
Fast Dynamic Re-Planning of Composite OWL-S Services1

Matthias Klusch, Kai-Uwe Renner
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
{klusch, Kai-Uwe.Renner}@dfki.de

1 This work has been supported by the German Ministry of Education and Research (BMBF 01-IW-D02-SCALLOPS) and by the European
Commission under the project grant FP6-IST-511632-CASCOM.

Abstract

In this paper, we present an extension of our OWL-S

service composition planner OWLS-XPlan that allows for
quasi-online re-planning of composite OWL-S services
without full restart of the actual planning process, and
preliminary experimental evaluation results.

1. Introduction

Though the AI based composition planning of complex
Web services attracted much interest recently [5, 11], only
a few planning tools are actually available for the
semantic Web, such as the HTN based composition
planner SHOP2 [7, 8, 4], or OWLS-XPlan [9] for OWL-S
services. However, none of these planners copes with the
open world assumption of OWL, but performs more or
less efficient CWA based off line planning.

In open environments, like the semantic Web, non-
deterministically occurring events such as broken service
links, change of facts, or goal, and availability of new
services may affect the actual planning process of a
composite service. The actual plan, or parts of it, may
become invalid or sub-optimal even before its full
generation. Invalid plans may be caused by, for example,
services that became unavailable, or facts that satisfied a
precondition of some service in the current planning
sequence changed such that the semantic compatibility
with its preceding service is invalid. Newly introduced
services may cause sub-optimality of the current plan in
terms of its path length to the given goal state. None of the
currently available OWL-S service composition planners
does allow for dynamic re-planning, which in turn
motivated us to extend our own planner OWLS-XPlan to
accomplish this task. Basic idea of OWLS-XPlan+ is to
re-use as much as possible of the existing plan such that
the minimally modified plan as a whole remains valid in
the changed world state. Though the state of the world
gets checked for any changes that may affect the current

plan at the end of each plan step, and if so, triggers
immediate re-planning off-line, but actions are executed
only after a plan has been eventually created that is
guaranteed to reach the given goal. This is in contrast to
classical on-line planning approaches where typically a
planner generates conditional plans that branch over
observations, while a controller executes actions in the
plan, and monitors observations to decide which branch to
execute. Any kind of interleaving framework, in general,
cannot guarantee that a goal state will be reached, unless
the domain is proven to be safely explorable. Services
provided by autonomous providers cannot be assumed to
be executable under full control and observation of the
planning site, nor to be delivered charge free even in
scenarios of tight collaboration with respective service
providers. We set the context by briefly introducing our
service composition planner OWLS-XPlan in section 2,
and then describe the dynamic re-planning by its extended
planning module XPlan+ in section 3. We present
preliminary experimental evaluation results in section 4,
and conclude in section 5.

2. OWLS-XPlan Overview

The semantic web service composition planner OWLS-

XPlan consists of several modules for pre-processing and
planning of composite OWL-S services (cf. figure 1).

Fig. 1. OWLS-XPlan Architecture

It takes a set of available OWL-S 1.1 services, related
OWL ontologies, and a planning request (goal) as input,
and returns a planning sequence of relevant OWL-S
services that satisfies the goal. For this purpose, it first
converts a given domain ontology and service descriptions
in OWL and OWL-S 1.1, respectively, to equivalent
PDDL 2.1 problem and domain descriptions using an
integrated OWLS2PDDL converter. The domain
description contains the definition of all types, predicates
and actions, whereas the problem description includes all
objects, the initial state, and the goal state. Both
descriptions are then used by the AI planner XPlan to
create a plan in PDDL that solves the given problem in the
actual domain. An operator of the planning domain
corresponds to a service profile in OWL-S, while a
method is a special type of operator for fixed complex
services that OWLS-XPlan may use during its planning
process.

Fig. 2: The planning module XPlan

The planning module XPlan (cf. figure 2) is a heuristic

hybrid FF planner based on the FF planner developed by
Hoffmann and Nebel [1, 2, 3]. It combines guided local
search with relaxed graph planning, and a simple form of
hierarchical task networks to produce a plan sequence of
actions that solves a given problem. If equipped with
methods, XPlan uses only those parts of methods for
decomposition that are required to reach the goal state
with a sequence of composed services. Due to space
restrictions, for more details on OWLS-XPlan in general,
and XPlan in particular, we refer the reader to [9]. The
sources are available at [12].

3. Dynamic Re-Planning by XPlan+

We modified the original XPlan module of OWLS-XPlan
to allow for event driven heuristic re-planning of
composite services during the actual planning process.
The corresponding OWL-S composition planner is called
OWLS-XPlan+. The modified planner XPlan+ does
perform, in essence, highly frequent event driven off-line
re-planning under closed world asumption with heuristic
computation of best re-entry points for re-planning at the

end of each planning step if the currently produced plan,
or plan fragment gets affected by the observed change.
External changes in the world state concern converted
OWL ontologies, individuals and the set of available
services during the internal planning process each of
which potentially affecting the respective operators,
actions, predicates, facts and objects in the PDDXML
problem and domain descriptions as well as already
generated partial plans. For event monitoring, we
equipped XPlan+ with an event listener for distinguished
classes of events (cf. figure 3).

Fig. 3: Modified planning module XPlan+

In each plan step i, before applying selected helpful

action A to the state Si, however, XPlan+ listens for
events of state changes. If no events are in its event queue,
it applies A to Si and proceeds with plan step i+1. The
plan fragment from initial state S0 to Si is correct and, due
to the selection of helpful actions in the minimal relaxed
plan, approximated optimal. XPlan+ triggers re-planning
in the following cases of observed events of world state
changes: (1) An operator (service) instantiation (action)
becomes available. This is the case if (a) a new operator
has been introduced, or (b) the world state (set of facts)
changed such that an operator whose instantiation was
impossible before can be instantiated now, or (c) new
predicates which are part of the preconditions or effects of
an operator are introduced, making it possible to
instantiate this operator; (2) An operator (service) of the
plan is not possible anymore, if any of the opposites of
cases 1.a - 1.c holds; (3) The goal state changed due to a
change of the original planning request. Each of these
cases is handled separately as described in subsequent
sections. If facts or objects change, it searches for the first
operator which precondition is satisfied by the new fact,
and starts re-planning from there, while the helpful actions
get instantiated with the new fact(s). The case in which a
predicate p() changes can be reduced (a) to the latter case
of changed facts, if new facts are added; (b) to the case of

 Input:

XML Parser
Data

Preprocessing
Connectivity

Graph
Generation

Goal Agenda
Generation

heuristics:Relaxed
Graphplan
Generation

Result:

Building the internal
data structures

• Preparing the input data
• Creating type - hierarchies
• Filtering relevant operator

instances
Generation of a
dependency graph

Generation of a
reachable goal
sequence

• Generation of a relaxed planning graph
where the operators have no delete lists

• Extracting helpful operators
PDDXML
plan

description

PDDXML
problem
description
PDDXML
domain

description

Enforced hill
Climbing search

Preprocessing

Core (re -)planning

change of operator o, if preconditions or effects of o
include p(); or (c) to the case of fact changes, if the
deletion of p() implies the deletion of all instances of p().
It is assumed that the planning state consistency is
checked by means of an appropriate module as intergal
part of both XPlan and XPlan+.

3.1. Case of new operator
If a new operator (service) becomes available, XPlan+

first checks whether re-planning might yield a shorter plan
by comparing the old with the newly generated relaxed
plan. If positive, it heuristically determines the point in the
plan where the new operator might first be helpful to start
the re-planning from there.

Re-planning decision. XPlan+ first uses the same
initial state as for the original (partial) plan P plus the new
operator o to build the relaxed plan graph RPG, and
extract a new relaxed plan RP'. Second, it estimates the
length h(RP') of RP' by applying the same relaxed plan
length heuristic as done for determining h(RP), that is the
sum of all actions in all action-layers of the RP’. It is the
number of all (helpful) actions of RP' as solution paths in
the RPG for the initial state. If h(RP') < h(RP) holds, it
continues with re-planning. Otherwise no re-planning is
performed.

Re-planning. How much of the old plan P can be
reused for the new plan P', means what would be the best
position to restart planning with the new operator o? In
order to determine this position, XPlan+ heuristically
takes the index of the layer of the new RP' at which o
occurs first as position e, else (if o is not in RP') sets
position e = -1 and stops, and retains the old plan
(fragment) P until this position. In other words, the
position e of starting re-planning is the minimal number of
actions before first occurrence of o. Second, it applies all
operators from the old plan occurring before e in the new
plan, and then tries to identify the instances of o which are
applicable to the current state. For this purpose it checks
whether the precondition of o is satisfied in the RP'. If no
instance of o is applicable, it tries to apply more operators
from the old plan until an instance of o eventually
becomes applicable. If this fails, a complete re-planning
has to be started. Otherwise it applies the new operator o.
That is, XPlan+ identifies a re-entry point in the original
plan by searching for already planned operators (actions)
which correspond to helpful ones in the current state, and
continues with the first step from this position. If no such
position can be found, start full re-planning of the plan. If
the goal is not yet reached, extend the plan until the goal
is reached by continuing with the normal planning process
like XPlan.

3.2. Case of lost operator
If a planned operator becomes unavailable, the actual

plan is invalid. XPlan+ tries to replace the affected

operator(s) by replacing it with alternative ones which
achieve the same effect as the lost one. In case of success,
the remainder of the plan can be re-used, which reduces
re-planning time significantly.

Re-planning decision. XPlan+ first marks all actions
in the plan which are affected, because of the fact that the
respective operator does not exist anymore, or some
precondition does not hold anymore. If no actions are
marked, it continues with the normal planning process like
XPlan.

Re-planning. For each affected action, XPlan+ creates
a relaxed plan RP' from S0. It then uses (inverse) enforced
hill climbing search to circumvent the affected operator by
applying alternative operators if possible. Basically, the
planner identifies a re-entry point in the old plan P by
searching for already planned actions in P which
correspond to helpful actions in the current state, and
continues with re-planning from this position. If no such
position can be found, the remainder of the plan has to be
re-planned completely. Otherwise, if the goal is not yet
reached, extend the plan until the goal is reached by
continuing with the normal planning process like XPlan.

3.3. Case of new goal
If the given planning goal did change, re-planning is

necessary in case the new goal cannot be satisfied by the
current plan at all, or could even be achieved by a shorter
plan.

Re-planning decision. XPlan+ quickly creates a
relaxed plan for the new goal from the initial state S0, and
marks all actions in the already existing plan P which are
also contained in the new relaxed plan.

Re-planning. For each non-marked action, XPlan+
uses enforced hill climbing search to circumvent the
action by applying alternative operators, identifies a re-
entry point in the old plan by searching for planned
actions in the old plan P which correspond to helpful
actions in the current state, and continues planning from
this position. That is, XPlan+ starts heuristic re-planning
with the action in currently valid P that precedes first
occurrence of o. If no such position can be found, the
remainder of the plan has to be re-planned completely. If
the goal is not yet reached, XPlan+ extends the plan until
it is reached by continuing with the normal planning
process like XPlan.

4. Preliminary Evaluation

The comparative analysis of the computational
complexity of planning with XPlan+ and XPlan, as
depicted in figure 5, is concerned with situations where a
new operator becomes available, or an operator is deleted
just before the initial planning is finished (for plans with
at least 20 steps). The denotation "Online(n)", with n =

0,1,2 refers to the case where an observed event does
affect the plan at n positions. As a consequence, XPlan+
has to build n relaxed plans during its partial re-planning,
whereas the pure off-line planner XPlan denotated in the
figure as "Offline" would do a full re-planning.

Fig. 4: Computational complexity of planning with

XPlan+ (quasi.-)online vs. XPlan (full restart/offline)

The resulting planning time offsets for all cases applied
to a simple blocks world related plan of 28 steps with
initially five operators is shown in figure 4. Only new
operators where introduced during the planning process
that theoretically would lead to a shorter plan. XPlan+
gained more momentum compared to XPlan with
increasing number of such events, and the later in the plan
they did occur. This is also experimentally confirmed by
the measured run time of XPlan+ (cf. figure 5) which
decreased in absolute terms mainly due to its heuristic re-
use of plan parts as described above.

Fig. 5: Measured run time of XPlan+ vs. XPlan

5. Conclusion

We presented an extension of the planning module of
our OWL-S service composition planner OWLS-XPlan,
named XPlan+, that allows for quasi-online re-planning of

composite OWL-S services with reasonable performance
according to preliminary evaluation results. We are
currently working on the integration of the implemented
XPlan+ into OWLS-XPlan, and plan to make the resulting
service composition planner OWLS-XPlan+ publicly
available at semwebcentral.org

6. References

[1] J. Hoffmann. A heuristic for domain independent
planning and its use in an enforced hill-climbing
algorithm. Proceedings of 12th Intl Symposium on
Methodologies for Intelligent Systems, Springe, 2000.
[2] J. Hoffmann. The Metric-FF planning system:
Translating Ignoring Delete Lists to Numeric State
Variables. Artificial Intelligence Research, 20, 2003.
[3] J. Hoffmann and B. Nebel. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Artificial
Intelligence Research, 14, 2001.
[4] A. Lotem, D. Nau, and J. Hendler. Using planning
graphs for solving HTN problems. Proceedings of
AAAI/IAAI conference, USA, 1999.
[5] J. Peer. Web Service Composition as AI Planning: A
Survey. Technical Report, U St. Gallen, Switzerland
http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf, 2005.
[6] M. Schmidt. Ein effizientes Planungsmodul fuer die
lokale Planungsebene eines InteRRaP Agenten. Master
Thesis, U Saarland, Germany, 2005.
[7] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau. HTN
planning for web service composition using SHOP2.
Journal of Web Semantics, 1(4), 2004.
[8] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S web services composition using
SHOP2. Proceedings of the 2nd International Semantic
Web Conference (ISWC2003), Florida, USA, 2003.
[9] M. Klusch, A. Gerber, M. Schmidt: Semantic Web
Service Composition Planning with OWLS-XPlan.
Proceedings of the AAAI Fall Symposium on Semantic
Web and Agents, Arlington VA, USA, AAAI Press, 2005.
[10] L. Pryor, G. Collins. Planning for Contingencies: A
Decision-based Approach. Artificial Intelligence
Research, 4:287-339, 1996.
[11] B. Medjahed, A. Bouguettya, A.K. Elmagarmid.
Composing Web services on the semantic Web. Very
Large Data Bases (VLDB), 12(4), 2003
[12] OWLS-XPlan:
http://projects.semwebcentral.org/projects/owls-xplan/
[13] R. Dearden et al.. Incremental Contingency Planning.
Proc. Int. Conf. on Automated Planning and Scheduling
ICAPS, Workshop on Planning under uncertainty and
incomplete information, Trento, Italy, 2003

0,9

1,1

1,3

1,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27

event at plan step

ti
m

e
(s

ec
o

n
d

s)

XPlan XPlan+

