
The iSeM Matchmaker: A Flexible Approach For
Adaptive Hybrid Semantic Service Selection

P. Kapahnkea, M. Kluscha

aGerman Research Center for Artificial Intelligence (DFKI), Saarbruecken,
Stuhlsatzenhausweg 3, Germany.

Abstract

We present iSeM (intelligent Service Matchmaker), a precise hybrid and adap-
tive matchmaker for semantic Web services, which exploits functional service
descriptions in terms of logical signature annotations as well as specifications
of preconditions and effects. In particular, besides well-known strict logical
matching filters and non-logic-based textual and structural signature match-
ing, it adopts approximated reasoning based on logical concept abduction and
contraction for the description logic subset SH with information-theoretic val-
uation for matching inputs and outputs. In addition, it uses a stateless logical
specification matching approach, which applies the incomplete but decidable θ-
subsumption algorithm for preconditions and effects. The optimal aggregation
strategy of all those aspects is learned off-line by means of a binary SVM-based
service relevance classifier in combination with evidential coherence-based prun-
ing to improve ranking precision with respect to false classification of any such
variant on its own. We demonstrate the additional benefit of the presented ap-
proximation and the adaptive hybrid combination by example and by presenting
an experimental performance analysis.

Keywords: Semantic Web Service Selection, Matchmaker

1. Introduction

Semantic service selection is commonly considered key to the discovery of
relevant services in the semantic Web, and there are already quite a few match-
makers available for this purpose as for example the summary given in [13] and
the annual international Semantic Service Selection (S3) contest1 show. In this
paper, we present the first adaptive semantic service IOPE (inputs, outputs, pre-
conditions and effects) matchmaker2. In essence, its innovative features are (a)
approximated logical signature (IO) matching based on non-monotonic concept

Email addresses: patrick.kapahnke@dfki.de (P. Kapahnke), klusch@dfki.de
(M. Klusch)

1http://www-ags.dfki.uni-sb.de/ klusch/s3/
2This article is a revised and extended version of [11]

Preprint submitted to Elsevier June 30, 2011

abduction and contraction in the description logic subset SH3 together with
information-theoretic similarity and evidential coherence-based valuation of the
result to avoid strict logical false negatives, (b) stateless strict logical specifica-
tion (PE) plug-in matching to avoid failures of signature matching only, and (c)
SVM (support vector machine)-based semantic relevance learning adopted from
[10] but extended to full functional service profile (IOPE) matching and use
of approximated IO matching results to prune the feature space for precision.
Performance evaluation results particularly indicate that this kind of approxi-
mated logical matching performs close to its logical and non-logical counterparts
(text and structural matching) and significantly improves ranking precision in
adaptive hybrid combination with those.

The remainder of the article is structured as follows. We motivate our match-
maker iSeM and give an overview of our approach in Section 3. A detailed
description of its signature matching filters with focus on approximated logical
matching is given in Section 3.1, while Section 3.2 discusses its stateless, log-
ical specification matching filter. Section 3.3 describes the SVM-based service
relevance learning for selection, which is followed by implementation details in-
cluding an introduction to the S2M2 framework for semantic matchmaker devel-
opment in Section 4. Performance evaluation and result discussion are provided
in Section 5, after which we comment on related work in Section 6. Finally, we
conclude in Section 7.

2. Motivation

The specific problems of semantic service selection the matchmaker iSeM has
been particularly designed to cope with are motivated by the following service
example, which is used throughout the paper.

Example 1: Consider the semantic profiles of service request R and offer S in
Figure 1, taken from the standard test collection OWLS-TC4 according to which
S is relevant to R.

The desired service R is supposed to purchase a book for a given person
by debiting his own debit account, shipping the book to him and eventually
acknowledging the completed deal. The e-shopping service S, like amazon.com,
offers arbitrary articles including books that are requested by some customer
whose own credit card account gets respectively charged while sending an in-
voice for and pricing information about the deal. Both services are written in
OWL-S with semantic signature concept definitions in description logic OWL-
DL and their logical preconditions and effects in SWRL. In the following, we
assume the matchmaker to have an appropriate shared ontology and a service
registry available over which semantic service selection is performed. ◦

3http://www.cs.man.ac.uk/ ezolin/dl/

2

Figure 1: Service request (book purchasing) and relevant service offer (article purchasing).

False negatives of strict logical signature matching. The majority of
semantic service matchmakers perform logical signature matching (see [13] and
S3). One prominent set of strict logical matching filters for this purpose is pro-
vided below [18, 9]. Each of these filters requires (a) each service input concept
to be more generic than or equal to those provided in the request and (b) the
complete requested output to be covered by that of the service in terms of dif-
ferent types of logical subsumption relations.

Definition 1: Strict logical signature matching.
Let S,R be semantic service offer and request and Sin, Sout, Rin, Rout the multi-
sets of input and output concepts of the semantic signatures of S and R defined
in a shared OWL ontology O. The logical filter definitions used in iSeM are
inspired by OWLS-MX3 [10] but are more strict with respect to the mapping
of matching request and offer parameters. While each element of Rin (Sout)
could have more than one matching part in Sin (Rout) in OWLS-MX3, iSeM
requires strictly injective concept assignments for logicl matching filters. This
refinement was based on previous observations regarding cases of false positives
in OWLS-MX3 due to this characteristic. To accomplish this, BPGv(C̄, D̄) is
defined as the set of concept assignments (C,D) with C ∈ C̄ and D ∈ D̄ that
form an injective mapping as valid solution of bipartite graph matching on a
graph with C̄ and D̄ as nodes and weighted edges between them. The weights v
between concepts C and D indicate whether C v D holds: v = 1 iff C v D else
v = 0. That is, BPGv(C̄, D̄) is the mapping that maximizes the sum of binary
weights v for the given logical relation type. For the definition of filters analo-

3

gous to OWLS-MX3, BPGX(C̄, D̄) with X ∈ {(≡,v1,w1} are introduced, with
w1 denoting direct parent/child relations in a subsumption graph. Moreover, if
no assignment is possible, i.e. |D̄| < |C̄|, it holds that BPGX(C̄, D̄) = ∅. The
degree MatchIOLogic(R,S) of strict logical signature matching is then finally
defined as follows:
MatchIOLogic(R,S) ∈ {Exact, Plug-in, Subsumes, Subsumed-by, LFail}
with

Exact: BPG≡(Sin, Rin) 6= ∅ ∧ ∀(IS , IR) ∈ BPG≡(Sin, Rin) : IS ≡ IR
∧BPG≡(Rout, Sout) 6= ∅ ∧ ∀(OR, OS) ∈ BPG≡(Rout, Sout) : OR ≡ OS

Plug-in: BPGw(Sin, Rin) 6= ∅ ∧ ∀(IS , IR) ∈ BPGw(Sin, Rin) : IS w IR
∧BPGw1(Rout, Sout) 6= ∅ ∧ ∀(IS , IR) ∈ BPGw1(Rout, Sout) : OR w1 OS

Subsumes: BPGw(Sin, Rin) 6= ∅ ∧ ∀(IS , IR) ∈ BPGw(Sin, Rin) : IS w IR
∧BPGw(Rout, Sout) 6= ∅ ∧ ∀(IS , IR) ∈ BPGw(Rout, Sout) : OR w OS

Subsumed-by: BPGw(Sin, Rin) 6= ∅ ∧ ∀(IS , IR) ∈ BPGw(Sin, Rin) : IS w IR
∧BPGv1(Rout, Sout) 6= ∅ ∧ ∀(IS , IR) ∈ BPGv1(Rout, Sout) : OR v1 OS

LFail: None of the above logical filter constraints are satisfied. �

Figure 2: BPG for output part of Subsumes filter, positive and (partially) negative example.

Figure 2 shows two examples of the application of BPGw: on the left hand
side, the algorithm is able to find an assignment for each parameter in Rout
for which the required subsumption relation holds; the assignment on the right
is (one of) the best possible solutions but does not satisfy the requirement
OR,2 w OS,1 (i.e. v = 0), which causes the filter to fail.

Applying these strict logical matching filters to the running example intro-
duced above produces a logical fail (LFail), hence a false negative. The reasons
are that (a) the inputs book and article are not strictly logically disjoint sib-
lings in the ontology, that is (Book u Article 6v ⊥), and (b) the inputs debit
account and credit card are strictly logically disjoint, that is (DebitAccount u
CreditCard v ⊥).

Such cases of logical signature mismatches may appear quite often, in fact,
applying the above filters to the de facto standard collection OWLS-TC4 yields

4

a relatively high number of strict logical false negatives for each request in the
order of 45% of the size of its relevance set in average. As shown, for example,
in [10, 9, 12] and the contest S3, some hybrid combination of strict logical with
non-logic-based approximated signature matching methods may avoid failures
of strict logical signature matching filters defined above in practice4. But how
can logical matching itself be improved by what kind of complementary approx-
imation (cf. Section 3.1), and how well does this perform compared to and in
combination with its non-logic-based counterparts in practice (cf. Section 5.1)?

Failures of signature matching only. It is well known that matching of
semantic signatures only may fail in many cases, since they do not capture
the functional behavior commonly encoded in logical service preconditions and
effects (PE). There are different approaches to logical PE-matching [13] - but
which one can most effectively be used in a third-party matchmaker that usually
has no access to concept instances describing the states of service providers and
requesters (cf. Section 3.2)?

Best combination of semantic matching filters. How to best combine
different kinds of semantic service matching filters in terms of precision? One
option proposed, for example, in [8, 10, 12] is to let the matchmaker learn
the optimal aggregation of different matching results for its semantic relevance
decision - rather than to put the burden of finding and hard-coding the solution
by hand on the developer. Though this turned out to be quite successful in
the S3 contest restricted to semantic signatures, how can approximated logical
matching be used to improve the learning for better precision of service selection
(cf. Section 3.3)?

3. iSeM Matchmaker: Overview

Before delving into the technical details of the matchmaker iSeM, we shall
first provide an overview of its functionality.

Matchmaking algorithm in brief. For any given service request R and ser-
vice offers S ∈ SR described in OWL-S or SAWSDL, with SR being the service
registry of iSeM, the matchmaker returns a ranked set of relevant services as its
answer set to the user. For this purpose, it first learns the weighted aggregation
of different kinds of service IOPE matching results off line over a given training
set of positive and negative samples by means of SVM-based binary relevance
classification with ranking. These different kinds of matching approaches include
strict and approximated logical, text similarity-based and structural semantic

4Avoidance and higher (lower) ranking of false negatives (positives) increases average pre-
cision of ranked result lists

5

matching of service signatures (IO) in SH5, as well as stateless, logical plug-
in matching of service preconditions and effects (PE) in SWRL, if they exist.
Once learning has been done, the same filters are used by the learned relevance
classifier for selecting relevant services for previously unknown requests. iSeM
may be classified as an adaptive, hybrid semantic service IOPE matchmaker [13].

Hybrid signature (IO) matching. Logical signature matching of iSeM comes
in two complementary flavors: Strict logical matching and approximated log-
ical matching. For every service pair (R,S) for which strict logical signature
matching MatchIOLogic(R,S) as defined above (Section 2, Def. 1) fails, iSeM
computes the approximated logical matching degree MatchIOALogic(R,S) based
on approximated subsumption relations (C vAC D) between I/O concepts
C,D via contraction and structured abduction together with their information-
theoretic valuation. This leads to two hypotheses of approximated logical sig-
nature matching, that are approximated logical plug-in (H1) and subsumed-by
(H2), both of which weighted by their averaged informative quality v ∈ [−1, 1].
Eventually, the degree MatchIOALogic(R,S) = (H, v) of approximated logical
service signature matching is determined as the hypothesis H with maximal
valuation v. The approximated logical matching results are used in the learning
process over a given training set of service pairs to prune the respective feature
space restricted to logic-based matching to compensate for strict logical false
negatives. In addition, iSeM performs non-logic-based approximated matching,
that are text and structural semantic similarity-based signature matching for
which purpose it applies the respective filters of OWLS-MX3 [10] (cf. Section
3.1).

Logical specification (PE) matching. To cope with failures of signature
matching only and to allow for third-party matchmaking without having access
to service concept instances, iSeM performs stateless, logical plug-in matching
MatchPE(S,R) of service preconditions and effects by means of approximated
theorem proving, that is theta-subsumption, of required logical PE-implications
like in LARKS[18] (cf. Section 3.2).

Learning of full service profile (IOPE) selection. To combine the results
of its different IOPE matching filters for optimal precise service selection, iSeM
performs binary SVM-based semantic relevance learning off line over a given
training set of positive and negative samples (S,R) each of which is represented
as a vector x in the 10-dimensional feature space of different matching filters.
This space gets particularly pruned by exploiting the approximated logical sig-
nature matching results to compensate for strict logical false negatives. Once
that has been done, the learned binary classifier d with ranking r is applied
by iSeM to any service pair (S,R) with unknown request R to return the final

5Restriction to annotation in SH is due to respective limitation of the adopted concept
abduction reasoner [4]; its extension to SHOIN is ongoing.

6

result: MatchIOPE(S,R) = (d, r) (cf. Section 3.3, 5.1).

3.1. Hybrid Semantic Signature Matching

Semantic signature matching in iSeM is performed by means of both logic-
based and non-logic-based matching. While the first type basically relies on
strict logical (cf. Definition 1) and approximated logical concept subsumptions
(cf. Section 3.1.1), the second exploits text and structural similarities of sig-
nature concepts (cf. Section 3.1.2). Both kinds of approximated logical and
non-logic-based matching are performed by iSeM in particular to compensate
for strict logical signature matching failures in due course of its relevance clas-
sification learning (cf. Section 3.3).

3.1.1. Approximated Logical Matching

Inspired by [3, 4, 16], approximated logical signature matching of a given
service pair (S,R) relies on the combined use of logical contraction and abduc-
tion of signature concepts for approximated concept subsumption (cf. Definition
2) which is valuated in terms of the information gain and loss induced by its
construction (cf. Definition 3). Eventually, we extend both means of approx-
imation and valuation on the concept level to its application on the signature
level (cf. Definition 4).

Definition 2: Logical concept contraction and abduction.
Let C,D be concepts of an ontology O in SH. The contraction of C with respect
to D is CCP (C,D) = (G,K) with C ≡ GuK and K uD 6v ⊥.6 The abducible
concept Kh is derived from concept K through rewriting operations [4]:
Kh = h0 u rew(K), rew(A) = A, rew(¬A) = ¬A, rew(C1 u C2) = rew(C1) u
rew(C2), rew(∃R.C) = ∃R.(hi u rew(C)) and rew(∀R.C) = ∀R.(hi u rew(C));
where i is incremented per application of rew, A is a primitive component (in
the logical unfolding of K in O), Ci are concepts in SH, and H̄ = (h0, . . . , hn)
denotes variables in the resulting concept structure, where additional defini-
tions are added for approximation. The Structural abduction of concept K
with respect to D is SAP (K,D) = H = (H0, . . . ,Hn) with σ[H̄,H](Kh) v D
and σ[H̄,H](Kh) 6v ⊥. The approximated concept C ′ := σ[H̄,H](Kh) of C
with respect to D is constructed by applying σ[H̄,H] = {h0 7→ H0, . . . , hn 7→
Hn} to the abducible concept Kh. The approximated logical concept subsump-
tion C vAC D is defined as follows: C vAC D ⇔ C ′ v D with (G,K) =
CCP (C,D), H = SAP (K,D) and C ′ = σ[H̄,H](Kh). �

To avoid strict logical false negatives leading to lower average precision,
iSeM assumes the user to be willing to give up those parts of logical signature
concept definitions that cause strict logical subsumption failures and keeping the

6K (”‘keep”’) denotes the compatible part of C with respect to D, while G (”‘give up”’)
denotes the respectively incompatible part.

7

remaining parts instead. The latter are used to compute approximated concept
subsumption relations and the respectively approximated signature matching.
A tableau algorithm for computing near-optimal solutions to the problem is
given by Di Noia et al. in [4]. Figure 3 provides a schematical overview of the
approximation process: given the incompatible concept definitions C and D,
the contraction is computed to establish compatibility in terms of a less specific
definition K based on C (step 1). Based on this result, structural abduction
is applied to construct the approximation C ′, for which concept subsumption
C ′ v D holds (step 2).

Figure 3: Approximated logical concept subsumption. Arrows denote subsumption relations,
dashed lines concept (in-)compatibility.

Example 2: Consider Example 1. The approximated logical subsumption be-
tween strict logically disjoint siblings DebitAccount, CreditCard is computed
as follows:
(G,K) = CCP (DA,CC) = (¬∃allows.CreditP ,MOE u ∃issuedBy.BankP),
i.e. the restriction of not allowing credit of the debit account is given up, which
establishes compatibility with the CreditCard definition.
Kh = h0 u ObjectP u ∃hasV alue.(h1 u V alueP) u ∃issuedBy.(h2 u BankP).
The abducible concept Kh determines the positions for concept refinement in
the structure of the remaining concept definition K.
H̄ = (h0, h1, h2), H = SAP (DA,CC) = (∃allows.CreditP ,>, CompanyP)
then is the solution computed according to [4].
The approximated concept DebitAccount′ is then constructed using the fol-
lowing mapping function: σ[H̄,H] = {h0 7→ ∃allows.CreditP , h1 7→ >, h2 7→
CompanyP },
DA′ = σ[H̄,H](Kh) = ∃allows.CredituMOEu∃issuedBy.(BankuCompany).
DA, CC and MOF are abbreviations for concept names DebitAccount,
CreditCard andMediumOfExchange respectively. It holds thatDebitAccount′

v CreditCard, hence DebitAccount vAC CreditCard. ◦

It is worth mentioning that for the special case, where C v D initially
holds, the algorithm presented in [4] that is used by iSeM yields a trivial solu-
tion, which later on causes the overall aproximate logic-based matching filter to
be redundant to strict logic-based matching in terms of (true or false) positive

8

classification, i.e. it can only be used to remedy strict logical matching failures.
This fact is formalized by the following lemma and will be used in subsequent
analysis of this behaviour:

Lemma 1: Trivial approximated concept subsumption.
Given two concepts C and D in NNF and satisfiable in SH with C v D and
a T-box T ⊂ SH. The application of the tableaux-algorithm for approximated
concept subsumption given in [4] to the problem SAP (C,D) always yields the
trivial solution H = 〈H0, . . . ,Hn〉 = 〈>, . . . ,>〉.

Proof: SAP is applicable per Definition 2, since C v D implies C u D 6v ⊥.
H = 〈>, . . . ,>〉 is a solution for SAP (C,D), since σ[H̄,H](Ch) = C for
C in NNF. Thus, because of the original assumption C v D, it holds that
σ[H̄,H](Ch) v D and σ[H̄,H](Ch) 6v ⊥. A tableau τ for the proposition
T |= C v D is already closed per definition. Algorithm 1 given in [4] then
yields the following substitution because of the conditional given in line 4:
σ = {h0 7→ >, . . . , hn 7→ >}.

In order to rank the computed approximations, we valuate them by means
of their informative quality. Roughly, the informative quality of approximated
logical subsumption between signature concepts C,D is the difference between
the information gain and loss induced by its construction. That is, the util-
ity of the respectively approximated concept C ′ is the trade off between its
information-theoretic similarity [16] with the original concept C and the tar-
geted one D. The similarity is based on the probabilistic information content of
concepts with respect to the frequency of their occurrence in semantic service
signatures.

Definition 3: Informative quality of approximated subsumption.
Let SR be the set of service offers registered at the matchmaker (service reg-
istry), Sin, Sout the multi-sets of concepts used for signature parameter annota-
tion of service S, SAC(SR) the set of all concepts used for annotating services in
SR. We define the informative quality v of approximated concept subsumption
C vAC D (cf. Definition 2) as:

v(C,D) = siminf (C ′, D)− (1− siminf (C ′, C))

with the information-theoretic similarity of concepts C and D proposed by Lin
[16]:

siminf (C,D) = 2 · IC(maxdcs(C,D))/(IC(C) + IC(D)),

where maxdcs(C,D) = argmaxc∈dcs(C,D){IC(c)} is the direct common sub-
sumer (dcs) of C andD in ontologyO with maximum information content IC(c).
The information content of concept C ∈ SAC(SR) is IC(C) = − logP (C), else
IC(C) := maxD∈SAC(SR){IC(D)}. We define the probability of concept C be-
ing used for semantic service annotation as the frequency of its occurrence in
semantic signatures of services in service registry SR:

9

P (C) = 1
|IOSR| ·

∑
S∈SR |{D ∈ Sin ∪ Sout : D v C}|,

where IOSR is the multiset of all parameters used in SR. Please note that we
adapted the original notion introduced by Resnik [17] for our approach based
on description logics to account for implicit subsumption relationships.�

Example 3: The informative quality of DebitAccount vAC CreditCard given
in Example 2 is computed as follows:
IC(DA) = − logP (DA) = − log 0.045 ≈ 1.348 is the information content of the
original concept DebitAccount and IC(CC) = − logP (CC) = − log 0.075 ≈
1.125 the information content of target concept CreditCard accordingly. For the
approximated concept DebitAccount′, it holds that IC(DA′) = − log 0.035 ≈
1.456, since DA′ 6∈ SAC(SR). siminf (DA′, CC) = 2·1.125

1.456+1.125 ≈ 0.872 is the
information gain from using the approximated concept instead of the origi-
nal one and siminf (DA′, DA) = 2·1.348

1.456+1.348 ≈ 0.962 the information loss of
the approximation. The valuation then is computed as follows: v(DA,CC) =
0.872− (1− 0.962) = 0.834. ◦

For each service pair, depending on the computed type of their approximated
signature concept subsumption relations, one can determine two hypotheses of
approximated logical service signature matching: approximated logical plug-
in and approximated logical subsumed-by. For both, the maximal informative
quality is computed using bipartite concept graph matching.

Definition 4: Approximated logical signature match.
Let S,R be semantic service offer and request, Sin, Sout, Rin, Rout multisets of
their signature concepts and BPGvAC (C̄, D̄) the concept assignment via bi-
partite graph matching as in Definition 1 but with approximated subsumption
vAC and informative quality of edge weights v(C,D) for C ∈ C̄, D ∈ D̄;
BPGwAC (C̄, D̄) analogously with edge weights v(D,C).
Approximated logical plug-in matching hypothesis H1(R,S) holds iff:

∀IS ∈ Sin : ∃IR ∈ Rin : (IS , IR) ∈ BPGwAC (Sin, Rin)
∧∀OR ∈ Rout : ∃OS ∈ Sout : (OS , OR) ∈ BPGvAC (Sin, Rin).

Approximated logical subsumed-by matching hypothesis H2(R,S) holds iff:

∀IS ∈ Sin : ∃IR ∈ Rin : (IS , IR) ∈ BPGwAC (Sin, Rin)
∧∀OR ∈ Rout : ∃OS ∈ Sout : (OS , OR) ∈ BPGwAC (Sin, Rin).

Informative quality val(S,R) : {H1, H2} → [−1, 1] of an approximated signature
matching hypothesis is the average of informative qualities of its respective ap-
proximated concept subsumptions:

val(S,R)(H1) =
1

2·|Sin| ·
∑

(IR,IS)∈BPGwAC (Rin,Sin)
v(IR, IS)

+ 1
2·|Rout| ·

∑
(OS ,OR)∈BPGvAC (Sout,Rout)

v(OS , OR).

val(S,R)(H2) =

10

1
2·|Sin| ·

∑
(IR,IS)∈BPGwAC (Rin,Sin)

v(IR, IS)

+ 1
2·|Rout| ·

∑
(OS ,OR)∈BPGwAC (Sout,Rout)

v(OS , OR).

The approximated logical signature matching degree is the approximation hy-
pothesis with maximum informative quality: MatchIOALogic(S,R) := (H, v)
with H = argmaxx∈{H1,H2}val(x) and v = val(S,R)(H). Semantic relevance
ranking of services S bases on MatchIOALogic(S,R)[2]∈[-1,1]. Binary relevance
classification by approximated logical matching: MatchIOALogic(S,R)* = 1 iff
MatchIOALogic(S,R)[2] ≥ 0, else MatchIOALogic(R,S)* = 0. �

Example 4: Consider Examples 1 – 3. The approximated logical signature
match of S,R is computed as follows:
BPGwAC (Rin, Sin) = {(Book,Article), (DA,CC), (Person,Customer)} is the
assignment based on concept approximation and information-theoretic valua-
tion for inputs and BPGvAC (Sout, Rout) = {(Invoice, Ack)} the assignment for
outputs accordingly, both assuming approximated signature matching hypothe-
sis H1. The informative quality valuation for H1 is val(S,R)(H1) = 1

2·3 · (0.829 +

0.834+0.927)+ 1
2·1 ·0.895 = 0.879. In this example, the same valuation holds for

H2, wich can be easily seen considering the fact that computation of valS,R(H1)
and valS,R(H2) only differ regarding the outputs, for which only one assignment
is possible and concepts already subsume. The overall matching result then is
MatchIOALogic(S,R) := (H1, 0.851) ◦

Obviously, the approximated logical matching relation MatchIOALogic(R,S)
always exists, and we will show in the following, that its binary decision variant
MatchIOALogic(R,S)* is redundant to its logical counterpart MatchIOLogic(R,S)
with respect to positive service classification. That is, their true and false pos-
itives are the same, but not vice versa. This can be easily seen by considering
that strict logical positives already provide parameter assignments based on
subsumption relations and approximation is trivial in those cases (cf. Lemma
1).

Theorem 1: Redundance of strict and approximated logical signature matching
positives. Given a service offer S and service request R described in terms of
sets of satisfiable input and output concepts Sin, Sout, Rin, Rout, it holds that:

MatchIOLogic(S,R) 6= LFail ⇒ MatchIOALogic(S,R)*= 1.

In particular, it holds that all strict logical true positives are also approximated
logical true positives and all strict logical false positives are also approximated
logical false positives.

Proof: LM(R,S) holds iff one of the following 4 cases applies: MatchIOLogic(R,S)
∈ {Exact, Plug-in, Subsumes Subsumed-by}. For the Subsumes case the follow-
ing holds: There exists a solution BPGw(Sin, Rin) for which for every contained
pair (IR, IS) it holds that IR v IS . CCP (IR, IS) = 〈>, IR〉 (since IRu IS 6v ⊥),

11

SAP (IR, IS) = 〈>, · · · ,>〉 (Lemma 1). Hence, for each pair (IR, IS), the
concept constructed for approximation is as follows: I ′R = σ[H̄,H](Kh) =
σ[H̄, 〈>, · · · ,>〉](IhR) = IR. Moreover, siminf (I ′R, IR) = (2·IC(IR) = /(IC(IR)+
IC(IR)) = 1. From this, one can clearly see that v(IR, IS) ≥ 0 for each
such pair. The analoguous series of explanations can be applied for all out-
put pairs (OS , OR). Therefore, val(S,R)(H1) ≥ 0 (every summand is ≥ 0),
which implies MatchIOALogic(S,R)*= 1 per last paragraph of Definition 4 (val-
uation for hypothesis H = argmaxx∈{H1,H2}val(x) must be ≥ 0 because at
least H1 ≥ 0). Cases MatchIOLogic(R,S) = Exact and MatchIOLogic(R,S) =
Plug-in are special cases (with more restricted operators ≡ and w1 respec-
tively) of what has just been shown and the applied arguments also hold. For
MatchIOLogic(R,S) = Subsumed-by, argumentation is equivalent wrt. to in-
puts, for outputs it can be easily shown analogously with approximation hy-
pothesis H2 instead of H1.

This fact is used in iSeM to restrict its computation of approximated logical
signature matches in the learning phase to cases of strict logical false negatives
only and use the evidential coherence of the matching results to heuristically
prune the feature space for precision (cf. Section 3.3.2).

3.1.2. Text and Structural Signature Matching

Non-logic-based approximated signature matching can be performed by means
of text and structural similarity measurement. For iSeM, we adopted those of
the matchmaker OWLS-MX3, since they have been experimentally shown to be
most effective for this purpose [10]. For text matching of signature concepts in
the classical vector space model, their unfoldings in the shared ontology are rep-
resented as weighted keyword vectors for token-based similarity measurement.
Structural semantic similarity of concepts relies on their relative positioning in
the subsumption graph, in particular on the shortest path via their direct com-
mon subsumer and its depth in the taxonomy [15].

Definition 5: Approximated non-logic-based signature matching
Let SR be the service registry of the matchmaker, I the text index of service

signature concepts, O the shared ontology and
−→
Sin,

−−→
Sout,

−−→
Rin,

−−→
Rout the TFIDF

weighted keyword vector of the conjunction of unfolded input or output concepts
of S and R respectively. Text similarity-based signature matching is the average
of the respective signature concept similarities:

MatchIOText(S,R) = 1
2 · (simtext(

−→
Sin,
−−→
Rin) + simtext(

−−→
Sout,

−−→
Rout))

with Tanimoto coefficient (alternatively Cosine similarity) simtext(
−→
C,
−→
D) ∈ [0, 1].

Structural semantic signature matching is the averaged maximal structural sim-
ilarity of their signature concepts:

MatchIOStruct(S,R) = 1
2 · (simstruct(Sin, Rin) + simstruct(Sout, Rout))

12

with

simstruct(A,B) =
1

|A|
∑
a∈A

max{simcsim(a, b) : b ∈ B} ∈ [0, 1],

and structural concept similarity adopted from [15]:

simcsim(C,D) =

{
e−αl · e

βh−e−βh
eβh+e−βh

, C 6= D

1 , C = D
,

with l shortest path via direct common subsumer between given concepts and
h its depth in O, α = 0.2 and β = 0.6 weighting parameters manually adjusted
to structural features of ontology O based on results of [15]. �

Example 5: Applied to Example 1, we obtain a high score for text-based signa-
ture matching MatchIOtext(S,R) = 0.71 which correctly accounts for semantic
relevance of S to R, hence avoids the strict logical false negative. The same
holds for the structural semantic matching MatchIOstruct(S,R) = 0.69. For ex-
ample, text and structural similarities of the strict logically disjoint input con-
cept siblings DebitAccount and CreditCard are high (simtext(DA,CC)= 0.94,
simcsim(DA,CC) = 0.63) which indicates their semantic proximity. Please
note, that we do not apply a threshold value do determine relevance but per-
form semantic relevance learning (cf. Section 3.3). However, matching pairs
tend to get higher results for MatchIOtext and MatchIOstruct than irrelevant
pairs. ◦

While text matching of signatures may avoid strict logical matching failures,
structural semantic matching may also compensate for text matching failures,
in particular when mere is-a ontologies with inclusion axioms only are used for
semantic annotation of service signatures. For reasons of space limitation, we
refer to [10] for more details and examples.

3.2. Stateless Logical Specification Matching

As mentioned above, semantic signatures of services do not cover functional
service semantics usually encoded in terms of logical service preconditions and
effects. This may cause signature matching only to fail, for example if signa-
tures are equivalent for a book selling service offer and a book borrowing re-
quest. Though semantic service descriptions rarely contain such specifications
in practice [14], we equipped the implemented iSeM matchmaker with the most
prominent PE-matching filter adopted from software retrieval: logical specifica-
tion plug-in matching.

Definition 6: Stateless, logical specification plug-in matching.
Let (S,R) be services with preconditions (PR, PS) and effects (ER, ES) defined
in SWRL. Service S logically specification-plugin matches R:

MatchPE(S,R) iff |= (PR ⇒ PS) ∧ (ES ⇒ ER).

13

Stateless checking of MatchPE(S,R) in iSeM 1.0 is adopted from LARKS [18]:
Preconditions and effects specified as SWRL rules are translated into PROLOG
as in [19] and then used to compute the required logical implications by means
of θ-subsumption checking stateless, that is without any instances (ABox), as
given in [20]:

(∀pS ∈ PS : ∃pR ∈ PR : pR ≤θ pS)⇒ (PR ⇒ PS)
(∀eR ∈ ER : ∃eS ∈ ES : eS ≤θ eR)⇒ (ES ⇒ ER).

A clause C θ-subsumes D, written C ≤θ D, iff there exists a substitution θ such
that Cθ ⊆ D holds; θ-subsumption is an incomplete, decidable consequence
relation [6]. �

Example 6: If applied to Example 1, this PE-matching filter succeeds, hence
avoids the respective false negative of strict logical signature matching only.
Further, consider a service pair (S,R′) having the identical or strict logically
equivalent semantic signatures as (S,R) given in Example 1 - but with the re-
quested effect of R′ to only register a book at a given local index such that
service S is irrelevant to R′: The false positive S of (strict or approximated)
logical signature matching only can be avoided by an additional specification
plug-in matching filter, which, in this case, would correctly fail. ◦

3.3. Off-Line Service Relevance Learning

In order to find the best combination of its different matching filters for
most precise service selection, iSeM learns their optimal weighted aggregation by
using a support vector machine (SVM) approach. In particular, the underlying
feature space is pruned by evidential coherence-based weighting of approximated
against strict logical signature matching results over the given training set to
improve precision.

3.3.1. Overview: Learning and Selection

The training set TS is a subset (5%) drawn uniformly at random from the
service test collection OWLS-TC4. It contains user-rated service pairs (S,R)
each of which is equipped with a 10-dimensional matching feature vector xi
for positive and/or negative service relevance samples (xi, yi) ∈ X × {1,−1}
in the possibly non-linearly separable7 feature space X = {0, 1}5 × [−1, 1]2 ×
[0, 1] × [0, 1] × {0, 1}. The different matching results for (S,R) are encoded as
follows: x[1] ... x[5]∈ {0, 1}5 for MatchIOLogic(R,S) in decreasing order; x[6] =
val(S,R)(H1) and x[7] = val(S,R)(H2) ∈ [−1, 1] for MatchIOALogic(R,S); x[8]∈
[0, 1] for MatchIOText(R,S); x[9]∈ [0, 1] for MatchIOStruct(R,S); and x[10]∈
{0, 1} for MatchPE(R,S). For example: x = (0, 0, 0, 0, 1, 0.85, 0, 0.4, 0.6, 1) en-
codes a strict logical fail but approximated logical plugin with informative qual-
ity of 0.85, text (structural) match of 0.4 (0.6) and plugin specification match.

7E.g. feature space for OWLS-TC4 is non-linearly separable

14

The SVM-based classification learning problem of iSeM then is to find a
separating hyperplane h in X such that for all samples (x, y) ∈ TS for (S,R)
with minimal distances (these particular samples are also called support vectors)
to h these distances are maximal. It is defined as follows:

minimize in w,b,ζ:
1

2
wTw + C

N∑
i=1

ζi

subject to ∀1 ≤ i ≤ N : yi(w
Tφ(xi) + b) ≥ 1− ζi, ζi ≥ 0,

where w and b define the optimally separating hyperplane as the set of points
satisfying wTφ(x) + b = 0. Furthermore, w is the normal vector which specifies
the orientation of the plane, b is called bias and indicates the offset of the
hyperplane from the origin of the feature space X. The error term C

∑N
i=1 ζi

is introduced to allow for outliers in a non-linear separable training set, where
the error penalty parameter C must be specified beforehand. The predefined
function φ maps features into a higher, possibly infinitely dimensional space
in which the SVM finds a hyperplane that allows a classification of non-linear
separable data (more precise with respect to the original dimension of X)8.

Since w =
∑N
i=1 yiαiφ(xi) is a linear combination of training sample feature

vectors the dual formulation of the SVM classification problem that is actually
solved by OWLS-MX3 is as follows:

maximize in α:
1

2

N∑
i,j=1

yiyjαiαjK(xi, xj)−
N∑
i=1

αi

subject to

N∑
i=1

yiαi = 0,∀1 ≤ i ≤ N : 0 ≤ αi ≤ C.

The kernel function K(xi, xj) = φ(xi)
Tφ(xj) implicitly defines φ in the scalar

product, while problem is solved by finding a set of Lagrange multipliers αi
representing the hyperplane for which training samples xi with αi 6= 0 are
called support vectors (of the hyperplane). As kernel, the RBF (Radial Basis

Function) K(xi, xj) = e−γ‖xi−xj‖
2

is used as suggested in [7]. Unlike polynomial
kernels, it only introduces a single parameter γ which keeps the complexity of
model selection low. Besides, for specific parameter settings it can behave like
a linear or sigmoid kernel.

The searching of an optimal SVM paramter setting (C, γ) with respect
to average classification accuracy has been achieved by means of grid search
and 6-folded cross-validation. Binary classification of samples x ∈ X for ser-
vice pair (S,R) with the above mentioned parameters is defined as follows:

d(x) =
∑N
i=1 yiαiK(xi, x) + b with bias b satisfying the Karush-Kuhn-Tucker

8The fraction 1
2

is introduced for computational reasons only, and does not affect the
classification result.

15

condition (KKT)[2], such that S is classified as relevant iff d(x) > 0. Please
note, that w is not a direct output of the dual optimization but computed
using the objective value o of the dual optimization and the coefficients αi
based on the relation between the primary and dual problem: ||w||2 = wTw =∑N
i,j=1 yiyjαiαjK(xi, xj) = 2 · (o +

∑N
i=1 αi). Since we are not only interested

in binary classification but also want to compute a service ranking, the distance

of the sample to the hyperplane is also computed: dist(x) = d(x)
|w| . The match-

ing function then returns a tuple of classification result and distance using the
following definition: MatchIOPE(S,R) = (d(x) > 0, dist(x)).

3.3.2. Evidential Coherence-Based Feature Space Pruning

To improve the performance of the binary SVM-based relevance classier
to be learned by iSeM, iSeM exploits information available from the given
training set TS to prune the feature space X based on the classification re-
sults of strict vs. approximated logical signature matching. Due to redun-
dance of both logical matching types for (true and false) positive classification
(cf. Theorem 1), it restricts the pruning of feature vectors x ∈ X to cases
of strict logical matching failures (MatchIOALogic(R,S) = LFail). The re-
spective set Ev = {(x, y) : x[5] = 1} of classification events is partitioned
with respect to binary classification results of approximated logical matching
(MatchIOALogic(R,S)*) for these cases as follows:

E1 = {(x, y) ∈ Ev : y = 1 ∧ (x[6] > 0 ∨ x[7] > 0)},

E2 = {(x, y) ∈ Ev : y = −1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0},

E3 = {(x, y) ∈ Ev : y = 1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0},

E4 = {(x, y) ∈ Ev : y = −1 ∧ (x[6] > 0 ∨ x[7] > 0)}.

For example, E1 denotes all relevant samples (x, y) ∈ Ev classified correctly
as (true) positives by MatchIOALogic while E2 contains all irrelevant samples
(x, y) ∈ Ev classified correctly as (true) negatives by MatchIOALogic. The set
E3 contains wrong negative classifications of approximated matching, hence is
redundant to its strict logical counterpart and deleted from the respectively
pruned feature space for learning. In contrast, E4 contains those cases, where
approximated logic-based matching itself classifies as false positives contrary to
strict logic-based matching.

Inspired by the work of Glass [5], the feature space X is pruned further by
modification of logical matching results of feature vectors x ∈ X of samples in
E1, E2 or E4 based on evidential coherence-based weighting of approximated
matching results as follows:

E1, x[6] ≥ x[7] 7→ x[5] := 0, x[6] := w1 · x[6], x[7] := 0,

E1, x[6] < x[7] 7→ x[5] := 0, x[6] := 0, x[7] := w2 · x[7],

E2, x[6] ≥ x[7] 7→ x[6] := w3 · x[6], x[7] := 0,

16

E2, x[6] < x[7] 7→ x[6] := 0, x[7] := w4 · x[7],

E4, x[6] ≥ x[7] 7→ x[6] := (1− w1) · x[6], x[7] := 0,

E4, x[6] < x[7] 7→ x[6] := 0, x[7] := (1− w2) · x[7].

In case of true positive approximated logical matching, the encoded strict log-
ical misclassification in x ∈ X is displaced (x[5] = 0); in any case, the better
approximation (H1 or H2) is weighted with the evidential coherence value (one
of w1 . . . w4) of one of the following hypotheses (A1, A2) of relevance explana-
tion: (A1) MatchIOALogic is a correct explanation of semantic relevance (avoids
logical false negatives), and (A2) MatchIOALogic is a correct explanation for
semantic irrelevance (avoids introduction of false positives). For events in E4,
the coherence for the contrary of hypothesis A1 (MatchIOALogic is not a correct
explanation of semantic relevance) is used for weighting corresponding features
to alleviate support for false positives of approximate logic-based matching in
the aggregation strategy learning step.

Which of both hypotheses of semantic relevance explanation is best with
respect to a given test collection? Following [5], iSeM determines the quality
of an explanation by measuring the impact of evidence E on the probability
of explanation H (with coherence or confirmation measures) rather than mea-
suring its posterior probability with Bayes. In other words, it determines the
most plausible explanation H instead of the most probable measured in terms
of its coherence with evidence E over given training set. While hypothesis A1
(A2) is represented by special case set H+

i (H−i), the set E+ (E−) provides
cases of observed evidence for relevance (irrelevance) in the test collection. The

coherence overlap measure Co(H,E) = P (H∩E)
P (H∪E) performed best in practice [5],

and is used by iSeM to compute the weights of approximated logical signa-
ture matching results for respective feature space pruning: w1 = Co(H+

1 , E
+),

w2 = Co(H+
2 , E

+), w3 = Co(H−1 , E
−) and w4 = Co(H−2 , E

−).

Example 7: Consider training set TS with |Ev| = 20, |E1| = 10 and |E4| = 1.
E1 contains 8 events (cases) of approximated plug-in matching (x[6] ≥ x[7]),
the only event in E4 is also an approximated plug-in match. Required poste-
rior probabilities for w1 = Co(H+

1 , E
+) are computed as follows: P (H+

1) =
|{x∈E1∪E4:x[6]≥x[7]}|

|Ev| = 9
20 ,

P (E+) = |E1∪E3|
|Ev| = 14

20 , P (H+
1 |E+) = |{x∈E1:x[6]≥x[7]}|

|E1∪E3| = 8
14 . The resulting evi-

dential coherence-based weight of approximated logical matching is: Co(H+
1 , E

+)

=
P (E+)·P (H+

1 |E
+)

P (E+)+P (H+
1)−P (H+

1 ∩E+)
≈ 0.5333. That is, the coherence value of the hy-

pothesis of approximation H1 (represented by feature x[6]) being a correct ex-
planation for semantic relevance (A1) is w1 = 0.5333. Analogously, to compute
the weights w2, w3 and w4, the following posterior probabilities can be computed

by observing the set of all relevant events Ev: P (H−1) = |{x∈E2∪E3:x[6]≥x[7]}|
|Ev| ,

P (H+
2) = |{x∈E1∪E4:x[6]<x[7]}|

|Ev| , P (H−2) = |{x∈E2∪E3:x[6]<x[7]}|
|Ev| , P (E−) = |E2∪E4|

|Ev| ,

P (H−1 |E−) = |{x∈E2:x[6]≥x[7]}|
|E2∪E4| , P (H+

2 |E+) = |{x∈E1:x[6]<x[7]}|
|E1∪E3| , P (H−2 |E−) =

17

|{x∈E2:x[6]<x[7]}|
|E2∪E4| . To compute the remaining coherence values, the probabilities

have to be inserted into the following formulas: w2 =
P (E+)·P (H+

2 |E
+)

P (E+)+P (H+
2)−P (H+

2 ∩E+)
,

w3 =
P (E−)·P (H−1 |E

−)

P (E−)+P (H−1)−P (H−1 ∩E−)
, w4 =

P (E−)·P (H−2 |E
−)

P (E−)+P (H−2)−P (H−2 ∩E−)
. ◦

4. Implementation

In the following, details regarding the implementation of the current version
1.1 of iSeM are given. Selected algorithms are presented and an architectural
overview based on the Semantic Service MatchMaker (S2M2) framework is pro-
vided, followed by details on the flexible model-driven approach used to define
matching filters. iSeM 1.1 is implemented in Java and publicly available at
http://www.semwebcentral.org/projects/isem/.

4.1. Algorithms

Algorithm 1 (plase note that all algorithms described here are located in
the Appendix to not disrupt the text flow) shows the training phase of iSeM as
described formally in the previous sections. After the feature vectors have been
computed for each request/candidate pair (R,S) with relevance y of training
set TS (lines 2–5), the event sets as described in Section 3.3.2 are filtered (lines
10–13). After that, the adaptation of feature vectors based on coherence com-
putations for the previously described cases is performed (lines 15–31) and the
SVM is trained.

Algorithm 2 technically describes the approximate service matching pro-
cedure in detail, which is used during the training phase9. At first, the ex-
planations including local valuation on concept level for all relevant concept
combinations are computed (lines 2–18), which then serve as basis for possible
approximate matching variants H1 and H2. The next lines (19–21) then de-
scribe the use of bipartite graph matching, which finds the best assignment for
the signature components. After that, the local valuations of both variants on
service level are computed (lines 22-23). Finally, the two approximation results
are returned with their valuation. Please note, that the result tuple of this func-
tion may be used to compute MatchIOALogic*; however, this is not required for
the training and matching process using the SVM-based result aggregation.

Approximation on concept level is described in Algorithm 3 and follows the
formal definitions given in Section 3.1.1. Given a concept C and target concept
D, the contraction problem is solved first to establish compatibility (KuD 6v ⊥),
followed by structural concept abduction to create a (near-)optimal (wrt. to
minimization of applied changes) subsumed concept definition. Both results
are taken into account for the constructed concept C ′, which is then returned
together with its information-theoretic valuation v.

9It is also used for matching, which is not covered here, because it is quite similar to
training in terms of feature computation and only differs in using the SVM for prediction
instead of training.

18

4.2. S2M2 Framework

The S2M2 (Semantic Service MatchMaker) framework is designed to support
various aspects of development of a semantic matchmaker while being indepen-
dent of specific formalisms for service description and semantic annotation as
well as inference mechanisms. To accomplish this, adequate interfaces for ex-
traction of relevant service information, matching of service candidates with a
given request and creation of rankings based on results of the matching process
are provided.

realized in EMF
realized in EMF

StrategiesStrategies
Inference

Expressions
Inference

Expressions
Core

Expressions
Core

Expressions

TextSim
Expressions

TextSim
Expressions

iSeM
Extension

iSeM
Extension

ParserParser
Filter

Expression
Filter

Expression

Matching EngineMatching Engine

Service Information
Extractor

Matching Expression
Evaluator Ranking ProcessorService

Registry

service
request

result
ranking

Parser Filter
Expression

n n

Ranking
Strategy

OWL-S core
expressions

inference
expressions

text-sim.
expressions

iSeM
extension

strategies

configuration

Filter Editor
XMI
filter

config.
S2M2 core component
S2M2 extension interface
S2M2 configuration component
Additional extension

Figure 4: S2M2 architecture overview.

Figure 4 provides a broad overview of the S2M2 framework. Given a set of
service offer candidates stored in a service registry and a request, service infor-
mation is parsed and mapped to an internal representation as preparation step of
the matching process inside the Service Information Extractor core component.
A parser interface offers capabilities for extension to other formats not provided
by default. The step of mapping functional or non-functional properties en-
ables the implementation of matchmakers independent of the used formalism
to describe services. For example, a matchmaker developer may intend to map
OWL-S input parameters and SAWSDL model references of input message parts
to a unified view on service inputs in the internal representation.

Each service offer/request pair is then matched inside the Matching Ex-
pression Evaluator according to a set of matching feature expressions (filter
definitions). For this, a very flexible approach based on the Eclipse Modeling
Framework (EMF) has been adopted, which describes filter expressions in terms

19

of a meta-model based on a generic expression interface definition. This allows
(a) to easily extend the set of expressions provided with S2M2 by creating new
packages extending existing features or the generic interface as has been done
for example in iSeM 1.1, (b) to automatically generate code for a graphical
editor to create and edit filter definition instances for S2M2 core functionality
as well as additional packages and (c) to make use of the persistence func-
tionality provided by EMF in terms of the XMI (XML Metadata Interchange)
format, which is interpreted by the generic matching engine implementation of
S2M2 and thus allows for straight-forward integration of own filter definitions
in the matchmaker. Figure 5 shows the generated stand-alone tree-editor ap-
plication based on RCP (Rich Client Platform), which is contained in the iSeM
distribution. Based on EMF, other editors can be implemented, such as for
example a syntax-highlighting text editor with auto-completion using XText.
The set of matching expressions provided with S2M2 range from logical connec-
tors like and, or to more complex numerical operations and specific similarity
computations on concept- or textual level. Besides the core package, S2M2
provides a package for inference mechanisms, which is further sub-divided into
description-logic-based operations and reasoners and theorem-proving, as well
as a text-similarity package providing sample implementations for VSM-based
(vector space model) similarity computations. Some of them are directly used
for implementing iSeM 1.1 as presented in previous sections, while some func-
tionality has been added in terms of a new package, which provides specification
and implementation of approximate matching and SVM-based feature aggrega-
tion among others. An exhaustive listing of supported expressions of S2M2 and
the iSeM extension can be found in the Appendix in Table B.1.

After evaluation of matching expressions, the result ranking is prepared by
the Ranking Processor. The ordering is given by a ranking strategy specification
that incorporates the results of the previously performed evaluation. Currently,
different ranking production strategies have to be implemented in Java directly
given a set of interfaces. Moreover, the generic matching engine factory imple-
mentation of S2M2 is currently hard-coded to allow for decreasing ranking in
multiple feature dimensions with decreasing priority only. However, for a first
stand-alone version of S2M2, it is planned to enable complete matchmaker con-
figurations using EMF as described for filter definitions, which includes ranking
strategies and service information extraction.

5. Performance Analysis

The performance evaluation of iSeM (namely iSeM 1.1) has been conducted
using the service retrieval test collection OWLS-TC410, which consists of 1083
service offers in OWL-S 1.1 and 42 queries including binary and graded relevance
assignments from nine different application domains. Since version 4, it also
includes definitions of preconditions and effects for a subset of services (180

10Publicly available at http://www.semwebcentral.org/projects/owls-tc

20

Figure 5: EMF-based S2M2 filter editor.

offers, 18 queries) which enables us to apply the full-fledged iSeM including
specification matching as presented above. However, since only a subset of
definitions actually contain PE and therefore the used θ-subsumption algorithm
trivially yields MatchPE(S,R) (because > ⇒ >) for a larger portion of the
test collection, we added another binary dimension to feature space X of our
learning algorithm that allows iSeM to identify those cases: x[11] ∈ {0, 1} with
x[11] = 1 iff request R contains a non-trivial precondition or effect (PR 6=
> ∨ER 6= >). Moreover, service parameter annotations in OWLS-TC4 are not
restricted to the DL subset SH, which is a requirement for the current version of
the approximated logic-based signature matching algorithm used in iSeM 1.0.
To overcome this, we implemented a trivial and non-optimal approximation for
cases where the algorithm is not applicable: given concepts C and D with one
of them not in SH, the result of concept contraction is CCP (C,D) = 〈C,>〉
and concept abduction yields C ′ = SAP (C,D) = D, i.e. every aspect of the
original definition of C is neglected to derive the most obvious solution such that
C ′ v D. However, even considering this weak approximation for those cases, we
observed a significant improvement with respect to ranking precision as we will

21

show in the following. For evaluation, we used the public tool SME2 v2.111 on
a WinXP SP3 32bit machine with Intel Core2Duo T9600 (2,8GHz) processor
and 3GB RAM. We measured macro-averaged precision at 20 equidistant recall
levels (MARP graph), averaged average precision and average query response
time.

5.1. Evaluation Results

Figure 6: Macro-averaged recall/precision (MARP), average precision (AvgP) and average
query response time (AvgQRT) of basic and adaptive signature matching by iSeM 1.0.

In summary, the evaluation results shown in Figure 6 reveal that (a) ap-
proximated logical matching via abduction and informative quality performs
similarly to its strict logical counterpart with respect to average precision, but
differs to a large extent at fixed recall levels, (b) this kind of matching performs
close to but still worse than its non-logic-based approximated counterparts (text
and structural matching), and (c) adaptive hybrid combination outperforms all
other variants in terms of precision.

As expected, due to the redundance of strict and approximated logical sig-
nature matching positives (cf. Theorem 1), approximated logic-based matching
alone was not able to outperform its non-logic-based counterparts but performed
close to strict logical matching. As already hinted in statement (a) before, the
rankings of approximated logic-based and strict logic-based matching vary to a
large extent, which provides evidence that both variants are mutually indepen-
dent to a satisfactory degree. This fact has been validated using a Friedman
test conducted on average precisions per query, which revealed that there is no

11http://projects.semwebcentral.org/projects/sme2/

22

significant difference at 5% level (p ≈ 0.088), i.e. neither was able to outperform
the other for a majority of queries. As has already been shown in context of
OWLS-MX3 (cf. [10]), this also holds for the other basic matching variants lead-
ing to the conclusion that each of the basic signature matching filters of iSeM
contributes to an overall increase of performance for some cases of strict logical
false classification, i.e. none of the tested variants outperformed the others for
almost all service requests in the test collection.

The adaptive hybrid aggregation of all matching filters as done by iSeM (cf.
Section 3.3) significantly increases the retrieval performance compared to that
of its individual matching filters. While the combination of strict logic-based,
text similarity and structure matching already yields good results as expected
from previous observations with OWLS-MX3, the additional consideration of
approximated logical matching and stateless logical specification matching (in
the learning process) performs best. Moreover, the comparative performance
analysis conducted for the annual S3 contest in 201012 resulted in iSeM being
among the top contestants regarding precision-based measures. In fact, it won
the OWL-S track with the best average precision (0.92) ever measured in this
contest so far. For our specific use case, the proposed feature space pruning for
relevance learning performed best, but arguably not in general [1].

Regarding query response times, the adaptive hybrid aggregated variants
performed significantly slower than the basic matching filters (cf. Figure 6),
which is not surprising considering the fact that each of the presented filters has
to be evaluated per offer/query pair in case of hybrid matching. For the basic
variants, it is worth mentioning that the approximated logic-based matching
performs significantly slower than strict logic-based matching, but performance
is still reasonable looking at the benefit with respect to ranking precision of the
full-fledged iSeM system.

5.2. Discussion

As the evaluation results show, hybrid matchmakers may benefit from inte-
gration of the presented approximated logic-based matching approach and thus
increase ranking precision significantly. As motivated in Section 2, the reason
for this is the improved avoidance of strict logical false negatives by additionally
considering approximated logic-based matching, which shows sufficient mutual
independence of all other approaches presented here.

The proposed feature space model as basis for the applied machine-leaning
approach allows for easy integration of arbitrary matching filters and similarity
functions and facilitates straightforward matchmaker tool configuration with-
out manually setting up weights for a fixed result aggregation. This approach
implicitly solves the question of how to find the best combination of semantic
matching filters to achieve high precision on average. Moreover, the application

12S3 2010 summary report is available at http://www-ags.dfki.uni-
sb.de/ klusch/s3/html/2010.html

23

of SVM using RBF-kernel nicely fits the non-linear separable nature of the fea-
ture space in context of semantic service retrieval on the Web as presented in
this chapter. For example, in OWLS-TC4 it is not possible to strictly perform
linearly-weighted separation based on the various features into matching true
positives and true negatives.

Failure of signature matching only has been minimized satisfactorily using
the presented stateless specification matching step whenever preconditions or
effects were available. Besides the increased overall average precision achieved
by the fully-fledged iSeM matchmaker, this has also been shown exemplarily in
the S3 2010 summary report. However, as already stated before, OWLS-TC4
only consists of few services and request documents with full IOPE profile. A
majority of examples does not provide preconditions and effects yet, which alle-
viates the overall benefit in precision for the experimental performance analysis
to some degree.

On the other hand, as shown above, the presented approach results in a
linear increase of query response times, because every filtering and similarity
computation is performed for each service request and offer pair, even in cases
where the adapted aggregation strategy gives very low weights on some features
for certain circumstances. Moreover, the adaption is done such that precision is
optimized on average for the whole training set and thus is rather coarse-grained.
Even though this turned out not to be a problem for OWLS-TC4, there may be
cases where some basic approaches (features) are better than others given certain
contexts and vice versa. For example, the presented approximated logic-based
matching may perform better in domains described in terms of rich-detailed
ontologies like medical domains, where it may prove inferior for coarse-grained
domain descriptions. Finally, the presented adaption strategy is strictly off-line
with a distinct training and exploitation phase. Adapting iSeM over time, for
example while collecting more and more user feedback, would require to drop
the current aggregation function and train a new one from scratch after some
period. This could be controlled by a threshold value for the resulting precision
based on the retrieved user feedback, but training the SVM itself is a costly
process.

6. Related Work

There exists a large body of work in the area of semantic service matchmak-
ing, and the field has been surveyed extensively for example in [13]. However, to
the best of our knowledge, iSeM is the first fully-fledged adaptive, hybrid seman-
tic service IOPE matchmaker. Therefore, we will focus on the adaptivity aspect
of hybrid matching and approximative logic-based filtering in the following.

The strict logical and the non-logic-based semantic signature matching filters
as well as the SVM-based learning process of iSeM are adopted from the adaptive
signature matchmaker OWLS-MX3 [10]. However, unlike iSeM, OWLS-MX3
neither performs approximated logical signature matching, nor PE-matching,
nor is its adaptive process applicable to IOPE matching results and the feature

24

space is not evidentially pruned. The same holds for the adaptive hybrid se-
mantic signature matchmaker SAWSDL-MX2[12]. Besides, SAWSDL-MX2 per-
forms structural matching on the WSDL grounding level only which significantly
differs from the semantic structural matching performed by iSeM. The use of
abduction for approximated logical signature matching is inspired by DiNoia et
al.[4, 3]. However, their non-adaptive matchmaker MaMaS performs abduction
for approximated matching of monolithic service concept descriptions in SH,
while iSeM exploits it for significantly different approximated structured signa-
ture matching and its use for learning. Besides, MaMaS has not been evaluated
yet. OWL-S iMatcher [8] performs hybrid Semantic Web service matchmaking
based on a flexible approach for user-defined matching strategies named iS-
PARQL. It also adopts a wide range of machine-learning aggregation strategies
and presented evaluation results were promising. In contrast to iSeM, it does
not consider approximated logic-based matching and specification matching in
any way.

7. Conclusion

We presented the first adaptive, hybrid and full semantic service profile
(IOPE) matchmaker that, in particular, performs approximated logical rea-
soning and respectively evidential coherence-based pruning of learning space
to improve precision over strict logical matching. The evaluation results for
iSeM revealed, among other things, that its adaptive hybrid combination with
non-logic-based approximated signature matching improves on each of them
individually. Moreover, it proved to be among the top contestants regarding
precision-based measures and won the OWL-S track of the 2010 edition of the
annual S3 contest.

The presented approach for adaptive combination of matching variants based
on a feature space representation provides a flexible basis for detailed experi-
ments with different machine-learning approaches. Besides well-known off-line
algorithms, we intend to also implement on-line approaches to add flexibility
at runtime as described above. Moreover, the approximated logical matching
results of iSeM can also be exploited for explanation-based interaction with the
user during the selection process. Though in its initially implemented version
iSeM is non-obtrusive in this respect, such interaction together with extending
the abductive approximated reasoning to OWL2-DL annotations is subject to
future work.

References

[1] Blum, A. L.; Langley P. (1997): Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence, 97:245-271.

[2] Chang, CC.; Lin, CJ. (2001): LIBSVM: a library for support vector ma-
chines. Available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

25

[3] Colucci, S; et al. (2005): Concept Abduction and Contraction for Semantic-
based Discovery of Matches and Negotiation Spaces in an E-Marketplace.
Electronic Commerce Research and Applications, 4(4)

[4] Di Noia, T.; Di Sciascio, E.; Donini F. M. (2009): A Tableaux-based Cal-
culus for Abduction in Expressive Description Logics: Preliminary Results.
Proceedings of 22nd International Workshop on Description Logics (DL).

[5] Glass, D. H. (2009): Inference to the Best Explanation: A comparison of
approaches. Proceedings of the AISB 2009 Convention, Edinburgh, UK.
www.aisb.org.uk/convention/aisb09/Proceedings/

[6] Idestam-Almquist, P. (1995): Generalization of Clauses under Implication.
Artificial Intelligence Research, 3:467-489.

[7] Keerthi, SS.; Lin, CJ. (2003): Asymptotic behaviour of support vector ma-
chines with Gaussian kernel. Journal on Neural Computation, Vol. 15, Issue
7, 1667–1689.

[8] Kiefer, C.; Bernstein, A. (2008): The Creation and Evaluation of iSPARQL
Strategies for Matchmaking. Proceedings of the 5th European Semantic Web
Conference (ESWC), Springer.

[9] Klusch, M.; Fries, B.; Sycara, K. (2009): OWLS-MX: A Hybrid Semantic
Web Service Matchmaker for OWL-S Services. Web Semantics, 7(2), Else-
vier.

[10] Klusch, M.; Kapahnke, P. (2009): OWLS-MX3: An Adaptive Hybrid Se-
mantic Service Matchmaker for OWL-S. Proceedings of 3rd International
Workshop on Semantic Matchmaking and Resource Retrieval (SMR2), USA;
CEUR 525.

[11] Klusch, M.; Kapahnke, P. (2010): iSeM: Approximated Reasoning for
Adaptive Hybrid Selection of Semantic Services. Proceedings of 4th IEEE
International Conference on Semantic Computing (ICSC), USA.

[12] Klusch, M.; Kapahnke, P.; Zinnikus, I. (2009): Hybrid Adaptive Web Ser-
vice Selection with SAWSDL-MX and WSDL Analyzer. Proceedings of 6th
European Semantic Web Conference (ESWC), Heraklion, Greece, IOS Press.

[13] Klusch, M. (2008): Semantic Web Service Coordination. In: M. Schu-
macher, H. Helin, H. Schuldt (Eds.) CASCOM - Intelligent Service Coordi-
nation in the Semantic Web. Chapter 4. Birkhäuser Verlag, Springer.

[14] Klusch, M.; Xing, Z. (2008): Deployed Semantic Services for the Common
User of the Web: A Reality Check. Proceedings of the 2nd IEEE Interna-
tional Conference on Semantic Computing (ICSC), Santa Clara, USA, IEEE
Press.

26

[15] Li, Y.; Bandar, A.; McLean, D. (2003): An approach for measuring se-
mantic similarity between words using multiple information sources. Trans-
actions on Knowledge and Data Engineering 15, p. 871–882.

[16] Lin, D. (1998): An Information-Theoretic Definition of Similarity. Proceed-
ings of the 15th International Conference on Machine Learning, USA.

[17] Resnik, P. (1999): Semantic similarity in a taxonomy: An information-
based measure and its application to problems of ambiguity in natural lan-
guage. Journal of Artificial Intelligence Research 11, p. 95–130.

[18] Sycara, K.; Widoff, S.; Klusch, M.; Lu, J. (2002): LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cyberspace. Au-
tonomous Agents and Multi-Agent Systems, 5:173-203, Kluwer.

[19] Samuel, K. et al. (2008): Translating OWL and semantic web rules into
prolog: Moving toward description logic programs. Theory and Practice of
Logic Programming, 8(03):301-322.

[20] Scheffer,T.; Herbrich, R.; Wysotzki, F. (1996), Efficient theta-Subsumption
based on Graph Algorithms. Lecture Notes In Computer Science, 1314,
Springer.

27

Appendix A. Algorithms

Input: Training set TS′

Output: Trained SVM

// compute features for each training sample

1 TS ← ∅
2 foreach (R,S, y) ∈ TS′ do
3 x← (MatchIOLogic(R,S) = Exact, . . . , MatchIOLogic(R,S) =

LFail, val(S,R)(H1), val(S,R)(H2), MatchIOText(R,S),
MatchIOStruct(R,S), MatchPE(R,S))

4 TS ← TS ∪ {(x, y)}
5 end
// filter different relevant cases

6 LP ← ∅
7 E1 ← ∅,. . . , E4 ← ∅
8 foreach (x, y) ∈ TS do

// irrelevant samples for approx.

9 if x[5] 6= 1 then LP ← LP ∪ {(x, y)}
10 if y = 1 ∧ (x[6] > 0 ∨ x[7] > 0) then E1 ← E1 ∪ {(x, y)}
11 if y = −1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0 then E2 ← E2 ∪ {(x, y)}
12 if y = 1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0 then E3 ← E3 ∪ {(x, y)}
13 if y = −1 ∧ (x[6] > 0 ∨ x[7] > 0 then E4 ← E4 ∪ {(x, y)}
14 end

// improve feature vectors based on approximation

15 w1 ← coherence({(x, y) ∈ E1 ∪ E4 : x[6] ≥ x[7]}, E1 ∪ E3)

16 w2 ← coherence({(x, y) ∈ E1 ∪ E4 : x[6] < x[7]}, E1 ∪ E3)

17 w3 ← coherence({(x, y) ∈ E2 ∪ E3 : x[6] ≥ x[7]}, E2 ∪ E4)

18 w4 ← coherence({(x, y) ∈ E2 ∪ E3 : x[6] < x[7]}, E2 ∪ E4)

19 foreach (x, y) ∈ E1 do
20 x[5]← 0
21 if x[6] ≥ x[7] then x[6]← w1 · x[6], x[7]← 0
22 if x[6] < x[7] then x[6]← 0, x[7]← w2 · x[7]

23 end
24 foreach (x, y) ∈ E2 do
25 if x[6] ≥ x[7] then x[6]← w3 · x[6], x[7]← 0
26 if x[6] < x[7] then x[6]← 0, x[7]← w4 · x[7]

27 end
28 foreach (x, y) ∈ E4 do
29 if x[6] ≥ x[7] then x[6]← (1− w1) · x[6], x[7]← 0
30 if x[6] < x[7] then x[6]← 0, x[7]← (1− w2) · x[7]

31 end
32 TS ← LP ∪ E1 ∪ E2 ∪ E4

// train SVM on improved features

33 return trainSVM(TS)

Algorithm 1: Training Phase

28

Input: Request/offer pair (R,S), weighting parameter α
Output: Approximation explanation and valuation (H, v)

// compute approximation for all parameter combinations

1 Min ← ∅
2 foreach IS ∈ Sin do
3 foreach IR ∈ Rin do
4 Min ←Min ∪ {(IS , IR) 7→ approximate(IR, IS)}
5 end

6 end
7 Mout,v ← ∅
8 foreach OR ∈ Rout do
9 foreach OS ∈ Sout do

10 Mout,v ←Mout,v ∪ {(OR, OS) 7→ approximate(OS , OR)}
11 end

12 end
13 Mout,w ← ∅
14 foreach OR ∈ Rout do
15 foreach OS ∈ Sout do
16 Mout,w ←Mout,w ∪ {(OR, OS) 7→ approximate(OR, OS)}
17 end

18 end
// bipartite graph matching for approximation

19 HI ← BPG(Min)

20 HO,v ← (HI , BPG(Mout,v))
21 HO,w ← (HI , BPG(Mout,w))

// compute valuation for both overall explanations

22 val(S,R)(H1)←
1

2·|Sin| ·
∑

(IS ,IR)∈HI Min(IS , IR)+ 1
2·|Rout| ·

∑
(OR,OS)∈HO,vMout,v(OR, OS)

23 val(S,R)(H2)←
1

2·|Sin| ·
∑

(IS ,IR)∈HI Min(IS , IR)+ 1
2·|Rout| ·

∑
(OR,OS)∈HO,wMout,w(OR, OS)

// return approximations and their valuation

24 return
{(H1 = (HI , HO,v), val(S,R)(H1)), (H2 = (HI , HO,w), val(S,R)(H2))}

Algorithm 2: Approximate Logic-based Matching

29

Input: Original concept C and target concept D
Output: Approximation explanation and valuation (H(C,D), v)

1 (G,K)← CCP(C,D) // concept contraction

2 H ← SAP(K,D) // concept abduction

3 C ′ ← σ[H̄,H](Kh) // approximated concept

4 H(C,D)← (G,H,C ′) // explanation

5 v ← siminf(C
′, D)− (1− siminf(C

′, C)) // valuation

6 return (H(C,D),v)

Algorithm 3: Concept approximation

Appendix B. S2M2/iSeM Filter Expressions

expression domain range # of sub-expr. description
basic
and any boolean 2..n conjunction
or any boolean 2..n disjunction
negation any boolean 1 negates sub-expression
inverse any any 1 switches request and candidate paramter
true any boolean – always returns true
greater equals any boolean 2 checks if first sub-expression is greater or equal than

second
average any float 2..n computes average value
maximum any float 2..n computes maximum value
fixed value(α) any float – always returns α
boolean as float any float 1 converts boolean subexpression result to one of {0, 1}
conditional any any 3 checks first subexpression and executes second or

third based on result (if-then-else)
semantic annotations service any 1 extracts collection of concepts (inputs or outputs)

and applies subexpression to it
literals service any 1 extracts collection of string values (descriptions, un-

folded I/O) and applies subexpression to it
specification service any 1 extracts specification (P/E) and applies subexpres-

sion to it
forall exists collection boolean 1 checks if there exists a candidate value for each re-

quest value, where subexpression holds (surjection)
bipartite graph matching collection float 1 applies bipartite graph matching and returns average

valuation (injection)
concat string coll. any 1 concatenates strings and evaluates subexpression on

result
inference
equivalence concept boolean – concept equivalence ≡
subsumption concept boolean – concept subsumption v
least generic concept concept boolean – checks for v1

implication spec. boolean – checks if logical expressions imply ⇒
text similarity
loss of information string float – computes loss of information
cosine string float – computes VSM-based cosine measure
iSeM
approximated subsumption concept float – computes valuation of approximated logical match-

ing v(C,D)
direct common subsumers concept concept coll. – computes direct common subsumers
structural similarity concept float – computes structural similarity simcsim(C,D)
svm any float 2..n aggregates sub-expressions using SVM

Table B.1: S2M2 and iSeM filter expressions.

30

