Semantic Web Services — Goals and Vision. Chapter 6 in [24],
2007.

[22] T. C. Przymusinski: On the declarative and procedural semantics of logic
programs. Automated Reasoning, 5(2):167-205, 1989.

[23] M. Stollberg, U. Keller, H. Lausen, S. Heymans: Two-phase Web Service
discovery based on rich functional descriptions. Proceedings of European Se-
mantic Web Conference, Buda, Montenegro, LNCS, Springer, 2007.

[24] R. Studer, S. Grimm, A. Abecker (eds.): Semantic Web Services. Concepts,
Technologies, and Applications. Springer, 2007.

[25] S. Tobies: The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics. Artificial Intelligence Research
(JAIR), 12, 2000.

[26] A. van Gelder, K. Ross, J. S. Schlipf: The well-founded semantics for general
logic programs. ACM, 38(3):620-650, 1991.

[27] G. Yang and M. Kifer: Well-Founded Optimism: Inheritance in Frame-Based
Knowledge Bases. Proceedings of 1st International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE), Irvine, California, 2002.



68 References



Chapter 4

Semantic Web Service
Coordination
Matthias Klusch

4.1 Introduction

Semantic service coordination aims at the coherent and efficient discovery, compo-
sition, negotiation, and execution of Semantic Web Services in a given environment
and application context. What makes coordination of services in the semantic Web
different from its counterpart in the Web is its far more advanced degree of au-
tomation through means of logic-based reasoning on heterogeneous service and
data semantics.

In this chapter, we only focus on approaches to semantic discovery and com-
position planning of Semantic Web Services, and briefly comment on their in-
terrelationships and selected open problems of both fields. For reasons of space
limitations, the set of presented examples is representative but not exhaustive.

4.2 Semantic Service Discovery

Semantic service discovery is the process of locating existing Web Services based
on the description of their functional and non-functional semantics. Discovery sce-
narios typically occur when one is trying to reuse an existing piece of functionality
(represented as a Web Service) in building new or enhanced business processes.
Both service oriented computing and the semantic Web envision intelligent agents
to proactively pursue this task on behalf of their clients.

Service discovery can be performed in different ways depending on the ser-
vice description framework, on means of service selection, and on its coordination
through assisted mediation or in a peer-to-peer fashion. In general, any semantic
service discovery framework needs to have the following components [34].



70 Chapter 4. Semantic Web Service Coordination

• Service description: Formal means to describe the functional and non-functional
semantics of Web Services.

• Service selection: Reasoning mechanisms for service matching, that is the
pairwise comparison of service descriptions in terms of their semantic rele-
vance to the query, and ranking of the results based on partially or totally
ordered degrees of matching and preferences.

• Discovery architecture: Environmental assumptions on (centralized, decen-
tralized) network topology, service information storage (e.g. distribution of
services, ontologies, registries) and location mechanisms, and functionality of
agents involved (e.g. service requester, provider, middle agents).

In the following, we survey existing approaches to semantic service selection
and discovery architectures.

4.2.1 Classification of Semantic Web Service Matchmakers

Semantic service matching determines whether the semantics of a desired service
(or goal) conform to that of an advertised service. This is at the very core of
any semantic service discovery framework. Current approaches to semantic service
matching can be classified according to

• what kinds and parts of service semantics are considered for matching, and

• how matching is actually be performed in terms of non-logic-based or logic-
based reasoning on given service semantics or a hybrid combination of both,
within or partly outside the respective service description framework (cf.
Figure 4.1).

Non-Logic, Logic, and Hybrid Semantic Service Matching The majority of Se-
mantic Web Service matchmakers performs logic-based semantic service matching.
That is, they are keeping with the original idea of the semantic Web to determine
semantic relations between resources including services based on logical inferenc-
ing on their annotations grounded in description logics (DL) and/or rules (cf.
Chapter 3). In fact, the set of logic-based Semantic Web Service matchmakers for
OWL-S and WSML still outnumbers the complete set of non-logic-based or hybrid
semantic matchmakers available for any Semantic Web Service description format.
Non-logic-based semantic matchmaker do not perform any logic-based reasoning
but compute the degree of semantic matching of given pairs of abstract service
descriptions based on, for example, syntactic similarity measurement, structured
graph matching, or numeric concept distance computations over given ontologies.

Service Profile and Process Model Matching Most Semantic Web Service match-
makers perform service profile rather than service process model matching. Service



4.2. Semantic Service Discovery 71

Figure 4.1: Categories of existing Semantic Web Service matchmakers.

profile matching (so called “black-box” service matching) determines the seman-
tic correspondence between services based on the description of their profiles. The
profile of a service describes what it actually does in terms of its signature, that
is its input and output (IO), as well as preconditions (P) and effects or postcondi-
tions (E), and non-functional aspects such as the relevant business category, name,
quality, privacy and pricing rules of the service. We classify additional context in-
formation for service matching such as the organisational (social or domain) roles,
or geographic location of service requesters and providers in their interaction as
non-functional.

Service process-oriented matching (so-called “glass-box” service matching)
determines the extent to which the desired operational behavior of a given ser-
vice in terms of its process control and data flow matches with that of another
service. Like with service profile matching, we can distinguish between non-logic-
based, logic-based and hybrid semantic process matching approaches depending on
whether automated reasoning on operational semantics specified in some certain
logic or process algebraic language (e.g. CCS, π-calculus) is performed, or not. An
overview of relevant approaches to process mining for process discovery is given
in [104].

Supported Semantic Web Service Description Formats Each of the implemented
stand-alone Semantic Web Service matchmakers shown in Figure 4.1 supports only



72 Chapter 4. Semantic Web Service Coordination

one of many existing Semantic Web Service description formats (cf. Chapter 3) as
follows. This list is representative but not exhaustive.

• OWL-S matchmakers: Logic-based semantic matchmakers for OWL-S ser-
vices are the OWLSM [42] and OWLS-UDDI [75] focussing on service in-
put/output (IO) matching, and the PCEM [16] that converts given OWL-S
services to PDDL actions for PROLOG-based matching of preconditions and
effects. Further OWL-S matchmakers are, the hybrid service IO matchmaker
OWLS-MX [53], the hybrid non-functional profile matchmaker ROWLS [31],
and the non-logic-based service IOPE matchmaker OWLS-iMatcher [13]. An
approach to logic-based OWL-S process model verification is in [103], an
approach to the matching of process dependency graphs based on syntactic
similarity measurements while [10] presents an approach to the matching of
OWL-S process dependency graphs based on syntactic similarity measure-
ments, and [11] proposes a hybrid matchmaker that recursively compares the
DAML-S process model dependency graphs.

• WSML matchmakers: Implemented approaches to WSML service discovery
include the hybrid semantic IOPE matchmaker WSMO-MX [46], and the
non-logic-based search engine of the WSMO studio for non-functional (QoS-
based) WSML service discovery in P2P networks [106]. Other approaches
to logic-based WSML service IOPE matchmaking are presented in [45, 97],
though it is unclear to what extent they have been implemented.

• WSDL-S/SAWSDL matchmakers: The METEOR-S WSDI discovery infras-
tructure [105] and the UDDI-based search component Lumina1 are the only
tool support of searching for SAWSDL services so far. While searching with
Lumina is keyword-based, the MWSDI discovery of SAWSDL services relies
on non-logic-based matching means.

• Monolithic DL-based matchmakers: Only very few matchmaker are agnostic
to the above mentioned structured Semantic Web Service description for-
mats without conversion by accepting monolithic descriptions of services in
terms of a single service concept written in a given DL. In this case, semantic
matching directly corresponds to DL inferencing, that is, semantic service
matching is done exclusively within the logic theory such as performed by
RACER [59], MaMaS2 [26, 27], and in [35]. Recently, an implemented ap-
proach to matching of monolithic service descriptions in OWL-DL extended
with (non-functional) pricing policies modeled in DL-safe SWRL rules ac-
cording to given preferences using SPARQL queries to a service repository is
presented in [56].

• Others: Non-logic-based service IOPE profile matchmakers for other struc-
tured service description formats are the DSD matchmaker [49] for DIANE

1lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
2sisinflab.poliba.it/MAMAS-tng/



4.2. Semantic Service Discovery 73

services, the numeric service IO type matching based HotBlu matchmaker [23],
and the hybrid service IOPE matchmaker LARKS for services in an equally
named format [99].

In the following, we discuss each category of Semantic Web Service matching
together with selected representative examples of the above mentioned Semantic
Web Service matchmakers in more detail. This is complemented by a classification
of existing service discovery architectures in which these matchmakers can be used
in principle, or explicitly have been designed for. As stand-alone implementations,
each of them classifies, in principle, as centralized service discovery system, though
a few of them have been also tested for, or were originally developed for decen-
tralized P2P service retrieval systems like the OWLS-MX and the OWLS-UDDI
matchmaker, respectively, the WSMO-QoS search engine and the DReggie/GSD
matchmaker3.

4.2.2 Logic-Based Semantic Service Profile Matching

As mentioned above, logic-based semantic service matchmakers perform purely
logical reasoning on service semantics. The majority of such matchmakers focus
on comparing the formal profile semantics of a given pair of services. The concepts
and/or rules used to define these semantics are specified in ontologies considered
as first-order or rule-based background theories with a shared minimal vocabulary.
Different ontologies of service providers and service requester have to be appro-
priately matched or aligned either at design time, or at runtime as part of the
matching process.

Matching Degrees

The degree of logic-based matching of a given pair of semantic service profiles
can be determined either (a) exclusively within the considered theory by means of
logic reasoning, or (b) by a combination of logical inferences within the theory and
algorithmic processing outside the theory. Prominent logic-based matching degrees
are exact, plugin, subsumes, and disjoint which are defined differently depending
on the parts of service semantics and kind of logic theory used to compute them.

For example, a software specification S plugs into (plug-in matches with)
another specification R if the effect of S is more specific than that of R, and vice
versa for the preconditions of S and R [109]. That is called a post plug-in match,
if it is restricted to their effects. Unfortunately, this original notion of plug-in

3For reasons of readability, the implemented (stand-alone) Semantic Web Service matchmak-
ers shown in Figure 4.1 each representing ako central discovery system per se are not again listed
in Figure 4.2, and vice versa, that is, those matchmaking approaches being inherent part of the
functionality of each node of decentralized discovery systems (but not available as stand-alone
matchmaker) are not listed in Figure 4.1.



74 Chapter 4. Semantic Web Service Coordination

matching has been adopted quite differently by most logic-based Semantic Web
Service matchmakers for both monolithic and structured service descriptions.

Monolithic Service Matching

Matching of monolithic DL-based service descriptions (cf. Chapter 3) is performed
exclusively within the considered theory by classical means of DL reasoning.That
is, each service concept describing the effect of corresponding Web Services in a
description logic gets terminologically compared against a given query concept
written in the same logic over a shared (matchmaker) ontology. This kind of logic-
based service effect matching is simple but agnostic to any structure imposed by
other Semantic Web Service formats like OWL-S or WSML.

For example, the post plug-in match of the effect of a service S with that
of a service request R is defined as the DL entailment of concept subsumption
of S by R over given knowledge base kb extended by the axioms of S and R
(kb ∪ S ∪ R |= S � R). That is, in every possible world or valid interpretation I
of kb, the service provider’s set SI of (possible) service instances (represented by
the monolithic description of the effect of S to the state space) is fully contained
in the set RI of instances acceptable to the requester (SI ⊆ RI). This assures
the requester that each offered service instance is covered by her more generic
request, hence S is definitely relevant, regardless of how unspecified issues in R
are resolved.

In contrast, a logical service subsumes match (kb∪S∪R |= R � S) assures the
requester that her acceptable service instances are also acceptable to the provider,
while for an intersection match the satisfiability of the conjunction of S and R
(i.e., there exists an interpretation I of kb∪S∪R such that SI ∩RI �= ∅) identifies
their compatibility with some underspecified constraints to agree upon. The latter
is also called a potential match. An accessible account of logic-based matching
filters under possible world semantics over the universe of concrete services (service
instances) is given in [34].

The complexity of matching monolithic DL-based Semantic Web Service de-
scriptions is equal to the combined DL complexity. Post plugin matching of service
concepts in SHIQO+ (with transitive non-primitive roles) has been shown to be
undecidable [9] but decidable for OWL-DL, WSML-DL and DL-safe SWRL. Ex-
amples of monolithic service matchmakers are MAMAS [26, 27] and RACER for
service concepts in OWL and DAML+OIL. Notably, they determine the post plu-
gin matching degree inverse to its original definition in [109].

In MAMAS [22, 27], non-standard explanation services, that are abduction,
a form of commonsense reasoning, and contraction, a typical belief revision op-
eration, are devised as non-monotonic inferences for monolithic DL-based service
matching. In particular, concept contraction computes an explanation concept G
of why a request concept R is not compatible with service concept S, that is, S�R
is not satisfiable (no intersection or partial match), that is (S � R) �⊥. For this
purpose, it keeps the least specific concept expression K of concept R such that K



4.2. Semantic Service Discovery 75

is still compatible with S, i.e. ¬(K � S) �⊥. The remaining set G of constraints
of R represents the desired explanation of mismatch.

If S � R is satisfiable (potential match), concept abduction computes a con-
cept expression K representing what is underspecified in service S (which con-
straints are missing in S) to completely satisfy a request R. That is, it determines
a minimal explanation concept K for a failed concept subsumption S � (K �)R
(S � K unsatisfied and K � R). Both cases of approximated matching (partial,
potential) are NP-hard for the simple description logic ALN. However, research in
this direction has just begun and is, in part, related to research on non-monotonic
reasoning with semantic Web (rule) languages.

Service Specification Matching

Service specification or profile PE matching determines the logic based semantic
relation between service preconditions and effects. For example, the original notion
of plug-in matching of two software components S,R requires that the logic-based
definition of the effect or postcondition of S logically implies that of R, while the
precondition of S is more general than that of R [109]. In other words, a logic-
based semantic plug-in match of service advertisement S with service request
R requires (in every model of given knowledge base kb) the service effect to be
more specific, and its precondition more general than requested. Depending on
the Semantic Web Service description framework (cf. Chapter 3), the specification
of preconditions and effects ranges from, for example, decidable def-Horn (DLP),
WSML-DL, OWL-DL to undecidable SWRL, KIF and F-Logic(LP).

For example, the logic-based service PE matchmaker PCEM (cf. Chapter 10)
exploits tuProlog for exact matching of service preconditions or effects (check-
ing if there is a possibly empty variable substitution such that, when applied to
one or both propositions, this results into two equal expressions), or domain spe-
cific inference rules (for computing subPartOf relations) represented in Prolog (cf.
Chapter 10).

Other examples are the IOPE matchmakers. The hybrid semantic WSML
matchmaker WSMO-MX [46] is checking approximated query containment over fi-
nite service instance bases for WSML service constraints in undecidable F-Logic(LP)
using OntoBroker. The IOPE matchmaker RFSD [97] uses the VAMPIRE theorem
prover for matching pairs of preconditions and effects in FOL, while the hybrid
IOPE matchmaker LARKS [99] performs polynomial theta-subsumption checking
of preconditions and postconditions in def-Horn for this purpose. There are no
non-logic-based or hybrid semantic service profile PE matchmaker available yet.

Service Signature and IOPE Matching

logic-based semantic service signature or profile IO matching is the stateless match-
ing of declarative data semantics of service input and output parameters by a com-
bination of logical inferences within the theory and algorithmic processing outside



76 Chapter 4. Semantic Web Service Coordination

the theory. For example, the logic-based plug-in matching of state-based service
specifications can be adopted to the plugin matching of stateless service signatures:
Service S is expected to return more specific output data whose logically defined
semantics is equivalent or subsumed by those of the desired output in request R,
and requires more generic input data than requested in R.

More concrete, the signature of S plugs into the signature of request R iff
∀ inS ∃ inR: inS ≥̇ inR ∧ ∀ outR ∃ outS : outS ∈ LSC(outR), with LSC(C)
the set of least specific concepts (direct children) C ′ of C, i.e. C ′ is a immediate
sub-concept of C in the shared (matchmaker) ontology. The quantified constraint
that S may require less input than specified in R guarantees at a minimum that
S is, in principle, executable with the input provided by the user in R iff the
corresponding input concept definitions are equivalently mapped to WSDL input
messages and corresponding service signature data types.

Examples of Semantic Web Service matchmakers that perform logic-based se-
mantic signature matching only are the OWLSM [42] and the OWLS-UDDI [75].
Though the latter determines signature plug-in matching inverse to the origi-
nal definition and restricted to the output. [45, 97] propose approaches to logic-
based semantic IOPE matching of Web Services. In general, logic-based matching
of stateless service descriptions with I/O concepts and conjunctive constraints
on their relationship specified in SHOIN has been proven decidable though in-
tractable [39]. This indicates the respective decidability of IOPE matching for
OWL-S (with OWL-DL) and WSML (with WSML-DL).

4.2.3 Non-logic-based Semantic Profile Matching

As mentioned above, non-logic-based Semantic Web Service matchmaker do not
perform any logical inferencing on service semantics. Instead, they compute the
degree of semantic matching of given pairs of service descriptions based on, for ex-
ample, syntactic similarity measurement, structured graph matching, or numeric
concept distance computations over given ontologies. There is a wide range of
means of text similarity metrics from information retrieval, approximated pattern
discovery, and data clustering from data mining, or ranked keyword, and struc-
tured XML search with XQuery, XIRQL or TeXQuery [36, 5]. In this sense, non-
logic based semantic service matching means exploit semantics that are implicit
in, for example, patterns, subgraphs, or relative frequencies of terms used in the
service descriptions, rather than declarative IOPE semantics explicitly specified
in the considered logic.

One example is the OWLS-iMatcher [13] which imprecisely queries a set of
OWL-S service profiles that are stored as RDF graphs in a RDF database with an
extension of RDQL, called iRDQL, based on four (token and edit-based) syntac-
tic similarity metrics from information retrieval. The imprecise querying of RDF
resources with similarity joins bases on TFIDF and the Levenshtein metric. The
results are ranked according to the numerical scores of these syntactic similarity
measurements, and a user-defined threshold.



4.2. Semantic Service Discovery 77

The DSD matchmaker [49, 55] performs, in essence, graph matching over
pairs of state-based service descriptions in the object oriented service description
language DSD (with variables and declarative object sets) without any logic-based
semantics. The matching process determines what assignment of IOPE variables
is necessary such that the state-based service offer is included in the set (of service
instances) defined by the request, and returns a numeric (fuzzy) degree of DSD
service matching.

4.2.4 Hybrid Semantic Profile Matching

Syntactic matching techniques are first class candidates for the development of hy-
brid semantic service profile matching solutions that combine means of both crisp
logic-based and non-logic-based semantic matching where each alone would fail.
Indeed, first experimental results of evaluating the performance of both non-logic-
based and hybrid semantic service matchmakers (OWLS-MX, OWLS-iMatcher)
show that crisp logic-based semantic service selection can be significantly outper-
formed by the former under certain conditions.

LARKS [99] has been the first hybrid semantic IOPE matchmaker while
OWLS-MX [53] was the first hybrid semantic IO matchmaker for OWL-S services.
OWLS-MX complements crisp logic-based reasoning with approximate reasoning
by use of selected token-based IR similarity metrics for services.

WSMO-MX [46] is the first hybrid semantic matchmaker for services written
in an LP extension of WSML-Rule, called WSML-MX. The hybrid service match-
ing scheme of WSMO-MX is a combination of ideas of hybrid semantic matching
of the OWLS-MX, the object-oriented graph matching of the DSD-MM, and the
concept of intentional matching of services proposed in [45]. WSMO-MX synthe-
sizes means of both logic programming and approximate reasoning, and applies
different filters to retrieve services that are relevant to a given query with respect
to strictly ordered degrees of hybrid semantic matching. These degrees are recur-
sively computed by aggregated valuations of (a) ontology-based type matching,
(b) logical constraint matching in F-logic, (c) relation matching, and (d) syntactic
similarity measurement as well. Evaluation of WSMO-MX is ongoing work.

It is not yet known, however, what kind of approximative (hybrid) service
matching will scale best to the size of the Web in practice, if at all. Research
in this direction is in perfect line with the just recent call in [30] for a general
shift in semantic Web research towards scalable, approximative rather than strict
logic-based reasoning.

4.2.5 Logic-based Semantic Process Matching

Semantic matching of service process models, in general, is very uncommon, and
not intended by the designers of current Semantic Web Service description for-
mats. Besides, the semantics of process models in OWL-S or WSML have not



78 Chapter 4. Semantic Web Service Coordination

been formally defined yet, while neither SAWSDL nor monolithic service descrip-
tions offer any process model. This problem can be partly solved by intuitively
rewriting the process model descriptions in an appropriate logic with automated
proof system and respective analysis tool support.

For example, in [103], OWL-S service process models are mapped into (intu-
itively) equivalent logical Promela statements that are then efficiently evaluated
by the SPIN model checker4. This allows to verify the correctness of a given service
process model in terms of consistency and liveness properties of an advertised ser-
vice like the Delivery process always executes after the Buy process. The results of
such service process model checking can be exploited for limited process oriented
OWL-S service selection; this is a topic of ongoing research.

Alternatively, the matching of process models of OWL-S services that are
grounded in WSDL can be reduced to the matching of corresponding orchestra-
tions in BPEL. As mentioned in Chapter 3, the OWL-S process model captures
a common subset of workflow features that can be intuitively mapped to BPEL
which offers an all-inclusive superset of such features (e.g. structured process ac-
tivities in BPEL like Assignment, Fault Handler, Terminate are not available in
OWL-S) [8]. Though BPEL has been given no formal semantics either yet, there
are a few approaches to fill this gap based on Petri nets [63] and abstract state ma-
chines [29] that allow to formally verify liveness properties of BPEL orchestrations
[66].

4.2.6 Non-logic-based and Hybrid Semantic Process Model Match-
ing

Non-logic-based business process matching can be applied to appropriately trans-
formed pairs of Semantic Web Service process models. For example, an approach
to the matching of process dependency graphs based on syntactic similarity mea-
surements is presented in [10]. [11] proposes a hybrid matchmaker (IO-RPTM)
that recursively compares the DAML-S process model dependency graphs based
on given workflow operations and logical match between IO parameter concepts of
connected (sub-)service nodes of the process graphs. On the other hand, means of
functional service process matching can be exploited to search for a set of relevant
subservices of a single composite service.

4.2.7 Semantic Service Discovery Architectures

Existing Semantic Web Service discovery architectures and systems in the lit-
erature can be broadly categorized as centralized and decentralized by the way
they handle service information storage and location in the considered service

4A model checker verifies if a given system (service process) model satisfies a desirable prop-
erty. If the property does not hold, it returns a counter-example of an execution where the
property fails.



4.2. Semantic Service Discovery 79

Figure 4.2: Categories of Semantic Web Service discovery architectures and sys-
tems.

network [4, 34]. A classification of implemented Semantic Web Service discovery
systems is given in Figure 4.2.

Centralized service discovery systems rely on one single, possibly replicated,
global directory service (repository, registry) maintained by a distinguished so
called super-peer or middle agent like matchmaker, broker or mediator agent [52].
Contrary, decentralized service discovery systems rely on distributing service stor-
age information over several peers in a structured, unstructured or hybrid P2P
network.

Semantic service discovery systems can be further classified with respect to
the kind of semantic service matching means used by the intelligent agents in
the network. For example, the exact keyword-based service location mechanisms
of all contemporary P2P systems like JINI, SLP, Gnutella flooding, and DHT
(distributed hash table) can be complemented or replaced by sophisticated logic-
based semantic matching means to improve the quality of the search result.

As mentioned above, due to its generic functionality, any service matchmaker
(cf. Figure 4.1) can be used in arbitrary discovery architectures and systems. In
the extremes, a matchmaker can either serve as a central service directory (index)
or look-up service, or can be integrated into each peer of an unstructured P2P
service network to support an informed adaptive service search like in RS2D [12].



80 Chapter 4. Semantic Web Service Coordination

In fact, a few means of semantic service matching were originally developed for
decentralized semantic P2P service retrieval in different applications.

Centralized Semantic P2P Service Discovery

In centralized semantic P2P service systems, a dedicated central service directory
or matchmaker returns a list of providers of semantically relevant services to the
requester. Contrary to centralized client-server middleware or brokering, the re-
quester then directly interacts with selected providers for service provision [52].
The advantage of such centralized discovery architectures is a fast resource or
service lookup time, though the central look-up server or registry like in JINI or
the CORBA ORB interface registry is a single point of failure that can be only
partially mitigated by replication and caching strategies.

An application of centralized P2P service discovery is the Napster music file
sharing system, and the SETI@home system that is exploiting a vast set of dis-
tributed computional resources world wide to search for extraterrestrial signals.
From the Semantic Web Service discovery perspective, each of the above men-
tioned stand-alone Semantic Web Service matchmakers, in principle, realizes a
centralized logic-based semantic service discovery system by itself. For example,
the SCALLOPS e-health service coordination system uses the hybrid semantic
matchmaker OWLS-MX as a central matchmaker for the selection of relevant
e-health services in a medical emergency assistance application. The same match-
maker is distributed to each peer of an unstructured P2P network for decentralized
OWL-S service discovery [12].

MWSDI [105] is a centralized semantic P2P service system with non-logic-
based semantic service signature matching. Each peer in the system maintains
one domain specific WSDL-S (SAWSDL) service registry and respective ontologies;
multiple peers can form a domain oriented group. However, a distinguished central
gateway or super-peer provides a global registries ontology (GRO) that maintains
the complete taxonomy of all domain registries, the mappings between WSDL-
S service I/O message types and concepts from shared domain ontologies in the
system, associates registries to them, and serves as central look-up service for all
peers. This central super-peer is replicated in form of so called auxiliary peers for
reasons of scalability. For service location, any client peer (user) selects the relevant
domain registries via the central GRO at the super-peer which then performs non-
logic-based semantic matching (structural XMLS graph matching, NGram-based
syntactic similarity, synonyms/hyponyms/hypernyms in the GRO) of service input
and output concepts with those of the desired service. However, it would be hard
to build the GRO, and difficult for the user to query the GRO without knowing
its details in advance.



4.2. Semantic Service Discovery 81

Decentralized Semantic P2P Service Discovery

Decentralized semantic service discovery systems rely on service information stor-
age and location mechanisms that are distributed over all peers in structured,
unstructured or hybrid P2P networks.

Structured Semantic P2P Service Systems Structured P2P systems have no cen-
tral directory server but a significant amount of structure of the network topology
(overlay) which is tightly controlled. Resources are placed neither at random peers
nor in one central directory but at specified locations for efficient querying. In other
words, the service index of the system is distributed to all peers according to a
given structured overlay enforcing a deterministic content distribution which can
be used for routing point queries.

Prominent examples of structured P2P systems are those with flat DHT-
based resource distribution and location mechanism like Chord rings, Pastry,
Tapestry, CAN, P-Grid and P2PAlvis, and structured hierarchic P2P systems.
Flat DHT-based systems allow to route queries with certain keys to particular
peers containing the desired data. But to provide this functionality all new con-
tent in the network has to be published at the peer responsible for the respective
key, if new data on a peer arrives, or a new peer joins the network.

In structured hierarchical or N-super-peer P2P systems (N>1), peers are or-
ganized in N domain oriented groups with possibly heterogeneous service location
mechanisms (e.g hierarchic DHT, that is, one group with Chord ring overlay, an-
other one with P-Grid overlay, etc.). Each group is represented by one super-peer
hosting the group/domain service index. The set of super-peers, in turn, can be hi-
erarchically structured with federated service directories in a super-peer top level
overlay of the network. Peers within a group query its super-peer which interacts
with other super-peers to route the query to relevant peer groups for response.
The functionality of a super-peer of one peer group is not necessarily fixed, but,
in case of node failure, transferable to a new peer of that group. Typically JXTA,
a collection of P2P protocols, is used to realize super-peer based P2P systems,
though it does not enforce such architectures.

Examples of decentralized Semantic Web Service discovery in structured P2P
networks are [106], WSPDS [44], SSLinkNet [60], CASCOM-P2P3b [17] and Agora-
P2P [54, 61]. SSLinkNet, and Agora-P2P combine keyword-based service discovery
in the underlying Chord ring, respectively, P-Grid system with semantic service
profile matching. The CASCOM and Agora-P2P systems are demonstrated for
semantic OWL-S (DAML-S) service discovery, while SSLinkNet and WSPDS per-
form a P2P search for conventional Web Services.

In the SSLinkNet [60], a Chord ring-based search is complemented by for-
warding the same Web Service request by the identified peers to relevant neighbors
based on a given semantic service link network. The semantic links between ser-
vices are determined by non-logic-based semantic service matching, and are used
to derive semantic relationships between service provider peers based on heuristic



82 Chapter 4. Semantic Web Service Coordination

rules.
Similarly, the AGORA-P2P system [54, 61] uses a Chord ring as the under-

lying infrastructure for a distributed storage of information about OWL-S services
over peers. Service input and output concept names are syntactically hashed as
literals to unique integer keys such that peers holding the same key are offering ser-
vices with equal literals in a circular key space. A service request is characterized
as a syntactic multi-key query against this Chord ring. Both systems, SSLinkNet
and AGORA-P2P, do not cope with the known problem of efficiently preserving
the stability of Chord rings in dynamic environments.

The generic CASCOM semantic service coordination architecture has been
instantiated in terms of a hierarchic structured P2P network with N interacting
super-peers each hosting a domain service registry that make up a federated Web
Service directory. Each peer within a group can complement a keyword-based pre-
selection of OWL-S services in their super-peer domain registries with a more
complex semantic matching by a selected hybrid or logic-based semantic OWL-
S matchmaker (ROWL-S, PCEM or OWLS-MX) on demand. Both, the simple
service discovery agent and Semantic Web Service matchmaking module are inte-
grated into each peer (cf. Chapter 10).

Service discovery in structured P2P networks can provide search guarantees,
in the sense of total service recall in the network, while simultaneously minimiz-
ing messaging overhead. However, this challenge has not been fully explored for
unstructured P2P networks yet.

Unstructured Semantic P2P Service Systems In unstructured P2P systems, peers
initially have no index nor any precise control over the network topology (overlay)
or file placement based on any knowledge of the topology. That is, they do not
rely on any structured network overlay for query routing as they have no inherent
restrictions on the type of service discovery they can perform.

For example, resources in unstructured P2P systems like Gnutella or Mor-
pheus are located by means of network flooding: Each peer broadcasts a given
query in BFS manner to all neighbour peers within a certain radius (TTL) un-
til a service is found, or the given query TTL is zero. Such network flooding is
extremely resilient to network dynamics (peers entering and leaving the system),
but generates high network traffic.

This problem can be mitigated by a Random Walk search where each peer
builds a local index about available services of its direct neighbour peers over time
and randomly forwards a query to one of them in DFS manner until the service is
found5 as well as replication and caching strategies based on, for example, access
frequencies and popularity of services [65]. Approaches to informed probabilistic
adaptive P2P search like in APS [102] improve on such random walks based on
estimations over dynamically observed service location information stored in the

5This is valid in case the length of the random walk is equal to the number of peers flooded
with bounded TTL or hops).



4.2. Semantic Service Discovery 83

local indices of peers. In contrast to the structured P2P search, this only provides
probabilistic search guarantees, that is incomplete recall.

In any case, the majority of unstructured P2P service systems only performs
keyword-based service matching and does not exploit any qualitative results from
logic-based or hybrid semantic service matching to improve the quality of an in-
formed search. In fact, only a few system are available for logic-based or hybrid
Semantic Web Service retrieval such as DReggie/GSD [20, 21], HyperCuP [89],
Sem-WSPDS [44], [76], Bibster [37], INGA [62], and RS2D [12]. These systems
differ in the way of how peers perform flooding or adaptive query routing based
on evolving local knowledge about the semantic overlay, that is knowledge about
the semantic relationships between distributed services and ontologies in unstruc-
tured P2P networks. Besides, all existing system implementations, except INGA
and Bibster, perform semantic service IO profile matching for OWL-S (DAML-S),
while HyperCuP peers dynamically build a semantic overlay based on monolithic
service concepts.

For example, [76] proposes the discovery of relevant DAML-S services in un-
structured P2P networks based on both the Gnutella P2P discovery process and a
complementary logic-based service matching process (OWLS-UDDI matchmaker)
over the returned answer set. However, the broadcast or flooding-based search in
unstructured P2P networks like Gnutella is known to suffer from traffic and load
balancing problems.

Though Bibster and INGA have not been explicitly designed for Semantic
Web Service discovery, they could be used for this purpose. In INGA [62], peers
dynamically adapt the network topology, driven by the dynamically observed his-
tory of successful or semantically similar queries, and a dynamic shortcut selection
strategy, which forwards queries to a community of peers that are likely to best
answer given queries. The observed results are used by each peer for maintaining
a bounded local (recommender) index storing semantically labelled topic specific
routing shortcuts (that connect peers sharing similar interests).

Similarly, in Bibster [37] peers have prior knowledge about a fixed semantic
overlay network that is initially built by means of a special first round advertise-
ment and local caching policy. Each peer only stores those advertisements that
are semantically close to at least one of their own services, and then selects for
given queries only those two neighbours with top ranked expertise according to
the semantic overlay it knows in prior. Further, prior knowledge about other peers
ontologies as well as their mapping to local ontologies is assumed. This is similar
to the ontology-based service query routing in HyperCuP [89].

In RS2D [12], contrary to Bibster and DReggie/GSD, the peers perform an
adaptive probabilistic risk-driven search for relevant OWL-S services without any
fixed or prior knowledge about the semantic overlay. Each peer uses an integrated
OWLS-MX matchmaker for hybrid semantic IO matching of local services with
given query, and dynamically learns the average query-answer behaviour of its
direct neighbours in the network. The decision to whom to forward a given se-
mantic service request is then driven by the estimated mixed individual Bayes’



84 Chapter 4. Semantic Web Service Coordination

conditional risk of routing failure in terms of both semantic loss and high commu-
nication costs. Peers are dynamically maintaining their local service (matchmaker)
ontology-based on observations of the results which, in particular, renders RS2D
independent from the use of any fixed global ontology for semantic annotation like
in DReggie/GSD.

Semantic Hybrid P2P Service Systems Hybrid P2P search infrastructures com-
bine both structured and unstructured location mechanisms. For example, Edutella
combines a super-peer network with routing indices and an efficient broadcast.
In [64] a flat DHT approach is used to locate rare items, and flooding techniques
are used for searching highly replicated items. A similar approach of hybrid P2P
query routing that adaptively switches between different kinds of structured and
unstructured search together with preliminary experimental results are reported
in [88]. However, there are no hybrid P2P systems for semantic service discovery
available yet.

Despite recent advances in the converging technologies of semantic Web and
P2P computing [96], the scalability of semantic service discovery in structured,
unstructured or hybrid P2P networks such as those for real-time mobile ad-hoc
network applications is one major open problem. Research in this direction has just
started. Preliminary solutions to this challenge vary in the expressivity of semantic
service description, and the complexity of semantic matching means ranging from
computationally heavy Semantic Web Service matchmakers like OWLS-MX in
SCALLOPS and CASCOM, to those with a streamlined DL reasoner such as
Krhype [48] suitable for thin clients on mobile devices in IASON [32]. An example
analysis of semantic service discovery architectures for realizing a mobile e-health
application is given in [19].

4.3 Semantic Service Composition Planning

Semantic Web Service composition is the act of taking several semantically an-
notated component services, and bundling them together to meet the needs of a
given customer. Automating this process is desirable to improve speed and effi-
ciency of customer response, and, in the semantic Web, supported by the formal
grounding of service and data annotations in logics.

4.3.1 Web Service Composition

In general, Web Service composition is similar to the composition of workflows
such that existing techniques for workflow pattern generation, composition, and
management can be partially reused for this purpose [38]. Typically, the user has
to specify an abstract workflow of the required composite Web Service including
both the set of nodes (desired services) and the control and data flow between these
nodes of the workflow network. The concrete services instantiating these nodes are



4.3. Semantic Service Composition Planning 85

bound at runtime according to the abstract node descriptions, also called “search
recipes” [18]. In particular, the mainstream approach to composition is to have a
single entity responsible for manually scripting such workflows (orchestration and
choreography) between WSDL services of different business partners in BPEL [77,
1]. This is largely motivated by industry to work for service composition in legally
contracted business partner coalitions — in which there is, unlike in open service
environment, only very limited need for automated service composition planning,
if at all. Besides, neither WSDL nor BPEL or any other workflow languages like
UML2 or YAWL have formal semantics which would allow for an automated logic-
based composition.

In fact, the majority of existing composition planners for Semantic Web Ser-
vices draws its inspiration from the vast literature on logic-based AI planning [78].
In the following, we focus on these approaches to Semantic Web Service com-
position, and comment on the interleaving of service composition planning with
discovery, and distributed plan execution. Please note that, the set of presented
examples of Semantic Web Service composition planners is representative but not
exhaustive.

4.3.2 AI-Planning-Based Web Service Composition

The service composition problem roughly corresponds to the state-based planning
problem (I, A, G) in AI to devise a sound, complete, and executable plan which
satisfies a given goal state G by executing a sequence of services as actions in A
from a given initial world state I. Classical AI planning focuses on the description
of services as deterministic state transition (actions) with preconditions, and state
altering (physical) effects that are applicable to states based on the evaluation of
preconditions and yield new states where the effects are valid. Further, classical
planning is performed under the assumption of closed world with complete, fully
observable initial states.

The goal and all logic-based semantic service concepts (IO parameter values,
preconditions and effects) defined in a formal ontology (domain or background
theory) and outside are converted to one declarative (FOL) planning domain and
problem description that serves a given logic-based AI planner as input. In partic-
ular, service outputs are encoded as special non-state altering knowledge effects,
and inputs as special preconditions. The standard language for this purpose is
PDDL (Planning Domain Description Language) but alternative representation
formalisms are, for example, the situation calculus [68], linear logic [86], high-level
logic programming languages based on this calculus like GOLOG [67], Petri nets,
or HTN planning tasks and methods [93].

However, as pointed out in [95], the naive adoption of classical AI planning
for service compositions has severe limits. In particular, they are insufficient for
planning under uncertainty in open service environments where (a) the initial state
is incomplete, and (b) actions may have several possible (conditional) outcomes
and effects that are modeled in the domain but not deterministically known at



86 Chapter 4. Semantic Web Service Coordination

planning time, or unknown outcomes at all that can be determined only at run-
time. We survey implemented functional and process level composition planner
for Semantic Web Services that rely on either classical planning or planning under
uncertainty in the following.

4.3.3 Classification of Semantic Service Composition Planners

In general, any AI planning framework for Semantic Web Service composition can
be characterized by

• the representation of the planning domain and problem to allow for auto-
mated reasoning on actions and states,

• the planning method applied to solve the given composition problem in the
domain, and

• the service semantics that are used for this purpose.

We can classify existing Semantic Web Service composition planners accord-
ing to the latter two criteria, which yields the following classes.

• Dynamic or static Semantic Web Service composition planners depending on
whether the plan generation and execution are inherently interleaved in the
sense that actions can be executed at planning time, or not.

• Functional level or process level Semantic Web Service composition plan-
ners depending on whether the plan generation relies on service profile (data
flow/IOPE) semantics only, or process model semantics in addition (data and
control flown) [57].

Figure 4.3 shows the respective classification of existing Semantic Web Ser-
vice composition planners.

Static and Dynamic Composition

In summary, the majority of Semantic Web Service composition planners such
as GOAL [80], MetaComp (cf. Chapter 11), PLCP [83], RPCLM-SCP [57] and
AGORA-SCP [86] are static classical planners. Approaches to dynamic composi-
tion planning with different degrees of interleaving plan generation and execution
are rare. Unlike the static case, restricted dynamic composition planners allow the
execution of information gathering but no world state altering services, hence are
capable of planning under uncertainty about action outcomes at planning time.
Examples of such composition planners are SHOP2 [91, 93], GOLOG-SCP [67]
and OWLS-XPlan1 [50].

Advanced and reactive dynamic composition planners in stochastic domains
even take non-deterministic world state changes into account during planning.
While advanced dynamic planners like OWLS-XPlan2 [51] are capable of heuristic
replanning subject to partially observed (but not caused) state changes that affect



4.3. Semantic Service Composition Planning 87

Figure 4.3: Classes of Semantic Web Service composition planners.

the current plan at planning time, their reactive counterparts like INFRAWEBS-
RTC [3] fully interleave their plan generation and execution in the fashion of
dynamic contingency and real-time planning.

Functional and Process Level Composition

As shown in Figure 4.3, most Semantic Web Service composition planners perform
functional level or service profile based composition (FLC) planning. FLC planning
considers services as atomic or composite black-box actions which functionality can
solely be described in terms of their inputs, outputs, preconditions, and effects, and
which can be executed in a simple request-response without interaction patterns.
Examples of FLC planners are GOAL [80], SAWSDL-SCP [107] and OntoMat-
S [2].

Process level composition (PLC) planning extends FLC planning in the sense
that it also the internal complex behavior of existing services into account. Promi-
nent examples are SHOP2 [93], PLCP [81, 83] and OWLS-XPlan [50, 51]. Both
kinds of composition planning exploit semantic profile or process matching means
that is either inherent to the AI planning mechanism, or provided by a connected



88 Chapter 4. Semantic Web Service Coordination

stand-alone matchmaker.

Support of Semantic Web Service Description Frameworks

Remarkably, most implemented Semantic Web Service composition planners sup-
port OWL-S like GOAL, OWLS-XPlan, SHOP2, GologSCP and MetaComp, while
there is considerably less support of the standard SAWSDL and WSML available
to date. In fact, the SAWSDL-SCP planner [107] is the only one for SAWSDL,
while the IW-RTC planner [3] is, apart from the semi-automated orchestration of
WSML services in IRS-III, the only fully automated FLC planner for WSML yet.

Most composition planner feature an integrated conversion of Semantic Web
Services, goals and ontologies into the internally used format of the planning do-
main and problem description, though a few others like the framework WSPlan [79]
for static PDDL-based planning under uncertainty, and the recursive, progression-
based causal-link matrix composition planner RPCLM-SCP [57] do not.

In the following, we discuss each category and selected examples of Semantic
Web Service composition planners in more detail.

4.3.4 Functional Level Composition Planners

Intuitively, FLC planning generates a sequence of Semantic Web Services based
on their profiles that exact or plug-in matches with the desired (goal) service. In
particular, existing services Si, Si+1 are chained in this plan such that the output
of Si matches with the input of Si+1, while the preconditions of Si+1 are satisfied in
the world state after execution of Si. Depending on the considered Semantic Web
Service description format (cf. Chapter 3), different approaches to logic-based,
non-logic-based or hybrid semantic service profile IOPE matching are available
for this purpose (cf. Figure 4.1).

In order to automatically search for a solution to the composition prob-
lem, FLC planners can exploit different AI planning techniques with inherent
logic-based semantic profile IOPE or PE matching like WSPlan [79], respectively,
MetaComp (cf. 11). The recursive forward-search planner GOAL [80] as well as
the SAWSDL-SCP [107] apply non-logic-based semantic profile IO matching of
OWL-S, respectively, SAWSDL services.

In AGORA-SCP [86], theorem proving with hybrid semantic profile IO match-
ing is performed for OWL-S service composition: Both services and a request (the-
orem) are described in linear logic, related to classical FOL, while the SNARK
theorem prover is used to prove that the request can be deduced from the set
of services. The service composition plan then is extracted from the constructive
proof.

The FLC planner in [69] uses proprietary composability rules for generating
all possible plans of hybrid semantic profile IO matching services in a specific
description format (CSSL). From these plans the requester has to select the one
of best quality (QoS).



4.3. Semantic Service Composition Planning 89

4.3.5 Process Level Semantic Service Composition Planners

Though FLC planning methods can address conditional outputs and effects of
composite services with dynamic planning under uncertainty, considering services
as black-boxes does not allow them to take the internal complex service behaviour
into account at planning time. Such behavior is usually described as subservice
interactions by means of control constructs including conditional and iterative
steps. This is the domain of process level composition (PLC) planning that extends
FLC planning in the aforementioned sense.

However, only few approaches to process level composition planning for Se-
mantic Web Services exist to date. For example, orchestration of WSML services
in IRS-III [28] synthesizes abstract state machines to compose individual services
in a given process flow defined in OCML6. Though, the functionality of the WSMX
orchestration unit has not been completely defined yet.

Other automated PLC planners of OWL-S services exploit different AI plan-
ning techniques such as

• HTN (Hierarchical Task Network) planning of OWL-S process models con-
verted to HTN methods like in SHOP2 [93],

• Neo-classical GRAPHPLAN-based planning mixed with HTN planning of
OWL-S services converted to PDDL in OWLS-XPlan [50, 51],

• Value-based synthesis of OWL-S process models in a given plan template of
situation calculus-based GOLOG programs [67, 68],

• Planning as model checking of OWL-S process models converted to equivalent
state transition systems (STS) in the PLCP [81, 83].

In the following, we discuss each class of static and dynamic Semantic Web
Service composition planners (in short: composition planners) together with se-
lected examples, if available.

4.3.6 Static Semantic Service Composition Planners

The class of static AI planning-based composition covers approaches to both clas-
sical and non-classical planning under uncertainty.

Static Classical Planning

As mentioned above, classical AI planners perform (off-line) planning under the
assumption of a closed, perfect world with deterministic actions and a complete
initial state of a fully observable domain at design time. For example, Graphplan
is a prominent classical AI planning algorithm that first performs a reachability

6kmi.open.ac.uk/projects/ocml/



90 Chapter 4. Semantic Web Service Coordination

analysis by constructing a plan graph, and then performs logic-based goal regres-
sion within this graph to find a plan that satisfies the goal. Classical AI planners
are static since their plan generation and execution is strictly decoupled.

Examples of Static Classical Composition Planners

One example of a static classical Semantic Web Service composition planner is
GOAL [80] developed in the SmartWeb project. GOAL composes extended OWL-
S services by means of a classical recursive forward-search [33]. Both, the initial
state and the goal state are derived from the semantic representation of the user’s
question (goal) obtained by a multimodal dialogue system in SmartWeb. At each
stage of the planning process the set of services which input parameters are ap-
plicable to the current state is determined by signature (IO) matching through
polynomial subgraph isomorphism checking [70]: The instance patterns of input
parameters are matched against the graph representation of the state, and a ser-
vice is applied to a plan state (simulated world state) by merging the instance
patterns of its output parameters with the state. As a result, GOAL does not
exploit any logical concept reasoning but structural service I/O graph matching
to compose services. If plan generation fails, GOAL detects non-matching paths
within instance patterns and consequently produces a clarification request (ako
information gathering service) conveyed to the user by the dialogue system; on
response by the user the planning process is restarted in total.

Static service composition in the AGORA-SCP service composition system [86]
relies on linear logic (LL) theorem proving. The profiles of available DAML-S ser-
vices are translated in to a set of LL axioms, and the service request is formulated
as a LL theorem to be proven over this set. In case of success, the composition
plan can be extracted from the proof, transformed to a DAML-S process model
and executed as a BPEL script. The AGORA planner is the only approach to
decentralized composition planning in structured P2P networks [54].

An example of a static classical Semantic Web Service composition planner
based on a special logic-based PDDL planner is MetaComp which we describe in
detail in Chapter 11.

Static Planning under Uncertainty

In general, work on planning under uncertainty in AI can be classified according
to (a) the representation of uncertainty, that is whether uncertainty is modeled
strictly logically, using disjunctions, or is modeled numerically (e.g. with probabili-
ties), and (b) observability assumptions, that is whether the uncertain outcomes of
actions are not observable via sensing actions (conformant planning); partially or
fully observable via sensing actions (conditional or contingency planning) [24]. As
mentioned above, we can have uncertainty in the initial states and in the outcome
of action execution. Since the observation associated to a given state is not unique,
it is also possible to model noisy sensing and lack of information. Information on



4.3. Semantic Service Composition Planning 91

action outcomes or state changes that affect the plan can be gathered either at
planning time (dynamic) or thereafter (static) for replanning purposes.

Static Conditional or Contingency Planning. Static conditional or contingency
planner like Cassandra and DTPOP devise a plan that accounts for each possi-
ble contingency that may arise in the planning domain. This corresponds to an
optimal Markov policy in the POMDP framework for planning under uncertainty
with probabilities, costs and rewards over a finite horizon. The contingency plan-
ner anticipates unexpected or uncertain outcomes of actions and events by means
of planned sensing actions, and attempts to establish the goals for each different
outcome of these actions through conditional branching of the plan in advance7.
The plan execution is driven by the outcome of the integrated sensing subplans
for conditional plan branches, and decoupled from its generation which classifies
these planners as static.

Static Conformant planning. Conformant planners like the Conformant-FF, Buri-
dan, and UDTPOP perform contingency planning without sensing actions. The
problem of conformat planning to search for the best unconditional sequence of
actions under uncertainty of intial state and action outcome can be formalized as
fully non-observable MDP, as a particular case of POMDP, with a search space
pruned by ignoring state observations in contingency planning. For example, con-
formant Graphplan planning (CGP) [94] expresses the uncertainty in the initial
state as a set of completely specified possible worlds, and generates a plan graph
for each of these possible worlds in parallel. For actions with uncertain outcomes
the number of possible worlds is multiplied by the number of possible outcomes
of the action. It then performs a regression (backward) search on them for a plan
that satisfies the goal in all possible worlds which ensures that the plan can be
executed without any sensory actions. Conformant planner are static in the sense
that no action is executed at planning time.

Examples of Static Composition Planners under Uncertainty

The PLCP [82, 83] performs static PLC planning under uncertainty for OWL-
S services. OWL-S service signatures and process models together with a given
goal are converted to non-deterministic and partially observable state transition
systems which are composed by a model checking-based planner (MBP)[81] to a
new STS which implements the desired composed service. This STS eventually gets

7Examples of decision criteria according to which contingency branches are inserted in the
(conventional) plan, and what the branch conditions should be at these points, are the maxi-
mum probability of failure, and the maximum expected future reward (utility) as a function of,
for example, time and resource consumption. Uncertainty is often characterized by probability
distributions over the possible values of planning domain predicates.



92 Chapter 4. Semantic Web Service Coordination

transformed to an executable service composition plan (in BPEL) with possible
conditional and iterative behaviors. No action is executed at planning time, and
uncertainty is resolved by sensing actions during plan execution.

An example of static FLC planning under uncertainty is the WSPlan frame-
work [79] which provides the user with the option to plug in his own PDDL-based
planner and to statically interleave planning (under uncertainty) with plan execu-
tion. Static interleaving refers to the cycle of plan generation, plan execution, and
replanning based on the result of the executed sensing subplans (in the fashion
of static conditional planning) until a sequential plan without sensing actions is
generated that satifies the goal. There are no static classical PLC planner for Se-
mantic Web Services with deterministic (sequential) process models of composite
services only available.

4.3.7 Dynamic Composition Planners

The class of dynamic AI-planning-based composition covers approaches to re-
stricted, advanced and reactive dynamic planning under uncertainty.

Restricted Dynamic Planning

Dynamic planning methods allow agents to inherently interleave plan generation
and execution. In restricted dynamic planning, action execution at planning time
is restricted to information gathering (book-keeping callbacks) about uncertain
action outcomes. These special actions add new knowledge in form of ground facts
to the partial observable initial state under the known IRP (Invocation and Rea-
sonable Persistence) assumption [67] to ensure conflict avoidance8. Like in classical
planning, however, world state altering services with physical effects (in opposite
to knowledge effects of service outputs) are only simulated in local planning states
and never get executed at planning time.

Examples of Restricted Dynamic Composition Planners

Prominent examples of restricted dynamic composition planners are SHOP2, and
OWLS-XPlan1 [50] for OWL-S services of which we describe the latter in detail
in Chapter 11. SHOP2 [91, 92] converts given OWL-S service process models into
HTN methods and applies HTN planning interleaved with execution of informa-
tion gathering actions to compose a sequence of services that satisfies the given
task. Mapping any OWL-S process model to a situation calculus-based GOLOG
program, the authors prove that the plans produced are correct in the sense that
they are equivalent to the action sequences found in situation calculus.

8The IRP assumption states that (a) the information gathered by invoking the service once
cannot be changed by external or subsequent actions, and (b) remains the same for repeating
the same call during planning. That is, the incremental execution of callbacks would have the
same effect when executing in prior to planning for extending the initial state which, in essence,
closes the world for planning.



4.3. Semantic Service Composition Planning 93

Advanced Dynamic Planning

Advanced dynamic planning methods allow in addition to react on arbitrary
changes in the world state that may affect the current plan already during planning
such as in OWLS-XPlan2. This is in contrast to static planning under uncertainty
where sensing subplans of a plan are executed at run time only. However, in both
restricted and advanced dynamic planning the interleaved execution of planning
with world state altering services is prohibited to prevent obvious problems of
planning inconsistencies and conflicts.

Examples of Advanced Dynamic Composition Planners

To the best of our knowledge, OWLS-XPlan2 [51] still is the only one implemented
example of an advanced dynamic composition planner. OWLS-XPlan2 will be
described in Chapter 11.

Reactive Dynamic Planning

Finally, reactive dynamic planning like in Brooks’s subsumption architecture,
RETE-based production rule planners, and the symbolic model checking-based
planner SyPEM [14] allows the execution of arbitrary actions at planning time.
Pure reactive planner produce a set of condition-action (if-then) or reaction rules
for every possible situation that may be encountered, whether or not the cir-
cumstances that would lead to it can be envisaged or predicted. The inherently
interleaved planning and execution is driven through the evaluation of state con-
ditions at every single plan step to select the relevant if-then reaction rule and the
immediate execution of the respective, possibly world state altering action; This
cycle is repeated until the goal is hopefuly reached.

A variant of reactive dynamic planning is dynamic contingency planning like
in XII and SAGE. In this case, a plan that is specified up to the information-
gathering steps gets executed to that stage, and, once the information has been
gathered, the rest of the plan is constructed. Interleaving planning and execution
this way has the advantage that it is not necessary to plan for contingencies that
do not actually arise. In contrast to pure reactive planners, reasoning is only
performed at branch points predicted to be possible or likely.

In any case, reactive dynamic planning comes at the possible cost of plan
optimality, and even plan existence, that is suboptimality and dead-end action
planning or failure. The related ramification problem9 is usually addressed either
by restrictive assumptions on the nature of service effects on previous planning
states [14] in safely explorable domains, or by integrated belief revision (TMS) in
the planners knowledge base at severe computational costs.

9The problem of ensuring the consistency of the planners knowledge base and the reachability
of the original goal in spite of (highly frequent) world state altering service execution during plan
generation.



94 Chapter 4. Semantic Web Service Coordination

Examples of Reactive Dynamic Composition Planners

One example of an implemented reactive dynamic composition planner is the real-
time composition planner IW-RTC [3] developed in the European research project
INFRAWEBS. It successively composes pairs of keyword-based IO matching ser-
vices, executes them and proceeds with planning until the given goal is reached.
Unfortunately, the authors do not provide any detailed description of the compo-
sition and matching process nor complexity analysis.

Problems of Composition Planning under Uncertainty

One problem with adopting planning under uncertainty for semantic service com-
position is that the execution of information gathering (book keeping) or even
world state altering services at design or planning time might not be charge free,
if granted by providers at all. That is, the planning agent might produce significant
costs for its users even without any return value in case of plan generation or exe-
cution failure. Another problem is the known insufficient scalability of conditional
or conformant planning methods to planning domains at Web scale or business
application environments with potentially hundreds of thousands of services and
vast instance bases. Research on exploiting conditional or conformant planning
methods for Semantic Web Service composition has just started.

4.3.8 FLC Planning of Monolithic DL-Based Services

Research on AI-based FLC planning with monolithic DL-based descriptions of ser-
vices has just started. Intuitively, the corresponding AI planning (plan existence)
problem for the composition of such services is as follows. Given an acyclic TBox
T describing the domain or background theory in a DL, ABoxes S and G which
interpretations I (consistent wrt T ) over infinite sets of individual (object) names
are describing, respectively the initial and goal state, and a set A of operators
describing deterministic, parameterized actions α which precondition and effects
are specified in the same DL and transform given interpretations of concepts and
roles in T (I →T

α I ′), is there a sequence of actions (consistent with T )10 obtained
by instantiating operators with individuals which transforms S into G?

It has been shown in [9] that the standard reasoning problems on actions, that
are executability11 and projection12, are decidable for description logics between
ALC and ALCOIQ. Furthermore, it has been shown in [71] only recently that the
plan existence problem for such actions in ALCOIQ is co-NEXPTIME decidable
for finite sets of individuals used to instantiate the actions, while it is known
to be PSPACE-complete for propositional STRIPS-style actions. In addition, the

10An action is consistent with TBox T , if for every model I of T there exists I′ s.t. I →T
α I′.

11Action executability is equal to the satisfaction of action preconditions in given world states:
I |= pre1, ∀i, 1 ≤ i ≤ n, I′.I →T

α1...αi
I′ : I′ |= prei+1.

12Satisfaction of assertion φ as a consequence or conjunctive effect of applying actions to a
given state: For all models I of S and T ,I′.I →T

α1...αn
I′ : I′ |= φ



4.4. Interrelations 95

extended plan existence problem with infinitely countable set of individuals was
proven undecidable, as it is for Datalog STRIPS actions, for actions specified in
ALCU with universal role U for assertions over the whole domain by reduction
to the halting problem of deterministic Turing machines. However, there is no
implemented composition planner for monolithic DL-based services available to
date.

4.4 Interrelations

Though semantic service discovery and composition planning are active fields of
research by themselves, they are mainly treated separatedly in the literature. In
the following, we discuss the principled relationships between them.

4.4.1 Discovery and Composition Planning

What if the search for relevant existing services fails? In this case, service match-
maker agents may attempt to compose services together to satisfy the given service
request. In fact, functional IOPE or process oriented semantic service matching is
inherent part of the functionality of FLC or PLC planners that is either integrated
into the planner itself or outsourced to respective matchmakers with which the
planner interacts on demand; though most existing Semantic Web Service match-
makers are used as stand alone tools for service discovery only (cf. Figure 4.1).

¿From the view of composition planning, semantic service discovery is of
importance for the following reasons.

• Discovery means provide the complete set of initially available services as
a prerequisite of composition planning. This set of services together with
related ontologies forms the basis of the initial and goal state to be specified
in the planning domain description format used by the planner.

• Selection of semantically relevant (e.g. equivalent or plug-in matching) ser-
vices that are also execution compatible after or even during (re-)planning
on demand.

In other words, semantic service matching can be used by the composition
planning tool to intially set and prune the search space of potential services by
selecting relevant services in prior to, interleaved with, or after planning (re-
planning). However, there is no agreed strategy for a-priori pruning the set of
potential services accessible to the planner for composing. Heuristic pre-filtering
of services can be performed, for example, against non-functional criteria such as
observed quality of service, relevant application and business domains, and user
and organisational roles like in ROWLS [31]. To enable fast replanning in case of
detected (temporarily) unavailability of planned services, or optimization of the
plan quality, the composition planner can also exploit respectively precomputed



96 Chapter 4. Semantic Web Service Coordination

lists of semantically equivalent or plug-in services for each service sorted delivered
by a matchmaker.

Likewisely, from the view of semantic service discovery, the composition of
complex services is of importance if none of the registered services satisfies the
given request. In this case, the matchmaker agent can delegate its task to a com-
position planner for successfully generating a composite service for the given query.

Examples There are only a few implemented approaches that explicitly interleave
semantic matching with composition planning.

In [58], logic-based service matching is extended with concept abduction to
provide explanations of mismatches between pairs of service profiles that are iter-
atively used as constructive feedback during composition planning and replanning
when searching for alternative services to bridge identified semantic gaps between
considered IOPE profiles of services in the current plan step. A similar abduction-
based matchmaking approach is presented in [26]. This scenario of explicitly inter-
leaved discovery and composition has been implemented and tested in a non-public
France Telecom research project.

In [55], the functional level composition of services specified in the DIANE
service description language DSD is explicitly integrated with a DSD matchmaker
module that matches service requests asking for multiple connected effects of con-
figurable services. By using a value propagation mechanism and a cut of possible
(not actual) parameter value fillings for service descriptions that cover multiple
effects the authors avoid exponential complexity for determining an optimal con-
figuration of plug-in matching service advertisements used for a composition.

In [15], the syntactic functional level service composition is based on par-
tial matching of numerically encoded service IO data types in a service directory.
Unfortunately, the justification of the proposed numeric codings for matching ser-
vices appears questionable, though it was shown to efficiently work for certain
applications.

The composition planner OWLS-XPlan2 [87] integrates IOPE matching and
calls the component OWLS-MXP of the matchmaker OWLS-MX 1.1 to check the
compatibility of input/output data types of sequenced services at each plan step.
This ensures the principled executablity of the generated sequential plan at the
service grounding level.

The UMBC interactive OWL-S service composer [92] uses the OWLS-UDDI
matchmaker to help users filter and select relevant services while building the com-
position plan. At each plan step, the composer provides the user with advertised
services that plug-in or exact match with the current service selection yielding an
incremental backward IO chaining of services in the plan.

The Agora-P2P service composition system [54] is the only approach to de-
centralized Semantic Web Service composition planning. It uses a Chord ring to
publish and locate OWL-S service descriptions keyword-based while linear logic
theorem proving and logic-based semantic service IO matching is applied to com-



4.4. Interrelations 97

pose (and therefore search for relevant subservices of) the desired service.

4.4.2 Composition Planning and Execution

The semantic compatibility of subsequent services in a plan does not guarantee
their correct execution in concrete terms on the grounding level. A plan is called
correct, if it produces a state that satifies the given goal [57]. The principled plan
executability, also called execution composability of a plan requires its data flow
to be ensured during plan execution on the service grounding level [69]. This can
be verified through complete (XMLS) message data type checking of semantically
matching I/O parameters of every pair of subsequent services involved in the plan.
For example, OWLS-XPlan2 calls a special matchmaker module that checks plan
execution compatibility at each plan step during planning.

The consistent, central or decentral plan execution can be achieved by means
of classical (distributed) transaction theory and systems. An advanced and imple-
mented approach to distributed Semantic Web Service composition plan execu-
tion is presented, for example, in Chapter 12 (Semantic Web Service Execution)
and [73]. However, the availability of non-local services that are not owned by
the planning agent can be, in principle, refused by autonomous service providers
without any prior commitment at any time. This calls for effective replanning
based on alternative semantic matching services delivered by the matchmaker to
the composition planner prior to, or during planning such as in OWLS-XPlan2.

4.4.3 Negotiation

Services may not be for free but pay per use. In particular, requester agents might
be charged for every single invocation of services at discovery or planning time.
Besides, the service pricing is often private which makes it hard, if not infeasible,
for any search or composition agent to determine the total expenses of coordinated
service value provision to its user.

Standard solution is to negotiate service level agreements and contracting of
relevant services based on non-functional service parameters such as QoS, pric-
ing, and reputation between service requester and provider agents involved [108].
Usually, such negotiation takes place after service discovery depending on service
configurations and user preferences, followed by contracting [84]. Most existing
Semantic Web Service frameworks offer slots for non-functional provenance infor-
mation as part of their service description.

However, the problem of how to dynamically interleave composition (re-
)planning and negotiation remains open. Related work draw upon means of parallel
auctioning [85], and coalition forming [74] of planning agents in different compet-
itive settings.



98 Chapter 4. Semantic Web Service Coordination

4.5 Open Problems

The research field of Semantic Web Service coordination is in its infancies. Hence, it
comes at no surprise that there are many open problems of both semantic service
discovery and composition planning that call for intensive further investigation
in the domain. Some major open problems of semantic service discovery are the
following.

• Approximated matching. How to deal with uncertain, vague or incomplete
information about the functionality of available services and user preferences
for service discovery? Fuzzy, probability, and possibility theory are first class
candidates for the design of approximated (hybrid) semantic service matching
algorithms to solve this problem. In particular, efficient reasoners for respec-
tive extensions of semantic Web (rule) languages like probabilistic pOWL,
fuzzyOWL, or pDatalog can be applied to reason upon semantic service an-
notations under uncertainty and with preferences.

However, there are no such semantic service matchmakers available yet. Apart
from the first hybrid matchmakers for OWL-S and WSML services, OWLS-
MX and WSMO-MX, the same holds for the integrated use of means of sta-
tistical analysis from data mining or information retrieval for approximative
matching of semantic service descriptions.

• Scalability. How to reasonably trade off the leveraging of expensive logic-
based service discovery means with practical requirements of resource bounded,
just-in-time and light-weight service discovery in mobile ad-hoc or unstruc-
tured P2P service networks? What kind of approximated and/or adaptive
semantic service discovery techniques scale best for what environment (net-
work, user contxt, services distribution, etc) and application at hand? The
required very large scale, comparative performance experiments under prac-
tical real-world conditions have not been conducted yet.

• Adaptive discovery. How to leverage semantic service discovery by means of
machine learning and human-agent interaction? Though a variety of adaptive
personal recommender and user interface agents have been developed in the
field, none of the currently implemented semantic Web Service matchmakers
is capable of flexibly adapting to its changing user, network, and application
environment.

• Privacy. How to protect the privacy of individual user profile data that are
explicit or implicit in service requests submitted to a central matchmaker, or
relevant service providers? Approaches to privacy preserving Semantic Web
Service discovery are still very rare, and research in this direction appears
somewhat stagnant. Amongst the most powerful solutions proposed are the
Rei language for annotating OWL-S services with privacy and authorization
policies [25, 43], and the information flow analysis based checking of the



4.6. Discussion 99

privacy preservation of sequential OWL-S service plans [40, 41]. However,
nothing is known about the scalability of these solutions in practice yet.

• Lack of tool support and test collections. Current easy to use tool support
of Semantic Web Service discovery is still lagging behind the theoretical ad-
vancements, though there are differences to what extent this is valid for
what service description framework (cf. Figure 4.1). In particular, there is no
official test collection for evaluating the retrieval performance of service dis-
covery approaches (matchmakers, search engines) for the standard SAWSDL
and WSML, while there are two publicly available for OWL-S (OWLS-TC2,
SWS-TC). There are no solutions for the integrated matching of different
services that are specified in different languages like SAWSDL, OWL-S and
WSML. Relevant work on refactoring OWL-S and WSML to the standard
SAWSDL is ongoing.

Some major challenges of research and development in the domain of Seman-
tic Web Service composition planning are as follows.

• Scalable and resource efficient approaches to service composition planning
under uncertainty and their use in real-world applications of the Web 3.0
and in intelligent pervasive service applications of the so called “Internet of
Things” that is envisioned to interlink all kinds of computing devices without
limit on the global scale.

• Efficient means of distributed composition planning of Semantic Web Services
in peer-to-peer and grid computing environments.

• Easy to use tools for the common user to support discovery, negotiation,
composition and execution Semantic Web Services in one framework for dif-
ferent Semantic Web Service formats like the standard SAWSDL, and non-
standards like OWL-S, WSML, and SWSL.

• Interleaving of service composition planning with negotiation in competitive
settings.

4.6 Discussion

This chapter provided a brief romp through the fields of Semantic Web Service
discovery and composition planning. We classified existing approaches, discussed
representative examples and commented on the interrelationships between both
service coordination activities. Despite fast paced research and development in the
past years world wide, Semantic Web Service technology still is commonly consid-
ered immature with many open theoretical and practical problems as mentioned
above. However, its current convergence with Web 2.0 towards a service Web 3.0
in an envisioned Internet of Things helds promise to effectively revolutionize com-
puting applications for our everday life.



100 References

References

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services. Springer, 2003

[2] S. Agarwal, S. Handschuh, S. Staab: Annotation, composition and invocation
of Semantic Web Services. Web Semantics, 2, 2004.

[3] G. Agre, Z. Marinova: An INFRAWEBS Approach to Dynamic Composition
of Semantic Web Services. Cybernetics and Information Technologies (CIT),
7(1), 2007.

[4] M.S. Aktas, G. Fox, M. Pierce: Managing Dynamic Metadata as Context.
Proceedings of Intl. Conference on Computational Science and Engineering
(ICCSE), Istanbul, 2005

[5] S. Amer-Yahia, C. Botev, J. Shanmugasundaram: TeXQuery: A Full-Text
Search Extension to XQuery. Proceedings of the World-Wide-Web Conference
WWW 2004, 2004.

[6] A. Ankolekar, M. Paolucci, K. Sycara: Spinning the OWL-S Process Model -
Toward the Verification of the OWL-S Process Models. Proceedingsof Interna-
tional Semantic Web Services Workshop (SWSW), 2004

[7] I.B. Arpinar, B. Aleman-Meza, R. Zhang, A. Maduko: Ontology-driven Web
Services composition platform. Proc.of IEEE International Conference on E-
Commerce Technology CEC, San Diego, USA, IEEE Press, 2004.

[8] M.A. Aslam, S. Auer, J. Shen: ¿From BPEL4WS Process Model to Full OWL-S
Ontology. Proceedings of 2nd European COnference on Semantic Web Services
ESWC, Buda, Montenegro, 2006.

[9] F. Baader, C. Lutz, M. Milicic, U. Sattler, F. Wolter: Integrating Description
Logics and action formalisms: First results. Proc. 20th National Conference on
Artificial Intelligence (AAAI), Pittsburgh, USA, AAAI Press, 2005

[10] J. Bae, L. Liu, J. Caverlee, W.B. Rouse: Process Mining, Discovery, and
Integration using Distance Measures. Proceedings of International COnference
on Web Services ICWS, 2006.

[11] S. Bansal, J. Vidal: Matchmaking of Web Services Based on the DAMLS
Service Model. Proc. International Joint Conference on Autonomous Agents
and Multiagent Systems AAMAS, 2003.

[12] U. Basters and M. Klusch: RS2D: Fast Adaptive Search for Semantic Web Ser-
vices in Unstructured P2P Networks. Proceedings 5th Intl. Semantic Web Con-
ference (ISWC), Athens, USA, Lecture Notes in Computer Science (LNCS),
4273:87-100, Springer, 2006.

[13] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in On-
tologies Using Similarity Joins. Proceedings ACM Symposium on Applied
Computing, Dijon, France, ACM Press, 2006.



References 101

[14] P. Bertoli, A. Cimatti, P. Traverso: Interleaving Execution and Planning
for Nondeterministic, Partially Observable Domains. Proceedings of European
Conference on Artificial Intelligence (ECAI), 2004.

[15] W. Binder, I. Constantinescu, B. Faltings, K. Haller, C. Tuerker: A Multi-
Agent System for the Reliable Execution of Automatically Composed Ad-hoc
Processes. Proceedings of the 2nd European Workshop on Multi-Agent Sys-
tems (EUMAS), Barcelona, Spain, 2004.

[16] L. Botelho, A. Fernandez, B. Fries, M. Klusch, L. Pereira, T. Santos, P. Pais,
M. Vasirani: Service Discovery. In M. Schumacher, H. Helin (Eds.): CASCOM -
Intelligent Service Coordination in the Semantic Web. Chapter 10. Birkh”auser
Verlag, Springer, 2008.

[17] C. Caceres, A. Fernandez, H. Helin, O. Keller, M. Klusch: Context-aware
Service Coordination for Mobile Users. Proceedings IST eHealth Conference,
2006.

[18] F. Casati, M.C. Shan: Dynamic and Adaptive Composition of E-services.
Information Systems, 6(3), 2001.

[19] CASCOM Project Deliverable D3.2: Conceptual Architecture Design.
September 2005.www.ist-cascom.org

[20] D. Chakraborty, F. Perich, S. Avancha, A. Joshi: DReggie: Semantic Ser-
vice Discovery for M-Commerce Applications. Proceedings of the International
Workshop on Reliable and Secure Applications in Mobile Environment, 2001.

[21] H. Chen, A. Joshi, and T. Finin: Dynamic service discovery for mobile com-
puting: Intelligent agents meet JINI in the aether. 4(4):343-354, 2001.

[22] S. Colucci, T.C. Di Noia, E. Di Sciascio, F.M. Donini, M. Mongiello: Con-
cept Abduction and Contraction for Semantic-based Discovery of Matches and
Negotiation Spaces in an E-Marketplace. Electronic Commerce Research and
Applications, 4(4):345361, 2005.

[23] I. Constantinescu, B. Faltings: Efficient matchmaking and directory services
Proceedings of IEEE Conference on Web Intelligence WI, 2003.

[24] R. Dearden, N. Meuleauy, S. Ramakrishnany, D.E. Smith, R. Washington:
Incremental Contingency Planning. Proc. of ICAPS-03 Workshop on Planning
under Uncertainty, Trento, Italy, 2003.

[25] G. Denker, L. Kagal, T. Finin, M. Paolucci, K. Sycara: Security For DAML
Web Services: Annotation and Matchmaking. Proceedings of the Second In-
ternational Semantic Web Conference (ISWC 2003), USA, 2003.

[26] T. Di Noia, E.D. Sciascio, F.M. Donini, M. Mogiello: A System for Principled
Matchmaking in an Electronic Marketplace. Electronic Commerce, 2004.



102 References

[27] T. Di Noia, E. Di Sciascio, F.M. Donini: Semantic Matchmaking as Non-
Monotonic Reasoning: A Description Logic Approach. Artificial Intelligence
Research (JAIR), 29:269–307, 2007.

[28] J. Domingue, S. Galizia, L. Cabral: Choreography in IRS-III: Coping with
Heterogeneous Interaction Patterns in Web Services. Proc. International Se-
mantic Web Conference, LNAI, Springer, 2005.

[29] D. Fahland, W. Reisig: ASM-based semantics for BPEL: The negative Con-
trol Flow. Proceedings of the 12th International Workshop on Abstract State
Machines (ASM’05), 2005.

[30] D. Fensel, F. van Harmelen: Unifying reasoning and search to Web scale.
IEEE Internet Computing, March/April 2007.

[31] A. Fernandez, M. Vasirani, C. Caceres, S. Ossowski: A role-based support
mechanism for service description and discovery. In: huang et al. (eds.),
Service-Oriented Computing: Agents, Semantics, and Engineering. LNCS 4504,
Springer, 2006.

[32] U. Furbach, M. Maron, K. Read: Location based informationsystems.
Künstliche Intelligenz, 3/07, BöttcherIT, 2007.

[33] M. Ghallab, D. Nau, P. Traverso: Automated planning. Elsevier, 2004.

[34] S. Grimm: Discovery - Identifying relevant services. In [98], 2007.

[35] S. Grimm, B. Motik, C. Preist: Matching semantic service descriptions
with local closed-world reasoning. Proc. European Semantic Web Conference
(ESWC), Springer, LNCS, 2006.

[36] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram: XRANK: Ranked Key-
word Search over XML Documents. Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, USA, 2003.

[37] P. Haase, R. Siebes, F. van Harmelen: Expertise-based Peer selection in Peer-
to-Peer Networks. Knowledge and Information Systems, Springer, 2006

[38] L. Henoque, M. Kleiner: Composition - Combining Web Service Functionality
in Composite Orchestrations. Chapter 9 in [98], 2007.

[39] D. Hull, U. Sattler, E. Zolin, R. Stevens, A. Bovykin, I. Horrocks: Deciding
semantic matching of stateless services. Proc. 21st National Conference on
Artificial Intelligence (AAAI), AAAI Press, 2006

[40] D. Hutter, M. Klusch, M. Volkamer: Information Flow Analysis Based Se-
curity Checking of Health Service Composition Plans. Proceedings of the 1st
European Conference on eHealth, Fribourg, Switzerland, 2006.

[41] D. Hutter, M. Volkamer, M. Klusch, A. Gerber: Provably Secure Execution
of Composed Semantic Web Services. Proccedings of the 1st International



References 103

Workshop on Privacy and Security in Agent-based Collaborative Environments
(PSACE 2006), Hakodate, Japan, 2006.

[42] M.C. Jäger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, K. Geihs: Ranked
Matching for Service Descriptions Using OWL-S. Proceedings of 14. GI/VDE
Fachtagung Kommunikation in Verteilten Systemen KiVS, Kaiserslautern,
2005

[43] L. Kagal, T. Finin, M. Paolucci, N. Srinivasan, K. Sycara, G. Denker: Au-
thorization and Privacy for Semantic Web Services. IEEE Intelligent Systems,
July/August, 2004.

[44] F. B. Kashani, C.C. Shen, C. Shahabi: SWPDS: Web Service peer-to-per
discovery service. Proceedings of Intl. Conference on Internet Computing, 2004.

[45] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel: Automatic Location of
Services. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

[46] F. Kaufer and M. Klusch: Hybrid Semantic Web Service Matching
with WSMO-MX. Proc. 4th IEEE European Conference on Web Services
(ECOWS), Zurich, Switzerland, IEEE CS Press, 2006

[47] F. Kaufer and M. Klusch: Performance of Hybrid WSML Service Matching
with WSMO-MX: Preliminary Results. Proc. First Intl. Joint ISWC Workshop
SMR2 2007 on Service Matchmaking and Resource Retrieval in the Semantic
Web, Busan, Korea, 2007.

[48] T. Kleemann, A. Sinner: Description logic based matchmaking on mobile
devices. Proceedgins of 1st Workshop on Knowledge Engineering and Software
Engineering (KESE 2005), 2005.

[49] M. Klein, B. König-Ries: Coupled Signature and Specification Matching for
Automatic Service Binding. European Conference on Web Services (ECOWS
2004), Erfurt, 2004.

[50] M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service Composition Plan-
ning with OWLS-XPlan. Proc. 1st Intl. AAAI Fall Symposium on Agents and
the Semantic Web, Arlington VA, USA, AAAI Press, 2005.

[51] M. Klusch, K-U. Renner: Dynamic Re-Planning of Composite OWL-S Ser-
vices. Proc. 1st IEEE Workshop on Semantic Web Service Composition,
Hongkong, China, IEEE CS Press, 2006.

[52] M. Klusch, K. Sycara: Brokering and Matchmaking for Coordination of Agent
Societies: A Survey. In: Coordination of Internet Agents, A. Omicini et al.
(eds.), Springer

[53] M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service Discovery
with OWLS-MX. Proc. 5th Intl. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, ACM Press, 2006



104 References

[54] P. Küngas, M. Matskin: Semantic Web Service Composition through a P2P-
Based Multi-Agent Environment. Proc. of the Fourth International Workshop
on Agents and Peer-to-Peer Computing (in conjunction with AAMAS 2005),
Utrecht, Netherlands, LNCS 4118, 2006.

[55] U. Küster, B. König-Ries, M. Stern, M. Klein: DIANE: An Integrated Ap-
proach to Automated Service Discovery, Matchmaking and Composition. Pro-
ceedings of the World Wide Web COnference WWW, Banff, Canada, ACM
Press, 2007.

[56] S. Lamparter, A. Ankolekar: Automated Selection of Configurable Web Ser-
vices. 8. Internationale Tagung Wirtschaftsinformatik. Universittsverlag Karl-
sruhe, Karlsruhe, Germany, March 2007.

[57] F. Lecue, A. Leger: Semantic Web Service composition through a match-
making of domain. Proc. of 4th IEEE European Conference on Web Services
(ECWS), Zurich, 2006.

[58] F. Lecue, A. Delteil, A. Leger: Applying Abduction in Semantic Web Service
Composition. Proceedings of IEEE International Conference on Web Services
(ICWS 2007), 2007.

[59] L. Li, I. Horrocks: A software framework for matchmaking based on seman-
tic Web technology. Proceedings of the world wide Web conference (WWW),
Budapest, 2003.

[60] J. Liu, H. Zhuge: A Semantic-Link-Based Infrastructure for Web Service.
Proc. of the International World Wide Web Conference, 2005.

[61] S. Liu, P. Küngas, M. Matskin: Agent-Based Web Service Composition with
JADE and JXTA. Proc. of Intl Conference on Semantic Web and Web Services
(SWWS), Las Vegas, USA, 2006.

[62] A. Löser, C. Tempich, B. Quilitz, W.-T. Balke, S. Staab, W. Nejdl: Searching
Dynamic Communities with Personal Indexes. Proceedings of Internatioanl
Semantic Web Conference, 2005.

[63] N. Lohmann: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0.
Proceedings of the Workshop on Formal Approaches to Business Processes
and Web Services (FABPWS’07), 2007.

[64] B.T. Loo, R. Huebsch, I. Stoica, J.M. Hellerstein: The Case for a Hybrid
P2P Search Infrastructure. Proceedings of rd Intl Workshop on P2P Systems
(IPTPS), USA, Springer, LNCS, 2004.

[65] Q. Lu, P. Cao, E. Cohen, K. Li, S. Shenker: Search and Replication in Un-
structured Peer-to-Peer Networks. Procceedings of ACM 6th ACM Interna-
tional Conference on Supercomputing ICS, New York, USA, 2002.

[66] A. Martens: Analyzing Web Service based Business Processes. Proceedings of
Workshop on Fundamental Approaches to Software Engineering FASE, 2005.



References 105

[67] S. McIllraith, T.C. Son: Adapting Golog for composition of Semantic Web
Services. Proc. International Conference on Knowledge Representation and
Reasoning KRR, Toulouse, France, 2002.

[68] S. Narayanan, S. McIllraith: Simulation, verification and automated compo-
sition of Web Services. Proc. of 11th International COnference on the World
Wide Web (WWW), Hawaii, 2002.

[69] B. Medjahed, A. Bouguettyaya, A.K. Elmagarmid: Composing Web Services
on the semantic Web. Very Large Data Bases (VLDB), 12(4), 2003.

[70] B.T. Messmer: New approaches on graph matching. PhD Thesis, University
of Bern, Switzerland, 1995.

[71] M. Milicic: Planning in Action Formalisms based on DLS: First Results. Pro-
ceedings of the Intl Workshop on Description Logics, 2007.

[72] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, Z. Xu: Peer-to-peer computing. Technical Report HPL-2002-57,
Hewlett-Packard, 2002.

[73] T. Möller, H. Schuldt, A. Gerber, M. Klusch: Next Generation Applications
in Healthcare Digital Libraries using Semantic Service Composition and Co-
ordination. Health Informatics, 12 (2):107-119, SAGE publications, 2006.

[74] I. Müller, R. Kowalczyk, P. Braun: Towards Agent-Based Coalition Formation
for Service Composition. Proceedings of the IEEE International Conference on
Intelligent Agent Technology, Washington, USA, 2006.

[75] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara: Semantic Matching of
Web Services Capabilities. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), 2002.

[76] M. Paolucci, K. Sycara, T. Nishimara, N. Srinivasan: Using DAML-S for
P2P Discovery. Proc. of International Conference on Web Services, Erfurt,
Germany, 2003.

[77] M. Papazoglou: Web Services: Principles and Technology. Pearson - Prentice
Hall, September 2007.

[78] J. Peer: Web Service Composition as AI Planning: A Survey. Tech-
nical Report, University of St. Gallen, Switzerland, 2005. Available at
elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

[79] J. Peer: A POP-Based Replanning Agent for Automatic Web Service Compo-
sition. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

[80] A. Pfalzgraf: Ein robustes System zur automatischen Komposition semantis-
cher Web Services in SmartWeb. Master Thesis, University of the Saarland,
Saarbrücken, Germany, Juni 2006.



106 References

[81] M. Pistore, P. Traverso: Planning as model checking for extended goals in
non-deterministic domains. In: Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence (IJCAI-01), 2001.

[82] M. Pistore, P. Roberti, P. Traverso: Process-Level Composition of Executable
Web Services: On-the-fly Versus Once-for-all Composition Proceedings of the
2nd European Semantic Web Conference (ESWC), Heraklion, Crete, LNCS
3532, Springer, 2005.

[83] M. Pistore, P. Traverso, P. Bertoli, A. Marconi: Automated synthesis of com-
posite BPEL4WS Web Services. Proceedings of the 2005 IEEE International
Conference on Web Services, Orlando, USA, IEEE Press, 2005.

[84] C. Preist: Semantic Web Services - Goals and Vision. Chapter 6 in [98], 2007.

[85] C. Preist, C. Bartolini, A. Byde: Agent-based service composition through
simultaneous negotiation in forward and reverse auctions. Proceedings of the
4th ACM Conference on Electronic Commerce, San Diego, California, USA,
2003.

[86] J. Rao, P. Kuengas, M. Matskin: Composition of Semantic Web Services using
Linear Logic theorem proving. Information Systems, 31, 2006.

[87] K.-U. Renner, P. Kapahnke, B. Blankenburg, M. Klusch: OWLS-XPlan
2.0 - A Dynamic OWL-S Service Composition Planner. BMB+F project
SCALLOPS, Internal Project Report, DFKI Saarbrücken, Germany, 2007.
www.dfki.de/ klusch/owls-xplan2-report-2007.pdf

[88] A. Rosenfeld, C. Goldman, G. Kaminka, S. Kraus: An Agent Architecture for
Hybrid P2P Free-Text Search. Proceedings of 11th Intl Workshop on COoper-
ative Information Agents (CIA), Delft, Springer, LNAI 4676, 2007.

[89] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: A Scalable and Ontology-based
P2P Infrastructure for Semantic Web Services. Proceedings of 2nd IEEE Intl
Conference on Peer-to-Peer Computing (P2P), Linkoping, Sweden, 2003

[90] B. Schnizler, D. Neumann, D. Veit, C. Weinhardt: Trading Grid Services -
A Multi-attribute Combinatorial Approach. European Journal of Operational
Research, 2006.

[91] E. Sirin, J. Hendler, B. Parsia: Semi-automatic Composition of Web Services
using Semantic Descriptions. Proceedings of Intl Workshop on Web Services:
Modeling, Architecture and Infrastructure workshop in conjunction with ICEIS
conference, 2002.

[92] E. Sirin, B. Parsia, J. Hendler: Filtering and Selecting Semantic Web Services
with Interactive Composition Techniques. IEEE Intelligent Systems, July/Au-
gust, 2004.

[93] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau: HTN planning for Web Service
composition using SHOP2. Web Semantics, 1(4), Elsevier, 2004.



References 107

[94] D.E. Smith, D.S. Weld: Conformant Graphplan. Proc. of 15th AAAI Confer-
ence on on AI, Pittsburgh, USA, 1998.

[95] B. Srivastava, J. Koehler: Web Service Composition: Current Solutions and
Open Problems. Proceedings of the ICAPS 2003 Workshop on Planning for
Web Services, 2003.

[96] S. Staab, H. Stuckenschmidt (eds.): Semantic Web and Peer-to-Peer. Springer,
2006.

[97] M. Stollberg, U. Keller, H. Lausen, S. Heymans: Two-phase Web Service
discovery based on rich functional descriptions. Proceedings of European Se-
mantic Web Conference, Buda, Montenegro, LNCS, Springer, 2007.

[98] R. Studer, S. Grimm, A. Abecker (eds.): Semantic Web Services. Concepts,
Technologies, and Applications. Springer, 2007.

[99] K. Sycara, M. Klusch, S. Widoff, J. Lu: LARKS: Dynamic Matchmaking
Among Heterogeneous Software Agents in Cyberspace. Autonomous Agents
and Multi-Agent Systems, 5(2):173 - 204, Kluwer Academic, 2002.

[100] D. Trastour, C. Bartolini, C. Priest: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. Proceedings of the International World
Wide Web Conference (WWW), 2002.

[101] P. Traverso, M. Pistore: Automated Composition of Semantic Web Ser-
vices into Executable Processes. Int Semantic Web Conference, LNCS 3298,
Springer, 2004.

[102] D. Tsoumakos, N. Roussopoulos: Adaptive Probabilistic Search (APS) for
Peer-to-Peer Networks. Proc. Int. IEEE Conference on P2P Computing, 2003.

[103] R. Vaculin, K. Sycara: Towards automatic mediation of OWL-S process
models. IEEE International Conference on Web Services (ICWS 2007), 2007.

[104] W.M.P. van der Aalst, A.J.M.M. Weijters: Process mining: a research
agenda. Computers in Industry, 53, 2004.

[105] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, J. Miller:
METEORS WSDI: A Scalable P2P Infrastructure of Registries for Semantic
Publication and Discovery of Web Services. Information Technology and Man-
agement, Special Issue on Universal Global Integration, Vol. 6, No. 1, 2005.

[106] L.H. Vu, M. Hauswirth, F. Porto, K. Aberer: A Search Engine for QoS-
enabled Discovery of Semantic Web Services. Ecole Politechnique Federal de
Lausanne, LSIR-REPORT-2006-002, Switzerland, 2006. Also available in the
Special Issue of the International Journal of Business Process Integration and
Management (IJBPIM) (2006).

[107] Z. Wu, K. Gomadam, A. Ranabahu, A. Sheth, J. Miller: Automatic Com-
position of Semantic Web Services using Process Mediation. Proceedings of



108 References

the 9th Intl. Conf. on Enterprise Information Systems ICES 2007, Funchal,
Portugal, 2007.

[108] J. Yan, R. Kowalczyk, J. Lin, M.B. Chhetri, S.K.Goh, J. Zhang: Autonomous
service level agreement negotiation for service composition provision. Future
Generation Computing Systems, 23(6), Elsevier, 2007.

[109] A.M. Zaremski, J.M. Wing: Specification Matching of Software Components.
ACM Transactions on Software Engineering and Methodology, 6(4), 1997.


