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Abstract. In this chapter, we provide some first thoughts on, and pre-
liminary answers to the question how intelligent software agents could
take most advantage of the potential of quantum computation and com-
munication, once practical quantum computers become available in fore-
seeable future. In particular, we discuss the question whether the adop-
tion of quantum computational and communication means will affect the
autonomy of individual and systems of agents. We show that the ability
of quantum computing agents to perform certain computational tasks
more efficient than classically computing agents is at the cost of limited
self-autonomy, due to non-local effects of quantum entanglement.

1 Introduction

Quantum computing technology based on quantum physics promises to eliminate
some of the problems associated with the rapidly approaching ultimate limits
to classical computers imposed by the fundamental law of thermodynamics. Ac-
cording to Gordon Moore’s first law on the growth rate of classical computing
power, and the current advances in silicon technology, it is commonly expected
that these limits will be reached around 2020. By then, the size of microchip com-
ponents will be on the scale of molecules and atoms such that quantum physical
effects will dominate, hence irrevocably require effective means of quantum com-
putation.
Quantum physics has been developed in the early 1920’s by physicists and Nobel
laureates such as Max Planck, Niels Bohr, Richard Feynman, Albert Einstein,
Werner Heisenberg, and Erwin Schrödinger. It uses quantum mechanics as a
mathematical language to explain nature at the atomic scale. In quantum me-
chanics, quantum objects including neutrons, protons, quarks, and light particles
such as photons can display both wave-like and particle-like properties that are
considered as complementary. In contrast to macroscopic objects of classical
physics, any quantum object can be in a superposition of many different states
at the same time that enables for quantum parallelism. In particular, it can ex-
hibit interference effects during the course of its unitary evolution, and can be
entangled with other spatially separated quantum objects such that operations
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on one of them may cause non-local effects that are impossible to realize by
means of classical physics.

It has been proven that quantum computing can simulate classical computing.
However, the fundamental raison d’être of quantum computation is the fact
that quantum physics appears to allow one to transgress the classical boundary
between polynomial and exponential computations [25]. Though there is some
evidence for that proposition, only very few practical applications of quantum
computing and communication have been proposed so far including quantum
cryptography [5].

Quantum computing devices have been physically implemented since the late
1990’s by use of, for example, nuclear magnetic resonance [43], and solid state
technologies such as that of neighbouring quantum dots implanted in regions
of silicon based semiconductor on the nanometer scale [27]. As things are now,
they work for up to several tens of qubits. Whether large-scale fault-tolerant and
networked quantum computers with millions of qubits will ever be built remains
purely speculative at this point. Though, rapid progress and current trends in
nanoscale molecular engineering, as well as quantum computing research car-
ried out at research labs across the globe could make it happen to let us see
increasingly sophisticated quantum computing devices in the era 2020 to 2050.

This leads, in particular, to the question how intelligent software agents [46,
45] could take most advantage of the potential of quantum computation and
communication, once practical quantum computers are available. Will quantum
computational agents be able to outperform their counterparts on classical von-
Neumann computers? What kinds of architectures and progamming languages
are required to implement them? Does the adoption of quantum computational
and communication means affect the autonomy of individual and systems of
agents? This chapter provides some first thoughts on, and preliminary answers
to these questions based on known fundamental and recent results of research
in quantum computing and communication. It is intended to help bridging the
gap between the agent and quantum research community for interdisciplinary
research on quantum computational intelligent agents.

In sections 2 and 3, we briefly introduce the reader to the basics of quantum
information, computation and communication in terms of quantum mechanics.
For more comprehensive and in-depth introductions to quantum physics, and
quantum computation we refer the interested reader to, for example, [12], re-
spectively, [33, 23, 42, 1]. [17] provides a well-readable discussion of alternative
interpretations of quantum mechanics. Readers who are familiar with the sub-
jects can skip these sections. In section 4, we outline an architecture for a hy-
brid quantum computer, and propose a conceptual architecture and examples of
quantum computational agents for such computers in section 5. Issues of quan-
tum computational agent autonomy are discussed in section 6.



2 Quantum Information

Quantum computation is the extension of classical computation to the processing
of quantum information based on physical two-state quantum systems such as
photons, electrons, atoms, or molecules. The unit of quantum information is the
quantum bit, the analogous concept of the bit in classical computation.

2.1 Quantum Bit

Any physical two-state quantum system such as a polarized photon can be used
to realize a single quantum bit (qubit). According to the postulates of quantum
mechanics, the state space of a qubit ψ is the 2-dimensional complex Hilbert
space H2 = C2 with given orthonormal computational basis in which the state
|ψ > is observed or measured1. The standard basis of qubit state spaces is
{|0 >, |1 >} with coordinate representation |0 >= (1, 0)t, and |1 >= (0, 1)t. Any
quantum state |ψ > of a qubit ψ is a coherent superposition of its basis states

|ψ >= α0|0 > +α1|1 > (1)

where the probability amplitudes α1, α2 ∈ C satisfy the normalization require-
ment |α0|2 + |α1|2 = 1 for classical probabilities p(|ψ >= |0 >) ≡ p(0) = |α1|2,
respectively, p(|ψ >= |1 >) ≡ p(1) = |α2|2 of the occurrence of alternative basis
states 2. The decision of the physical quantum system realizing the qubit on
one of the alternatives is made non-deterministically upon irreversible measure-
ment in the standard basis. It reduces the superposed qubit state to the bit
states ’0’ and ’1’ in classical computing. This transition from the quantum to
the observable macroscopic world is called quantum decoherence.

2.2 Quantum Bit Register

A n-qubit register ψ = ψ1...ψn of n qubits ψi, i ∈ {1, ..n} is an ordered, composite
n-quantum system. According to quantum mechanics, its state space is the n-

folded tensor (Kronecker) product H⊗n
2 =

n︷ ︸︸ ︷
H2 ⊗ ... ⊗ H2 of the (inner product)

state spaces H2 of its n component qubits. Each of the 2n n-qubit basis states
|xi >, xi ∈ {0, 1}n of the register can be viewed as the binary representation of

1 Paul Dirac’s bra-ket notation < ψ| = (α1, ..., αk)T (bra) and |ψ >= (α∗
1, , ..., α

∗
k)

(ket) with complex conjugates α∗
i , i ∈ {1, .., k} is the standard notation for system

states in quantum mechanics. The inner product of quantum state vectors in Hk is
defined as < ψ1|ψ2 >= (α∗

i )i∈{1,..,k} ⊗ (βi)i∈{1,..,k} =
Pk

i=1 α∗
i βi. The orthonormal

basis of Hk can be chosen freely, but if fixed refers to one physical observable of the
quantum system ψ such as position, momentum, velocity, or spin orientation of a
polarized photon, that can take k values.

2 In contrast to physical probabilistic systems, a quantum system can destructively
interfere with itself which can be described by negative amplitude values.



a number k between 0 and 2n − 1. Any composite state of a n-qubit register is
in a superposition of its basis states

|ψ >= |ψ1ψ2...ψn >=
2n−1∑
k=0

αk|k >,

2n−1∑
k=0

|αk|2 = 1 (2)

As the state of any n- and m-qubit register can be described by 2n, respectively,
2m amplitudes, any distribution on the joint state space of the n + m-qubit
register takes 2n+m amplitudes. Hence, in contrast to classical memory, quantum
memory increases exponentially in the size of the number of qubits stored in a
quantum register. It can be doubled by adding just one qubit.

2.3 Measurement of Qubits

Measurement of a n-qubit register ψ in the standard basis yields a n-bit post-
measurement quantum state |ψk > with probability |αk|2. Measurement of the
first z < n qubits corresponds to the orthogonal measurement with 2z projectors
Mi = |i >< i| ⊗ I2n−z , i ∈ {0, 1}z which collapses it into a probabilistic classical
bit vector, yielding a single state randomly selected from the exponential set of
possible states3. Measurement of the individual qubit ψm of a n-qubit register
ψ = ψ1...ψm...ψn, n ≥ m in compound state |ψ >=

∑2n−1
i=0 ci|i1..in > with

measurement operator Mm will give the classical outcome xm ∈ {0, 1} with
probability p(xm) =

∑
i1..in

|ci1..im−1xim+1..in |2 =< ψ|M∗
mMm|ψ >, and post-

measurement state is

|ψ >′ =
1√

p(xm)

∑
i1..im−1im+1..in

ci1..im−1xim+1..in |i1..im−1xim+1..in >

where ci1..im−1xim+1..in denote the amplitudes of those 2n alternatives for which
x could be observed as state value of the m-th qubit of ψ upon measurement. In
general, the post-measurement quantum state |ψk >′ of |ψk > is Mm|ψk>√

<ψ|M∗
mMm|ψ>

.

2.4 Unitary Evolution of Quantum States

According to the postulates of quantum mechanics, the time evolution of any
n-qubit register, n ≥ 1, is determined by any linear, unitary4 operator U in the
2n-dimensional Hilbert space H⊗n

2 . The size of the unitary matrix of a n-qubit
operator is 2n × 2n, hence exponential in the physical size of the system. Since
any unitary transformation U has an inverse U−1 = U∗, any non-measuring
quantum operation is reversible, its action can always be undone. Measurement
of a qubit ψ is an irreversible operation since we cannot reconstruct its state
|ψ > from the observed classical state after measurement.
3 According to the standard interpretation of quantum mechanics it is meaningfully to

attribute a definite state to a qubit only after a precisely defined measurement has
been made. Due to Heisenberg’s uncertainty principle complementary observables
such as position and momentum cannot be exactly determined at the same time.

4 Unitarity preserves the inner product (< φ|U∗U |ψ >), similar to a rotation of the
Hilbert space that preserves angles between state vectors during computation.



2.5 Entangled Qubits

Entangled n-qubit register states cannot be described as a tensor product of
its component qubit states. Central to entanglement is the fact that measuring
one of the entangled qubits can affect the probability amplitudes of the other
entangled qubits no matter how far they are spatially separated. Such kind of
non-local or holistic correlations between qubits captures the essence of the non-
locality principle of quantum mechanics which has been experimentally verified
by John Bell in 1964 [3] but is impossible to realize in classical physics.

Example 2.1: Entangled qubits

Prominent examples of entangled 2-qubit are the Bell states

|ψ+ > =
1√
2
((|01 > +|10 >), |φ+ >=

1√
2
((|00 > +|11 >),

|ψ− > =
1√
2
((|01 > −|10 >), |φ− >=

1√
2
((|00 > −|11 >)

The Bell state |φ+ >= ( 1√
2
, 0, 0, 1√

2
) is not decomposable. Otherwise we could find

amplitudes of a 2-qubit product state (α11|0 > +α12|1 >)(α21|0 > +α22|1 >) =
α11α21|00 > +α11α22|01 > +α12α21|10 > +α12α22|11 > such that α11α21 = 1√

2
,

α11α22 = 0, α12α21 = 0 and α12α22 = 1√
2

which is impossible. We cannot reconstruct
the total state of the register from the measurement outcomes of its component qubits.
|φ+ > can be produced by applying the conditioned-not 2-qubit operator Mcnot =
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0)) to the separable register state |ψ1ψ2 >=
1√
2
(|00 > +|10 >).
Suppose we have measured 0 as definite state value of the second qubit in state

|φ+ >≡ a|00 > +b|01 > +c|10 > +d|11 >≡ (a, b, c, d) with amplitudes normal-
ized to 1. The corresponding measurement operator is the self-adjoint, non-unitary
projector M2:0 = ((1, 0, 0, 0), (0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0)), which yields the out-
come 0 or 1 with equal probability, for example, p(0) = < φ+|M∗

2:0M2:0|φ+ >=

( 1√
2
, 0, 0, 1√

2
)( 1√

2
, 0, 0, 0)t = 1

2
, and the post-measurement state |φ+ >′= M2:0|ψ>√

<ψ|M2:0|ψ>

=
( 1√

2
,0,0,0)√
1/2

=
√

2( 1√
2
, 0, 0, 0) = (1, 0, 0, 0) = |00 > �= a|00 > +c|10 >.

That means, measurement of the second qubit caused also the entangled first qubit

to instantaneously assume a classical state without having operated on it.

◦
Pairs of entangled qubits are called EPR pairs with reference to the associated

Einstein-Podolsky-Rosen (EPR) thought experiment [20]. The non-local effect of
instantaneous state changes between spatially separated but entangled quantum
states upon measurement belongs to the most controversial issue and debated
phenomenon of quantum physics, and caused interesting attempts of developing
a quantum theory of the humand mind and brain [39, 38]. Entanglement links
information across qubits, but does not create more of it [22], nor does it allow
to communicate any classical information faster than light.

Entangled qubits can be physically created either by having an EPR pair
of entangled particles emerge from a common source, or by allowing direct in-
teraction between the particles, or by projecting the state of two particles each



from different EPR pairs onto an entangled state without any interaction be-
tween them (entanglement swapping) [12]. Entanglement of qubits is considered
as one essential feature of, and resource for quantum computation and quantum
communication [25, 11].

3 Quantum Computation and Communication

The quantum Turing machine model [37], and the quantum circuit model [18]
are equivalent models of quantum computation. In this paper, we adopt the
latter model.

3.1 Quantum Logic Gates and Circuits

A n-qubit gate is a unitary mapping in H⊗n
2 which operates on a fixed number of

qubits (independent of n) given n input qubits. Most quantum algorithms to date
are described through a quantum circuit that is represented as a finite sequence
of concatenated quantum gates. Basic quantum gates are the 1-qubit Hadamard
(H) and Pauli (X, Y, Z) gates, and the 2-qubit XOR, called conditioned not
(CNOT), gate. These operators are defined by unitary matrices as follows

MH =
1√
2
((1, 1), (1,−1))

MCNOT = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))
MX = ((0, 1), (1, 0)), MZ = ((1, 0), (0,−1)), MY = ((0,−i), (i, 0))

The Hadamard gate creates a superposed qubit state for standard basis states,
demonstrates destructive quantum interference if applied to superposed quan-
tum states (MH( 1√

2
(|0 > +|1 >)) = |0 >), and can be physically realized, for

example, by a 50/50-beamsplitter in a Mach-Zehnder interferometer [12]. The
CNOT gate flips the second (target) qubit if and only if the first (control) qubit
is in state |1 >. The quantum circuit consisting of a Hadamard gate followed by
a CNOT gate creates an entangled Bell state for each computational basis state.
The X gate is analogous to the classical bit-flip NOT gate, and the Z gate flips
the phase (amplitude sign) of the basis state |1 > in superposition. Other com-
mon basic qubit gates include the NOP, S, and T gates for quantum operations
of identity, phase rotation by π/4, respectively π/8. The set {H, X, Z, CNOT,
T} is universal [33].

3.2 Quantum Vs. Classical Computation

The constraint of unitary evolution of qubit states yields a generalization of
the restriction of classical (Turing machine or logic circuit based) models of
computation to unitary, hence reversible computation [4]. It has been shown
that each classical algorithm computing a function f can be converted into an
equivalent quantum operator Uf with the same order of efficiency [49, 1], which



means that quantum systems can imitate all classical computations. However,
the fundamental raison d’être of quantum computation is the expectation that
quantum physics allows one to do even better than that.

The linearity of quantum mechanics gives rise to quantum parallelism that
allows a quantum computer to simultaneously evaluate a given function f(x)
for all inputs x by applying its unitary transformation Uf : |x > |0 > �→ |x >
|0 ⊕ f(x) >= |x > |f(x) > to a suitable superposition of these inputs such that

Uf


 1√

2n

∑
x∈{0,1}n

|x > |0 >


 =

1√
2n

∑
x∈{0,1}n

|x > |f(x) > (3)

Though this provides, in essence, not more than classical randomization, if com-
bined with the effects of quantum interference such as in the Deutsch-Josza
algorithm ([33], p.36) and/or quantum entanglement [11] it becomes a funda-
mental feature of many quantum algorithms for speeding-up computations. The
basic idea is to compute some global property of f by just one evaluation based
on a combination of interfered alternative values of f , whereas classical prob-
abilistic computers only can evaluate different but forever mutually excluding
alternative values of f with equal probability.

In general, quantum algorithms appear to be best at problems that rely on
promises or oracle settings, hence use some hidden structure in a problem to find
an answer that can be easily verified through, for example, means of amplitude
amplification. Prominent examples include the quantum search developed by
Grover (1996) for searching sets of n unordered data items [21], and the quan-
tum prime factorization of n-bit integers developed by Shor (1994) [41] with
complexity of O(

√
n), respectively, O(n3) time, which is a quadratic and expo-

nential speed-up compared to the corresponding classical case. It is not known to
date whether quantum computers are in general more powerful than their classi-
cal counterparts 5. However, it is widely believed that the existence of an efficient
solution of the NP-hard problem of integer prime factoring using the quantum
computation model [41], as well as the quadratically speed up of classical solu-
tions of some NP-complete problems such as the Hamiltonian cycle problem by
quantum search ([33], p.264), provides evidence in favor of this proposition.

3.3 Quantum Communication Models

In this paper, we consider the following models of quantum based communication
between two quantum computational agents A and B.

5 In terms of the computational complexity classes P , BPP , NP , and PSPACE
with P ⊆ NP ⊆ PSPACE, it is known that P ⊆ QP , BPP ⊆ BQP , and BQP ⊆
PSPACE [10]. QP and BQP denote the class of computational problems that can
be solved efficiently in polynomial time with success probability of 1 (exact), or
at least 2/3 (bounded probability of error), respectively, on uniformly polynomial
quantum circuits.



1. QCOMM-1. Agents A and B share entangled qubits and use a classical
channel to communicate.

2. QCOMM-2. Agents A and B share entangled qubits and use a quantum
channel to communicate.

3. QCOMM-3. Agents A and B share no entangled qubits and use a quantum
channel to communicate.

QCOMM-1: Quantum teleportation of n qubits with 2n bits. The standard pro-
cess of teleporting a qubit φ from agent A to agent B based on a shared EPR pair
ψ1ψ2 and classical channel works as follows [7]. Suppose agent A (B) keeps qubit
ψ1 (ψ2). A entangles φ with ψ1 by applying the CNOT, and the Hadamard gate
to the 2-qubit register [φψ1] into one of four Bell states |φψ1 >. It then sends
the measurement outcome (00, 10, 01, or 11) to agent B through a classical
communication channel at the cost of two classical bits. Only upon receipt of
A’s 2-bit notification message, agent B is able to create |φ > by applying the
identity or Pauli operator gates to its qubit ψ2 depending on the content of the
message (00: I, 01: X; 10: Z; 11: XZ) 6.

QCOMM-2: Quantum dense coding of n-bit strings in n/2 qubits. Agent A dense
codes each of consecutive pairs of bits b1b2 at the cost of one qubit as follows [8].
Suppose agent A (B) keeps qubit ψ1 (ψ2) of shared EPR pair in entangled Bell
state |ψ >= |ψ1ψ2 >= 1√

2
(|00 > +|11 >). According to prior coding agreement

with B, agent A applies the identity or Pauli operators to its qubit depend-
ing on the 2-bit message to be communicated (for example, 00: I ⊗ I|ψ >, 01:
X ⊗ I|ψ >, 11: Z ⊗ I|ψ >, 10: (XZ)t ⊗ I|ψ >) which results in one of four
Bell states |ψ >′ and physically transmits the qubit ψ1 to B. Upon receipt of
ψ1, agent B performs MCNOT |ψ >′ yielding separable state |γ0γ1 >, applies
the Hadamard operation to the first qubit MH |γ0 >= |δ0 > and decodes the
classical 2-bit message depending on measured states of δ0γ1 (e.g., δ0γ1 = 00:
00, 01: 01, 11: 10, 10: 11).

A fundamental result in quantum information theory by Holevo (1973) [24]
implies that by sending n qubits one cannot convey more than n classical bits of
information. However, for every classical (probabilistic) communication problem
[48] where agents exchange classical bits according to their individual inputs
and then decide on an answer which must be correct (with some probability),
quantum protocols where agents exchange qubits of communication are at least
as powerful [31].

6 Due to (Bell state) measurement of |φψ1 > agent A lost the original state |φ >
to be communicated. However, since ψ1 and ψ2 were entangled, this measurement
instantaneously affected the state of B’s qubit ψ2 (cf. Ex. 2.1) such that B can
recover |φ > from |ψ2 >.



4 Quantum Computers

All known quantum algorithms require the determinism and reliability of clas-
sical control for the execution of suitable quantum circuits consisting of a fi-
nite sequence of quantum gates and measurement operations. Figure 1 shows a
master-slave architecture of a hybrid quantum computer based on proposals in
[35] and [9] in which classical signals and processing of a classical machine (CM)
are used to control the timing and sequence of quantum operations carried out
in a quantum machine (QM).

The QM consists of quantum memory, quantum processing unit (QPU) with
error correction, quantum bus, and quantum device controller (QDC) with inter-
face to the classical machine (CM). The classical machine consists of a CPU for
high-level dynamic control and scheduling of the QM components, and mem-
ory that can be addressed by both classical and quantum addressing schemes
(e.g., [9] p.20, [33] p.268). Quantum memory can be implemented as a lattice of
static physical qubits, which state is factorized in tensor states over its nodes7.
Qubit states can be transported within the QM along point-to-point quantum
wires either via teleportation (cf. section 3.3), or chained quantum swapping and
repeaters [36]8.

A few quantum programming languages (QPL) for hybrid quantum comput-
ers exist, such as the procedural QCL [34], and QL [9], and the functional qpl [40].
A QPL program contains high-level primitives for logical quantum operations,
interleaved with classical work-flow statements. The QPL primitives are com-
piled by the CPU into low-level instructions for qubit operators that are passed
to and then translated by the QDC to physical qubit (register) operations which
are executed by the QPU. The QPU performs scheduled sequences of measure-
ment and basic qubit operations from a universal set of 1- and 2-qubit quantum
gates (cf. section 3.1) with error correction9 to minimize quantum decoherence
caused by imperfect control over qubit operations, measurement errors, num-
ber of entangled qubits, and the pysical limits of the quantum systems such as
nuclear spins used to realize qubits [19]. The QM returns only the results of
quantum measurements to the CM.

7 According to the no-cloning theorem of quantum computing [47], a qubit state cannot
be perfectly copied unless it is known upon measurement. Thus, no backup copies
of quantum data can be created in due course of quantum computation.

8 In short quantum wires a qubit state can be progressively swapped between pairs of
qubits in a line, where each qubit is represented, for example, by the nuclear spin of
a phosporus atom implanted in silicon (quantum dot). Each swap operation along
this line of atoms is realized by three back-to-back CNOT gates.

9 According to the threshold theorem of quantum computing[28, 2], scalable quantum
computers with faulty components can be built by using quantum error correction
codes as long as the probability of error of each quantum operation is less than 10−4.
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Fig. 1. Master-slave architecture of a hybrid quantum computer.

5 Agents on Quantum Computers

5.1 QC Agents

A quantum computational agent (QCA) extends an intelligent software agent by
its ability to perform both classical, and quantum computing and communication
on a quantum computer to accomplish its goals individually, or in joint inter-
action with other agents. QC agents on hybrid quantum computers are coded
in an appropriate QPL. The deliberative component of a QC agent uses sensed
input, beliefs, actions, and plans that are classically or quantum coded depend-
ing on the kind of respective QPL data types and statements. The QPL agent
program is executed on both the classical and the quantum machine in an in-
terleaved master-slave fashion using the QPL interface of the quantum machine
(cf. section 4).

QC agents are supposed to exploit the power of quantum computing to re-
duce the computational complexity of certain problems, where appropriate. For
example, a quantum computational information agent (QCIA) is a special kind
of QC agent which extends an intelligent information agent on a classical com-
puter [29] by its ability to perform quantum computation and communication
for information search and management tasks. How can a QCIA exploit oracle-
based quantum search algorithms for searching local data or knowledge bases?
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Fig. 2. Conceptual scheme of a quantum computational agent.

Local quantum based search. Suppose a QCIA has to search its local unstruc-
tured classical database LDB with N = 2n l-bit data entries dx each of which is
indexed by value x = 0...N − 1 for given l-bit input s and search oracle O with
1 ≤ M ≤ N solutions. The oracle is implemented by an appropriate quantum
circuit Uf that checks whether the input is a solution to the search problem
(f(x) = 1 if dx = s, else f(x) = 0). No further structure to the problem is given.
Any classical search would take an average of O(N/M) oracle calls to find a
solution. Using Grover’s quantum search algorithm [21] the QCIA can do the
same in O(

√
N/M) time. The basic idea is that (a) the search is performed on a

logN -qubit index register |x > which state is in superposition of all N = 2n in-
dex values x10, and (b) the oracle O marks the M solutions (|x >→ (−1)f(x)|x >
with f(x) = 1 if dx = s, 0 else) which are amplified to increase the probability
that they will be found upon measurement of the index register after O(

√
N/M)

iterations. Type and cost of each oracle call (matching operation Uf) depends on
the application. Implementation of the search uses n-qubit index, l-qubit data
and input, and 1-qubit oracle register of the QPU. Like in the classical search,
we need a quantum addressing scheme ([33] p.268) with O(logN) per operation
to access, load, and restore indexed data dx to the data register, and recreate
respectively measured index states |x > for further processing.

10 The initial superposed index state |x > is created by n-folded Hadamard operation
(H⊗n|0 >= 1√

2n

P
i∈{0,1}n |i >).



Local quantum based matchmaking is a special case of local quantum search
for binary coded service descriptions. The type of service matching depends
on the implemented search oracle. We assume that both service requests and
service ads are encoded in the same way to allow for meaningful comparison by
a quantum computational matchmaker agent. Componentwise quantum search
with bounded rather than exact success probability for partial matching could
be used for syntactic but not semantic service matching such as in LARKS [44].

5.2 QC Multi-Agent Systems

A quantum computational multi-agent system (QCMAS) is a multi-agent sys-
tem that consists of both classical and quantum computing agents which can
interact to jointly accomplish their goals. A pure QCMAS consists of QC agents
only. QCMAS which members cannot interact with each other using a quantum
communication model (cf. section 3.3) are called type-I QCMAS, and type-II
QCMAS otherwise. QC agents of type-I or type-II QCMAS are called type-I QC
agents, respectively, type-II QC agents.

Inter-agent communication between type-I QC agents bases on the use of
classical channels without sharing any EPR pairs. None of the quantum com-
munication models is applicable. As a consequence, quantum computation is
performed locally at each individual agent. In addition, type-II QC agents can
use quantum communication models which cannot be simulated in any type-I
QCMAS. It is assumed that type-II QC agents share a sufficient number of EPR
pairs, and have prior knowledge on used quantum coding operations for this
purpose. Any QC agent communicates appropriate speech-act based messages
via classical channels to synchronize its actions, if required. Messages related to
quantum communication between type-II QC agents concern, for example, the
notification in quantum teleportation (QCOMM-1), the prior agreement on the
order of operations in quantum dense coding (QCOMM-2), and the semantics
of qubits (QCOMM-3).
What are the main benefits of QCMAS? In certain cases, QCMAS can be com-
putationally more powerful than any MAS by means of properly designed and
integrated QC agents. The main challenge is the development of application-
specific quantum algorithms that can do better than any classical algorithm.

Quantum-based communication between type-II QC agents is inherently se-
cure. Standard quantum teleportation (QCOMM-1) ensures data integrity, since
it is impossible to deduce the original qubit state from eavesdropped 2-bit no-
tification messages of the sender without possessing the respective entangled
qubit of the receiver. Quantum dense coding (QCOMM-2) is secure, since any
quantum operation on the physically transmitted qubit in any of the four Bell
states takes the same value. The physical transmission of qubits via a quantum
channel (QCOMM-3) is secure due to the no-cloning theorem of quantum me-
chanics, a fact that is also used in quantum key distribution [5]. Any attempt of
eavesdropping will reckognizably interfere with the physical quantum states of
transmitted qubits.



Finally, certain communication problems [48], that is the joint computation
of some boolean function f minimizing the number of qubits to communicate
for this purpose, can be solved more efficiently by type-II QC agents. In gen-
eral, it has been proven in [15] that the gap between bounded-error (zero-error)
classical and (exact) quantum communication complexity is near quadratic (ex-
ponential), and that each quantum communication model is at least as powerful
than a classical one for every communication problem on n-bit inputs [31]. More
interesting, they can do even better for certain communication problems such as
the computation of inner product, equality, and disjointness of boolean functions
f(x), g(x) according to individual n-bit inputs x ∈ {0, 1}n. Quantum based solu-
tions to latter problems can be applied to quantum based collaborative search,
and matchmaking [30], with respective quadratic or exponential reduction of
communication complexity.

5.3 Examples of Type-I and Type-II QCMAS

Quantum based collaborative search in type-I QCMAS. Upon receipt of a multi-
casted l-bit request s from QCIA A1, each agent Aj , j = 2..n locally computes
Mj ≥ 1 solutions to the given search problem LQS(s,O, LDBj) in O(

√
Nj/Mj)

time, instead of O(N) in the classical case, and returns the found data items to
A1. Due to non-quantum based interaction, both requests and replies have to
be binary coded for transmission via classical channel, and binary requests are
directly quantum coded prior to quantum search (cf. section 5.1).

Quantum based collaborative search in type-II QCMAS. Suppose two QCIAs
A1, A2 want to figure out whether a n-bit request s matches with data item
s′ ∈ LDB2 (N = 1) with the promise that their Hamming distance is h(s, s′) = 0
else n/2. In this case, it suffices to solve the corresponding equality problem with
O(logn) qubits of communication, instead of O(n) in the classical case [15]. Basic
idea is that A1 prepares its n-bit s in a superposition of logn+1 qubits such that
A2 can test, upon receipt of s, whether si⊕s′i = 0, i = 1..n by applying the known
oracle-based Deutsch-Josza quantum algorithm ([33], p.34) to |s > |o⊕ s⊕ s′ >,
followed by Hadamard operations (H⊗(logn+1)), and measurement of the final
state yields the desired result.

QC matchmaking in type-I and type-II QCMAS. As in the classical case, quan-
tum based service matchmaking can be directly performed by pairs of QC agents
in both types of QCMAS. In fact, it is a special case of the collaborative search
scenario where two QC agents can both advertise and request a set of N (N ′)
l−bit services from each other. For example, QC service agents A of a type-II
QCMAS can physically send a set of (QCOMM-2: dense coded) n-bit service
request each of size n/2 qubits to a QC matchmaker A∗ via a quantum channel
(QCOMM-3). In cases where only classical channels are available (QCOMM-1),
A can teleport the qubit request to A∗ at the cost of 2n bits. In any case, upon
receipt of the request, A∗ quantum searches its classical database of N service



ads, and returns those that matches it according to the given search (”match-
ing”) oracle. Using quantum search, the disjointness of sets of quantum coded
service descriptions interpreted as ads and/or requests can be decided with just
logN +1 qubits of communication [15], instead of at least N bits in the classical
randomized setting [26].

6 Autonomy of QC Agents

Following the classification of different types of agent autonomy in [16], we de-
fine a QC agent A autonomous from QC agent B for given autonomy object o
in the context c, if, in c, its behaviour regarding o is not imposed by B. The
ability of an individual QC agent in type-I QCMAS to exhibit autonomous be-
haviour is not affected by its local quantum computation, since non-local effects
are restricted to local quantum machine components. Hence, the self-autonomy
of individual type-I QC agents in terms of the ability to autonomously reason
about sets of goals, plans, and motivations for decision-making remains intact.
That is independent from the fact that the computational complexity of delib-
erative actions could possibly be reduced by, for example, quantum searching
of complex plan libraries. Regarding user autonomy, any external physical in-
teraction with the quantum machine by the user will cause massive quantum
decoherence which puts the success of any quantum computational process and
associated accomplishment of tasks and goals of individual type-I QC agents at
risk.

A type-II QC agent shall be able to adjust its behaviour to the current quan-
tum computing context of the overall task or goal to accomplish. It can freely
decide on whether and with which agents to share a sufficient number of EPR
pairs, or to make prior coding agreements according to the used quantum com-
munication model. However, both its adjustable interaction and computational
autonomy, turn out to be limited to the extent of entanglement based joint com-
putation and communication with other type-II QC agents. Any type-II QC
agent can change the state of non-local qubits that are entangled with its own
qubits by local Bell state measurements. This way, if malevolent, it can misuse
its holistic correlations with other type-II QC agents to corrupt their compu-
tations by manipulating their respective entangled quantum data. Even worse,
there is no way for these agents to avoid such kind of influence.

For example, suppose that agents A and B share EPR pairs to interact using
quantum teleportation (QCOMM-1). Since the change of B’s entangled qubits
caused by A’s local Bell state measurements is instantaneous, B cannot avoid it
at all. B does not even know that such changes occurred until it receives A’s 2-bit
notification messages (cf. section 3.3). B is not able to clone its entangled qubits,
and measuring their state prior to A’s notification would let communication fail
completely. The same situation occurs when entanglement swapping is used to
teleport qubit states along a path of correlated QC agents in a type-II QCMAS;
in fact, it holds for any kind of entanglement based computation in general.



To summarize, the use of entanglement as a resource for computation and
communication requires type-II QC agents to strictly trust each other. The abil-
ity of individual type-II QC agents to influence other type-II QC agents is inher-
ently coupled with the risk of being influenced in turn by exactly the same agents
in the same way. Though, for an individual agent the degree of its influence can
be quantified based on the number, and the frequency of respective usage of its
entangled quantum data.

7 Conclusions

In essence, quantum computational agents and multi-agent systems are feasible
to implement on hybrid quantum computers, and can be used to solve cer-
tain problems in practical applications such as information search and service
matchmaking more efficiently than with classically computing agents. Type-II
QC agents can take most computational advantages of quantum computing and
communication, but at the cost of limited self-autonomy, due to non-local ef-
fects of quantum entanglement. Quantum-based communication between type-II
agents is inherently secure.

Ongoing and future research on QC agents and multi-agent systems focuses
on appropriate integration architectures for QCMAS of both types, type-II QC
information and matchmaker agents, as well as potential new applications such
as secure quantum based distributed constraint satisfaction, and qualitative mea-
sures and patterns of quantum computational autonomy in type-II QCMAS.
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