
OWLS-MX: A Hybrid Semantic Web Service Matchmaker
for OWL-S Services

Matthias Klusch a,1,∗ Benedikt Fries b Katia Sycara c,2

aGerman Research Center for Artificial Intelligence, Saarbruecken, Germany
bMorgan Stanley Japan Securities Corporation, Tokyo, Japan

cCarnegie Mellon University, Robotics Institute, Pittsburgh, USA

Abstract

In this paper, we describe the first hybrid semantic Web service matchmaker for OWL-S services, called OWLS-
MX. It complements crisp logic-based semantic matching of OWL-S services with token-based syntactic similarity
measurements in case the former fails. The results of the experimental evaluation of OWLS-MX provide strong evidence
for the claim that logic-based semantic matching of OWL-S services can be significantly improved by incorporating
non-logic-based information retrieval techniques. An additional analysis of false positives and false negatives of the
hybrid matching filters of OWLS-MX led to an even further improved matchmaker version called OWLS-MX2.

Key words: Semantic Web, OWL-S, Semantic Service Matching, Information Retrieval

1. Introduction

Semantic service discovery is the process of lo-
cating existing Web services based on the descrip-
tion of their functional and non-functional seman-
tics. Discovery scenarios typically occur when one
is trying to reuse an existing piece of functionality
(represented as a Web service) in building new or
enhanced business processes. Both service-oriented
computing and the Semantic Web envision intelli-

∗ Corresponding author. Phone: +49-681-302-5297
Email addresses: klusch@dfki.de (Matthias Klusch),

benedikt.fries@morganstanley.com (Benedikt Fries),
katia@cs.cmu.edu (Katia Sycara).
1 Partial support provided by BMBF (German Ministry for
Education and Research) grants MODEST 01-IWO-8001,
SCALLOPS 01-IW-D02, European Commission grant CAS-
COM IST-FP6-511632.
2 Partial support provided by the DARPA DAML program
under contract F30601-00-2-0592.

gent agents to proactively pursue this task on behalf
of their users.

Central to the majority of contemporary ap-
proaches to Semantic Web service selection is that
the functionality of Web services is logically defined
in, for example, the standard first-order description
logic-based ontology language OWL [6] or a rule
language like SWRL, or a logic programming lan-
guage like F-Logic. In anycase, intelligent agents
can exploit standard means of logic reasoning to au-
tomatically understand the Web service semantics,
in particular to determine the degree to which the
service is semantically relevant to a given service
request.

However, the representation of real-world seman-
tics in logics only is known to be inadequate due to
its limited expressivity. In addition, automated rea-
soning on Web service semantics expressed in first-
order logics turned out not to be sufficiently scalable
to the Web in practice [4].

One pragmatic solution to this problem is hy-

Preprint submitted to Elsevier 4 September 2008

brid semantic service selection, that is the combina-
tion of both logic-based and non-logic-based approx-
imate reasoning on service semantics. Pioneering
work in this direction include the first implemented
hybrid semantic service matchmakers like LARKS
[17], OWLS-MX, WSMO-MX [8], FC-MATCH [1]
and OWLS-iMatcher2 [9].

In this paper, we describe our hybrid Semantic
Web service matchmaker for OWL-S services, called
OWLS-MX, in detail. Key to OWLS-MX is that
it tolerates logical subsumption-based signature
matching failures up to a specified extent by com-
plementary approximate matching based on text
similarity measurement. Of course, we acknowledge
that the adaptation to the latter eventually is on
the user’s end.

The remainder of this paper is structured as fol-
lows. We provide background information on seman-
tic services in OWL-S and semantic service selection
with focus on logic-based approaches in sections 2
and 3, respectively. The following section 4 presents
our approach to hybrid semantic service profile se-
lection with OWLS-MX including its hybrid match-
ing filters, the generic matching algorithm together
with variants and a simple application example. De-
tails on the implementation of OWLS-MX are given
in section 5. The experimental results of measuring
the service retrieval performance and scalability of
OWLS-MX over a given test collection are presented
in section 6, followed by an experimental analysis
of its false positives and false negatives in section 7.
These results led to an improved version of OWLS-
MX reported in section 8. We briefly present re-
lated work on hybrid semantic service matchmakers
in section 9, and conclude in section 10.

2. Semantic services in OWL-S

Our semantic service matchmaker OWLS-MX fo-
cusses on semantic services that are described in
OWL-S. In the following, we briefly introduce the
essentials of OWL-S, and refer to, for example, [15]
for more details.

2.1. Overview

OWL-S is an upper ontology used to describe the
semantics of services based on the W3C standard
ontology OWL and is grounded in WSDL. It has its
roots in the DAML Service Ontology (DAML-S) re-
leased in 2001, and became a W3C candidate recom-

mendation in 2005. The OWL-S ontology consists
of three main components: the service profile for ad-
vertising and discovering services; the process model,
which gives a detailed description of a service’s op-
eration; and the grounding, which provides details
on how to interoperate with a service, via messages.

In particular, the semantic service profile in OWL-
S specifies the semantics of the service signature,
that is the inputs required by the service and the
outputs generated. Furthermore, since a service may
require external conditions to be satisfied, and it has
the effect of changing such conditions, the profile
also describes the preconditions to be satisfied be-
fore, and the expected effects that result from the
execution of the service. The majority of existing
OWL-S service matchmakers focusses on semantic
service profiles.

2.2. OWL-S service profile

The OWL-S profile ontology is used to describe what
the service does, and is meant to be mainly used for
the purpose of service discovery. An OWL-S service
profile or signature encompasses its functional para-
meters, i.e. hasInput, hasOutput, precondition and
effect (IOPEs), as well as non-functional parameters
such as serviceName, serviceCategory, qualityRat-
ing, textDescription, and meta-data about the ser-
vice provider such as name and location 3 .

Inputs and outputs relate to data channels, where
data flows between processes. Preconditions spec-
ify facts of the world (state) that must be asserted
in order for an agent to execute a service. Effects
characterize facts that become asserted given a
successful execution of the service in the physical
world (state). Whereas, in OWL-S, the semantics
of each service input and output parameter is de-
fined in terms of a referenced OWL concept in a
given ontology, typically in a decidable description
logic OWL-DL or OWL-Lite, the preconditions and
effects can be expressed in any appropriate first-
order logic (rule) language such as KIF (Knowledge
Interchange Format) or SWRL (Semantic Web
Rule Language). Besides, the profile class can be
subclassed and specialized, thus supporting the
creation of profile taxonomies which subsequently
describe different classes of services.

3 Please note that, in contrast to OWL-S 1.0, in OWL-S
1.1 the service IOPE parameters are defined in the process
model with unique references to these definitions from the
profile.

2

2.3. OWL-S service process model

An OWL-S process model describes the compo-
sition (choreography and orchestration) of one or
more subservices of a service, that is the controlled
enactment of constituent processes with respective
communication patterns, exposed IOPEs and para-
meter bindings of linked subservices. The seman-
tics of OWL-S service process models have not been
defined in the specification of OWL-S but various
existing approaches to formalize the semantics of
the standard Web service orchestration language
BPEL (Business Process Execution Language) can
be exploited for this purpose. Originally, the service
process model was not intended for service discovery
by the so-called OWL-S coalition, that is the group
of researchers who developed OWL-S.

2.4. OWL-S service grounding

The grounding of an OWL-S service description
provides a binding between the logic-based seman-
tic service profile, the process model, and the XML-
based Web service interface to facilitate service exe-
cution. Such a grounding of OWL-S services can be,
in principle, arbitrary but has been exemplified for a
grounding in WSDL (Web Service Description Lan-
guage) to concretely connect OWL-S to an existing
Web service standard.

In particular, the logic-based description of the
service signature is uniquely associated with that of
the Web service, and an atomic semantic process
model is mapped to a WSDL operation. WSDL 1.0
does not allow to express pre-conditions or effects of
services, nor has any formal semantics.

Though OWL-S allows only static and determin-
istic aspects of the world to describe in the descrip-
tion logic variants of OWL used for semantic anno-
tation, the majority of semantic services available in
the public Web happens to be in OWL-S [11]. Refac-
toring OWL-S to the standard for Semantic Web
service description, SAWSDL (Semantically Anno-
tated WSDL), is ongoing work in the Semantic Web
services science community.

3. Semantic service selection

What is semantic service selection? Apart from
finding available semantic services in the Web or
central service directories, the quality of semantic
service discovery depends on the process of seman-

tic service selection: The pairwise semantic service
matching of a set of semantic services with a given
query and respective relevance-based ranking of the
results returned to the user. Semantic service selec-
tion tools are also called semantic service match-
makers.

In the following, we classify existing Semantic
Web service matchmakers, and focus on what most
of them perform: Logic-based semantic service pro-
file matching. Related work on hybrid semantic
service matchmakers are discussed in section 9. For
a more comprehensive survey, we refer to [10].

3.1. Classification of SWS matchmakers

Current semantic service matchmaker can be
classified according to (a) what kinds and parts of
service semantics are considered for matching, and
(b) how matching is actually performed in terms of
logic-based or non-logic-based reasoning within or
partly outside the service description framework, or
a combination of both (cf. figure 1).

The majority of them performs logic-based se-
mantic service profile matching, and is restricted to
OWL-S. Only a few are available for alternatives
like WSML or the standard SAWSDL, and does also
take process models and non-functional parameters
into account. Though, process model-based match-
ing was not intended by the designers of OWL-S or
WSML, while neither SAWSDL nor monolithic ser-
vice descriptions offer any process model element.

Logic-based semantic service matchmakers per-
form deductive reasoning on service semantics. In
order to define these semantics, logical concepts
and rules are referenced in ontologies as logical
background theories. Different ontologies of service
provider and requester are matched or aligned ei-
ther at design time, or at runtime as part of the
logic-based service matching process.

Non-logic-based semantic service matchmakers do
not perform any logic-based reasoning to determine
the degree of a semantic match between a given
pair of service descriptions. Examples of non-logic-
based semantic matching techniques are text sim-
ilarity measurement, structured XML/RDF graph
matching, and path-length-based similarity of con-
cepts. In particular, service matchmakers that do
not at least logically verify given semantic relations
between ontological concepts used to describe ser-
vice semantics classify as non-logic-based.

3

Fig. 1. Categories of existing SWS matchmakers.

3.2. Logic-based semantic service profile matching

We distinguish between monolithic and struc-
tured logic-based semantic profile matching. In
the first case, the functionality of a Web service
is exclusively - and agnostic to any parameterized
description structure like in OWL-S or WSML -
represented by a single logical expression. Semantic
comparison of such monolithic logic-based service
(effect) descriptions as a whole simply reduces to
standard first-order (description) logic reasoning,
that is service and query (desired service) concept
subsumption, respectively, satisfiability checking
completely within the logic theory.

For example, the logical post-plug-in match of an
advertised service concept S with a service query
concept R is determined by the entailment of service
concept subsumption of S by R over a given knowl-
edge base kb extended by the axioms of S and R:
kb∪S∪R |= S � R. That is, the matchmaker checks
if in each first-order interpretation (possible world)
I of kb, the set SI of concrete provider services (ser-
vice instances) is contained in the set RI of service
instances acceptable to the requester: SI ⊆ RI . In
other words, service S is more specific than the re-
quest R, hence considered semantically relevant. A

logical subsumes match assures the requester that
her acceptable service instances are also acceptable
to the provider: kb ∪ S ∪ R |= R � S [5]. Promi-
nent examples of monolithic logic-based matchmak-
ers are RACER [13] and MaMaS 4 [14].

Alternatively, structured logic-based profile
matching makes additional use of parameterized
service descriptions provided by most semantic ser-
vice description languages such as OWL-S, WSML
and SAWSDL. In this case, logic-based semantic
profile matching is a combination of logical rea-
soning within the logic theory of the formal ontol-
ogy language used for annotation, and algorithmic
processing outside the theory. For example, a logic-
based plug-in serice (IOPE) profile match requires
to check that certain constraints hold on the type
and quantification of computed (approximated) log-
ical implications between preconditions and effect,
and logical subsumption between input and out-
put concepts (denoted as in : C, resp., out : C) of
service and query 5 : Service S semantically IOPE-

4 sisinflab.poliba.it/MAMAS-tng/
5 Originally, a service S plugs into (plug-in matches with)
another service R, if the effect of S is more specific than
that of R, and vice versa for the preconditions of S and R
[21]. Unfortunately, this notion of plug-in match in software

4

plugs into request R iff precR ⇒ precS ∧ postS ⇒
postR (specification plug-in match), and ∀in : C ∈
InputS ∃in : C′ ∈ InputR : C � C′ ∧∀out : C ∈
OutputR ∃out : C′ ∈ OutputS : C′ � C (signa-
ture plug-in match). Alternative for undecidable
first-order logical entailment checking is the poly-
nomial, correct but incomplete polynomial theta
subsumption (a logical consequence relation) and
instance-based query answer set inclusion (query
containment).

In general, the complexity of computing logic-
based semantic relations depends on the ontology
language used for semantic annotation. For exam-
ple, post-plug-in matching of service concepts in
OWL-Full, that is SHOIQ+ (including transitive
non-primitive roles) has been shown to be undecid-
able, but decidable in NEXPTIME for OWL-DL,
WSML-DL and DL-safe SWRL.

Examples of logic-based OWL-S service match-
makers are OWLSM [7] and OWLS-UDDI [16] both
focussing on service IO-matching. The matchmaker
PCEM [2] converts given OWL-S services and re-
quest to standard PDDL (Planning Domain Defin-
ition Language) actions and then computes logical
implications between their preconditions and effects
in PROLOG.

4. Hybrid semantic service profile matching

Hybrid semantic service selection performed by
our matchmaker OWLS-MX exploits both logic-
based reasoning and non-logic-based information
retrieval (IR) techniques for OWL-S service profile
signature matching. That is, OWLS-MX focusses
on service I/O-parameter matching and ignores log-
ical service specification in terms of preconditions
and effects. Please note that the vast majority of ac-
cessible OWL-S services does not possess any such
specification, nor any composite process model yet.

In the following, we define the hybrid semantic
service filters of OWLS-MX, the generic OWLS-MX
selection algorithm and its five variants according
to five different text similarity metrics used by the
matchmaker.

engineering has been adopted quite differently by most logic-
based Semantic Web service matchmakers for both mono-
lithic and structured service descriptions.

4.1. Matching filters of OWLS-MX

OWLS-MX computes the degree of semantic
matching for a given pair of service advertisement
and request by successively applying five different
filters exact, plug in, subsumes, subsumed-by

and nearest-neighbor. The first three are logic
based only whereas the last two are hybrid due to
the required additional computation of syntactic
similarity values. Let be
– T the terminology (TBox) of the OWLS-MX

matchmaker ontology specified in OWL-DL and
CTT the concept subsumption hierarchy of T ;

– LSC(C) the set of least specific concepts (direct
children) C’ of C, i.e. C’ is immediate sub-concept
of C in CTT ;

– LGC(C) the set of least generic concepts (direct
parents) C’ of C, i.e., C’ is immediate super-
concept of C in CTT ;

– in:C ∈ InputS (out:C ∈ OutputS) an input (out-
put) concept C of service S defined in T ;

– SynSim(S,R) ∈ [0, 1] real-valued degree of text
similarity between service S and request R. This
degree is computed as the averaged syntactic sim-
ilarity of the serialized input, respectively, out-
put concepts of S and R according to given text
similarity metric SynSim(S,R): SynSim(S,R) =
(SynSim(S,R)in + SynSim(S,R)out)/2. Serializa-
tion of a set of concepts includes the terminolog-
ical unfolding of these concepts in T , followed up
by the conjunctive concatenation of the result-
ing logical expression and its preprocessing to one
weighted keyword vector;

– α ∈ [0, 1] syntactic similarity threshold;
– � (≡) terminological concept subsumption

(equivalence) relation.
The semantic service matching degrees computed

by OWLS-MX are as follows.

Exact match. Service S exactly matches re-
quest R ⇔ ∀ in:C ∈ InputS ∃ in:C’∈ InputR: C
≡ C’ ∧ ∀ out:D∈ OutputR ∃ out:D’∈ OutputS: D
≡ D outS . The service I/O signature perfectly
matches with the request with respect to logic-
based equivalence of their formal semantics.

Plug-in match. Service S plugs into request
R ⇔ ∀ in:C∈ InputS ∃ in:C’∈ InputR: C’
sqsubseteq C ∧ ∀ out:D∈ OutputR ∃ out:D’∈
OutputS : D’∈ LSC(D). All service input para-
meter concepts are matched by a more specific

5

one in the request R. If the OWL input concept
definitions can be mapped to equivalent WSDL
input messages and service signature data types,
this constraint guarantees at a minimum that
S is executable with any input provided by the
requestor. In addition, S is expected to return
more specific output data whose logically defined
semantics are exactly the same or very close to
what has been requested.

This kind of match is borrowed from the soft-
ware engineering domain, where software compo-
nents are considered to plug-in match with each
other as defined above but not restricting the
output concepts to be direct children of those of
the query. In particular, the definition of plug-in
signature match used for OWLS-MX follows the
original notion of software specification plug-in
match introduced in [21].

Subsumes match. Request R subsumes ser-
vice S ⇔ ∀ in:C∈ InputS ∃ in:C’∈ InputR: C’
sqsubseteq C ∧ ∀ out:D∈ OutputR ∃ out:D’∈
OutputS : D’ sqsubseteq D. This filter is weaker
than the plug-in filter in the sense that the re-
turned service output is more specific than re-
quested by the user: It relaxes the constraint of
immediate output concept subsumption to arbi-
trary output concept subsumption.

Subsumed-by match. Request R is subsumed

by service S⇔ ∀ in:C∈ InputS ∃ in:C’∈ InputR:
C’ sqsubseteq C ∧ ∀ out:D∈ OutputR ∃ out:D’∈
OutputS : D’ ≡ D ∨ D’∈ LGC(D). This filter se-
lects services whose output data is slightly more
general than requested, hence, in this sense, sub-
sumes the request. We focus on direct parent
output concepts to avoid selecting services re-
turning data which we think may be too general.
Of course, it depends on the individual perspec-
tive taken by the user, the application domain,
and the granularity of the underlying ontology at
hand, whether a relaxation of this constraint is
appropriate, or not.

Logical Fail. OWLS-MX returns a logic-based se-
mantic matching failure degree, iff service S does
not match with request R according to any of the
above matching filters.

Hybrid subsumed-by match. Request R is sub-

sumed by service S ⇔ ∀ in:C∈ InputS ∃ in:C’∈
InputR: C’ sqsubseteq C ∧ ∀ out:D∈ OutputR

∃ out:D’∈ OutputS: (D’ ≡ D ∨ D’∈ LGC(D))
∧ SimIR(S, R) ≥ α. This hybrid filter comple-
ments logic-based subsumed-by matching with
syntactic matching by means of a selected text
similarity measurement.

Nearest-neighbor match. Service S is nearest

neighbor of request R ⇔ SimIR(S, R) ≥ α.
This matching degree is non-logic-based since it
checks the degree of text similarity between the
input and output concepts of service and request.
It is being applied only in case all of the above
logic-based and hybrid matching filters fail.

Fail. OWLS-MX returns a total semantic match-
ing failure degree as a result, iff service S does
not match with request R according to any of the
above matching degrees.

These service matching degrees are sorted ac-
cording to the order of their semantic relevance
degrees as follows: Exact < Plug-In < Subsumes

< Subsumed-By < Logical Fail < Hybrid

subsumed-By < Nearest-neighbor < Fail.
A service S that logically matches exactly with

request R is assumed to be more semantically rele-
vant to R than a plug-in matching one (Exact <
Plug-In). A subsumes match of S with R is con-
sidered semantically weaker than a plug-in match
due to the relaxation of the service output concept
matching condition (relaxation from direct child
concept to any arbitrary subconcept in the match-
maker ontology). In other words, a plug-in matching
service S is assumed to be semantically closer to
R than a subsumes-matching service (Plug-In <
Subsumes).

Further, we assume that a semantic service out-
put concept which is more general than requested
relaxes the degree of semantic relevance of this
service to a query compared to a more specific ser-
vice output. In particular, the restriction to direct
parent concepts in the ontology in the logic-based
subsumed-by matching condition makes a service S
with a logical subsumes matching degree with focus
on more specific, that is direct child concepts in
the ontology, semantically more relevant to a given
request R than services with more general output
concepts like the subsumed-by-matching services
(Subsumes < Subsumed-By).

From the perspective of logic-based only seman-
tic matching, the complementary text similarity
measurement by the nearest-neighbour filter is con-

6

sidered weakest with respect to semantic relevance.
This filter will only be performed in case all logic-
based filters and the hybrid subsumed-by filter
fail. Finally, only if none of the above sequentially
checked matching degrees hold, the matchmaker
returns a matching failure (Nearest-neighbor <
Fail).

4.2. Generic OWLS-MX matching algorithm

The OWLS-MX matchmaker takes any OWL-S
service as a query, and returns an ordered set of rel-
evant services that match the query each of which
is annotated with its individual degree of match-
ing, and syntactic similarity value. The user can
specify the desired degree, and syntactic similarity
threshold. OWLS-MX then first classifies the ser-
vice request I/O concepts into its local matchmaker
ontology.

Matchmaker ontology. The matchmaker ontol-
ogy emerges from a given initial ontology by classify-
ing all service and request I/O concepts into this on-
tology each time a service advertisement or request
is being received. We assume that service provider,
requester and matchmaker share a basic minimal
vocabulary of primitive components together with
a set of mapping rules such as synonym relations in
the thesaurus WordNet. Primitive components are
terms out of which complex concepts are canonically
defined in a description logic-based terminology.

Upon receipt of a service, the matchmaker focuses
only on those parts of referenced service ontologies
that are relevant to understand the semantics of
the service. For this purpose, it terminologically un-
folds each service input and output concept leading
to logical concept expressions that include primi-
tive components of a shared basic vocabulary. Each
of these concept expressions is self-contained in the
sense that the rest of the referenced service ontology
is not necessary to understand the semantics of the
unfolded concept.

Attached to each concept in the matchmaker
ontology are auxiliary data about which registered
services are using that concept as an input and/or
output concept. The respective lists of service iden-
tifiers are used by the matchmaker to compute the
set of relevant services that are matching with the
given query.

Hybrid matching. Any failure of logical concept

subsumption produced by the integrated description
logic reasoner of OWLS-MX will be tolerated, if and
only if the degree of syntactic similarity between
the respective unfolded service and request concept
expressions exceeds a given similarity threshold.

The pseudo-code of the generic OWLS-MX
matching process is given below (cf. algorithms 1 -
3). Let inputsS = { inS,i|0 ≤ i ≤ s}, inputsR = {
inR,j |0 ≤ j ≤ n}, outputsS = { outS,k|0 ≤ k ≤
r}, outputsR = { outR,t|0 ≤ t ≤ m}, set of input
and output concepts used in the profile I/O para-
meters hasInput and hasOutput of registered
service S in the set Advertisements, and the service
request R, respectively. Attached to each concept
in the matchmaker ontology are auxiliary data that
informs about which registered service is using this
concept as an input and/or output concept.

Algorithm 1 Match: Find advertised ser-
vices S that best match in a hybrid fash-
ion with a given request R; returns set of
(S, degreeOfMatch, SIMIR(R, S)) with maximum
degree of match (dom) unequal FAIL (uses algs. 2
and 3 to compute dom), and syntactic similarity
value exceeding a given threshold α.
1: function match(Request R, α)
2: local result, degreeOfMatch,

hybridF ilters = { subsumed-by,
nearest neighbour}

3: for all (S, dom) ∈ candi-

datesinputset(inputsR) ∧ (S, dom′) ∈
candidatesoutputset(outputsR) do

4: degreeOfMatch← min(dom, dom′)
5: if degreeOfMatch ≥ minDegree ∧ (

degreeOfMatch /∈ hybridF ilters ∨
simIR(R,S) ≥ α) then

6: result := result ∪ { (S,
degreeOfMatch, simIR(R,S)) }

7: end if
8: end for
9: return result

10: end function

In the following section, we present five variants of
this generic OWLS-MX matchmaking scheme.

4.3. OWLS-MX variants

We implemented different variants of the generic
OWLS-MX algorithm, called OWLS-M1 to OWLS-
M4, each of which uses the same logic-based se-
mantic filters but different IR similarity metric

7

Algorithm 2 Find services which input matches
with that of the request; returns set of (S, dom) with
minimum degree of match dom unequal FAIL.
1: function candidatesinputset(inputsR)
2: local H , dom, r
3: � If a service input matches with multiple

request inputs the best degree is returned
4: H := { (S, inS,i, dom) ∈ ⋃

j=1..n

candidatesinput(inRj) | dom =
argmaxl{ (S, inS,i, doml) |1 ≤ l ≤
n, 1 ≤ i ≤ s} }

5: � If all inputs of service S are matched by
those of the request, S can be executed,
and the minimum degree of its potential
match is returned

6: for all S ∈ Advertisement do
7: if { (S, inS1 , dom1), · · ·, (S, inSs , doms)

} ⊆ H then
8: r := r∪{ (S, min(dom1, · · ·, doms)) }
9: end if

10: end for
11: � Services with no input can always be exe-

cuted and are preliminary exact-match
candidates: servNoIn() = { (S, exact)
| S ∈ Advertisements ∧ inputsS = ∅ }

12: � Remaining, unmatched services are at
least nearest neighbour-match can-
didates: remServ() = { (S, nearest

neighbour) | S ∈Advertisements∧ 〈S,
degreeOfMatch′〉 /∈ r }

13: return r := r ∪ servNoIn() ∪ remServ()
14: end function
15:

16: function candidatesinput(inR,j) � Classify
request input concept into ontology, and use
the auxiliary concept data to collect services
that at least plug-in match with respect to
its input.

17: local r
18: r := r∪ { (S, inS , exact) | S ∈

Advertisements, inS ∈ inputsS, inS
.=

inR,j , }
19: r := r∪ { (S, inS , plug-in) | S ∈

Advertisements, inS ∈ inputsS, inS ≥̇
inR,j , }

20: return r
21: end function

SIMIR(R, S) for content-based service I/O match-
ing. The variant OWLS-M0 performs logic based
only semantic service I/O matching.

Algorithm 3 Find services which output matches
with that of the request; returns set of (S, dom) with
minimum degree of match unequal FAIL.
1: function candidatesoutputset(outputsR)
2: local r, dom
3: if outputsR = ∅ then
4: return { (S, exact) | S ∈

Advertisements }
5: end if
6: for all S ∈ Advertisements do
7: if (S, domt) ∈

candidatesoutput(outR,t) ∧ domt

≥ subsumes for t = 1..m then
8: r := r ∪ { (S, min{dom1, · · ·,

domm})}
9: else if (S, domt) ∈

candidatesoutput(outR,t) ∧ domt

∈ { exact, subsumes } for t = 1..m
then

10: r := r ∪ { (S, subsumed-by }
11: end if
12: end for
13: � Any remaining, unmatched service is a

potential nearest neighbour-match:
remServ() = { (S, nearest neigh-

bour) | S ∈ Advertisements ∧ S /∈ r }
14: return r := r ∪ remServ()
15: end function
16:

17: function candidatesoutput(outR,t) � Classify
request output concept into ontology, and
use the auxiliary concept data to collect ser-
vices with output concepts that match with
outR,t.

18: local r
19: r := r ∪ { (S, exact) | outS

.= outR,t }
20: r := r ∪ { (S, plug-in) | outS ∈

LSC(outR,t) ∧ S /∈ r }
21: r := r ∪ { (S, subsumes) | outS ≤̇ outR,t

∧ S /∈ r }
22: r := r ∪ { (S, subsumed-by) | outS ∈

LGC(outR,t) }
23: return r
24: end function

OWLS-M0. The logic-based semantic filters Ex-

act, Plug-in, Subsumes and Subsumed-By

are applied as defined in section 3.1.

OWLS-M1 to OWLS-M4. The hybrid variants
OWLS-M1, OWLS-M3, and OWLS-M4 also com-
pute the syntactic text similarity value SimIR

8

(outS , outR) by use of the loss-of-information
measure, extended Jacquard similarity coeffi-
cient, the cosine similarity value, and the Jensen-
Shannon information divergence based similarity
value, respectively.

Based on the experimental results of measuring the
performance of similarity metrics for text informa-
tion retrieval provided by Cohen and his colleagues
[3], we selected the top performing ones to build the
OWLS-MX variants. These symmetric token-based
string similarity measures are defined as follows.

– The cosine similarity metric
SimCos(S, R) = �R·�S

||�R||22·||�S||22
with standard TFIDF

term weighting scheme, and the unfolded con-
cept expressions of request R and service S
are represented as n-dimensional weighted in-
dex term vectors �R and �S respectively. �R · �S =∑n

i=1 wi,R × wi,S , ||X ||2 =
√∑n

i w2
i,X , and wi,X

denotes the weight of the i-th index term in vec-
tor X .

– The extended Jaccard similarity metric
SimEJ(S, R) = �R·�S

||�R||22+||�S||22−�R·�S with standard
TFIDF term weighting scheme.

– The intensional loss of information based simi-
larity metric
SimLOI(S, R) = 1− LOIIN (R,S)+LOIOUT (R,S)

2

with LOIx(R, S) = |PCR,x∪PCS,x|−|PCR,x∩PCS,x|
|PCR,x|+|PCS,x| ,

x ∈ {IN, OUT }, PCR,x and PCS,x set of primi-
tive components in unfolded logical input/output
concept expression of request R and service S.

– The Jensen-Shannon information divergence
based similarity measure
SimJS(S, R) = log2− JS(S, R) =

1
2log2

∑n
i=1 h(pi,R) + h(pi,S)− h(pi,R + pi,S)

with probability term frequency weigthing
scheme, e.g., pi,R denotes the probability of i-th
index term occurrence in request R, and h(x) =
−xlogx.

The extended Jaccard metric is a standard for
measuring the degree of overlap as the ratio of the
number of shared terms (primitive components)
of unfolded concepts of both service and request,
and the number of terms possessed by either of
them. In contrast to the TFIDF/cosine similarity
metric, it does not favor documents with most com-

mon terms. The Jensen-Shannon measure is based
on the information-theoretic, non-symmetrical
Kullback-Leibler divergence measure. It measures
the pairwise dissimilarity of conditional probability
term distributions between service and request text
rather than looking at the whole collection as it is
the case for the TFIDF/cosine, or the extended Jac-
card metric. The loss of (intensional) information in
case some concept A is terminologically substituted
by concept B, can be measured as the inverse ratio
of the number of matching primitive components
with those which remain unmatched in termino-
logically disjoint unfolded concept constraints. The
symmetric LOI-based similarity value for a given
pair of service and request is then computed analo-
gously for all I/O-concept definitions involved.

4.4. Example

Let us illustrate the hybrid service matching with
OWLS-MX by means of a simple example. Figure
2 shows the concept subsumption hierarchy or tax-
onomy of the OWLS-MX matchmaker ontology, the
service request R for physicians of some hospital h
that provide treatment to patient p, and relevant
service advertisements S1 and S2.

Service S1 is considered semantically relevant to
request R, since it returns for any given person p and
hospital h, the individual surgeon of h that operated
on p. Likewise, service S2 is relevant to R, since it
returns those emergency physicians who provided
emergency treatment to p before her transport to
hospital h. Hence, both services S1 and S2 should
be returned as matching results to the user.

However, the logic-based only variant OWLS-M0
determines S1 as plug-in matching with R but fails
to return S2, since the logic-based semantics of
the output concept siblings ”emergency physician”
and ”hospital physician” in the ontology are termi-
nologically disjoint. Please note that this concept
disjointness is not defined in any of the concepts
but has been computed by the matchmaker in
due course of its classifying these concepts into its
matchmaker ontology. In this example, the set of
terminological constraints of unfolded concepts c
corresponds to the set of primitive components (cp)
of which the individual concepts are canonically
defined in the matchmaker ontology T . Hence, the
unfolded concept expressions are as follows.

– unfolded(Patient, T) = (and Patientp Personp)

9

Fig. 2. Example of hybrid service matching with OWLS-MX

– unfolded(Hospital, T) = (and Hospitalp (and
MedicalOrganisationp Organisationp))

– unfolded(HospitalPhysician, T) = (and
HospitalPhysicianp (and Physicianp Personp))

– unfolded(Surgeon, T) = (and Surgeonp (and
HospitalPhysicianp (and Physicianp Personp)))

– unfolded(EmergencyPhysician, T) = (and
EmergencyPhysicianp (and Physicianp Personp))

As a result, for example, OWLS-M1 would return S1

as semantically plug-in matching service with syn-
tactic similarity value of SimLOI (R, S1) = 0.87.
In contrast to OWLS-M0, it also returns S2, since
this service is nearest-neighbor matching with the
request R: Their implicit semantics exploited by the
text similarity metric LOI (cf. (3), (4)) with SimLOI

(R, S2) =
(1− 5−4

5+4)+(1− 4−2
3+3)

2 = 0.78 ≥ α = 0.7 is suf-
ficiently similar, that is, it exceeds a threshold given
by the requester.

5. Implementation

We implemented the OWLS-MX matchmaker
variants (current version 1.1c) in Java using the
OWL-S API 1.1 beta with the tableaux OWL-
DL reasoner Pellet developed at university of
Maryland (cf. http://www.mindswap.org). As
the OWL-S API is tightly coupled with the
Jena Semantic Web Framework, developed by

the HP Labs Semantic Web research group (cf.
http://jena.sourceforge.net/), the latter is
also used to modify the OWLS-MX matchmaker
ontology. Figure 3 shows a screenshot of the OWLS-
MX version 1.1 graphical user interface.

After parsing service advertisements and re-
quests, the respective input and output concepts
are analysed and, if necessary, added to the local
matchmaker ontology together with auxiliary data
on their unfolding. As a consequence, the match-
maker ontology is dynamically built and growing
with the number of services and underlying ontolo-
gies loaded. In addition, the matchmaker ontology
is extended with auxiliary information for each
concept, for example whether it is used as an in-
put or output concept of a service registered at the
matchmaker. Service requests are treated similarly,
except that they are not stored in the extended
matchmaker ontology.

For each service request concept, the service iden-
tifiers attached to its immediate parent and child
concepts of the enhanced matchmaker ontology are
retrieved. The semantic degree of matching for each
service is then determined by applying the semantic
filters on this set of matching candidates. After this
step, the syntactic similarity is computed by apply-
ing the selected IR similarity metric to the strings of
unfolded concepts of the query and each registered
service. Both the semantic degree of match and the
syntactic similarity value determine the hybrid de-

10

Fig. 3. OWLS-MX v1.1c screenshot: OWLS-MX configuration

gree of matching of one service with the request. If
this hybrid degree is better than or equal to the min-
imum degree specified by the user, then this service
will be returned as potentially relevant.

OWLS-MX spends the largest amount of time
with classifying the service I/O-concept related
parts of OWL-DL ontologies used by newly regis-
tered services into the matchmaker ontology. That
is, it classifies new service I/O concepts not yet
known to the matchmaker into its current ontol-
ogy (see section 4.2, matchmaker ontology). For
example, the processing of 582 services of the test
collection OWLS-TC 2.1 takes about ten minutes
(on an IBM ThinkPad T41p with 1.7GHz and 2GB
RAM) presuming that there are no additional time-
outs due to unavailability of service related OWL
ontologies at remote sites. Once this preprocessing
has been completed, the average query response
time of OWLS-MX appears reasonable but prob-
ably not acceptable in practice (about 10 secs per
query to check over 582 services). There is definitely
space for improving on that by means of applying
appropriate caching and indexing techniques.

OWLS-MX v1.1c comes with an integrated eval-
uation tool for measuring its peformance in terms
of precision and recall over a given OWL-S ser-
vice retrieval test collection. Alternatively, we de-
veloped the SME2 (Semantic MatchMaker Eval-

uation Environment) tool which provides more
functionality for testing arbitrary Semantic Web
service matchmakers for OWL-S, WSML and
SAWSDL; the evaluation tool SME2 is available at
projects.semwebcentral.org/projects/sme2/.

6. Evaluation of Performance

In this section, we provide our experimental re-
sults of the retrieval performance of logic-based and
hybrid OWLS-MX variants in terms of recall and
precision.

6.1. Service retrieval test collection

For measuring the service I/O retrieval perfor-
mance of each OWLS-MX variant, we used the
OWL-S service retrieval test collection Owls-

TC v2.2. This collection consists of more than
1000 services specified in OWL-S 1.1 in seven ap-
plication domains, that are education, medical
care, food, travel, communication, economy, and
weaponry. The majority of these services were
retrieved from public IBM UDDI registries, and
semi-automatically transformed from WSDL to
OWL-S. Owls-TC v2.2 provides a set of 28 test
queries each of which is associated with a set of 10

11

to 20 services that a dozen people subjectively de-
fined as relevant according to the standard TREC
definition of binary relevance [19]. The collection
Owls-TC v2.2 is available as open source at
projects.semwebcentral.org/projects/owls-tc/. We
are working on Owls-TC v2.2g with graded rele-
vance sets.

6.2. Overall R/P performance

We adopted the evaluation strategy of macro-
averaging the individual precision values over all
requests q ∈ Q for λ recall levels [20] of each OWLS-
MX variant over the test collection OWLS-TC 2.1.
The matchmaker returns a rank list of all services
for evaluation, that is the answer set for evalua-
tion purposes is the set S of registered services.
For all queries qi ∈ Q, i ∈ {1..n} and recall levels
λj = j/λ ∈ [0, 1], j = 1..λ, we select the precision
Preci(r) value that is maximum (ceiling interpo-
lation) for recall Reci(r) ≥ λj at some rank r =
1, ..., |S|. Finally, we average these observed preci-
sion values to obtain the macro-averaged precision
Prec(λj) (over all queries) at each recall level λj .

In summary, the evaluation results showed that
hybrid semantic matching can improve logic-based
only service selection in terms of both precision and
recall (cf. figure 4). While OWLS-M0 reached preci-
sion of 0.67 and recall of 0.50 in average for its top-20
ranked services, the hybrid OWLS-M3 achieved that
with a higher precision (0.74) and recall (0.557).

The reason of higher precision of the hybrid vari-
ants OWLS-M1 to OWLS-M4 is that they avoided
most of logic-based false positives in case of logical
subsumed-by matches in the given test collection
by complementary syntactic similarity measure-
ment. In addition, the hybrid semantic matchmak-
ers avoided logic-based false negatives caused by
wrongly returned matching degree of logical fail
through complementary syntactic similarity mea-
surements (nearest-neighbour match) which led to
a better recall. All hybrid variants showed almost
equal performance in average. In the following, we
show the main cases of logic-based and hybrid false
positives and false negatives lowering precision,
respectively, recall of OWLS-MX.

The quantitative impact of the above mentioned
false positive and false negative cases on the match-
maker performance, of course, depends on the used
test collection. In this respect, our experimental
evaluation results are preliminary as long as there

Fig. 4. R/P performance of logic-based OWLS-M0 vs. syn-
tactic matching (Cosine/TFIDF, threshold 0.6) vs. hybrid
matching with OWLS-M3.

is no (quasi-)standard collection for semantic ser-
vice retrieval available, similar to TREC in the IR
domain.

7. Anaylsis of false positives and negatives

In this section, we analyze the retrieval perfor-
mance of OWLS-MX in terms of false positive and
false negatives to reveal the benefits and pitfalls of
its logic-based and hybrid semantic matching filters.

7.1. Logic-based false positives

There are two main reasons for logic-based false
positives of OWLS-MX: First, in the context of
service matching, the known logical mismatch prob-
lem of knowledge representation is manifested by
inappropriate logical definitions of input or output
concepts used to define the semantics of I/O con-
cepts of services in the logic-based matchmaker on-
tology. Second, the all-quantified logical matching
constraints wrongly tolerates the missing of input
or output concepts. These types of logic-based false
positives of OWLS-M0 are illustrated by example

12

in the following.

Granularity of matchmaker ontology. Any
logic-based semantic service matchmaker risks to
return false positives if the given logical concept
definitions in its ontology are not capturing the
real-world semantics of the concepts used to defined
the service semantics. This kind of logical mis-
match is a general problem of symbolic knowledge
representation. In the context of semantic service
matching, the decision whether some service is a
false positive for a given query is subjective for each
individual user. The same holds for the definition
of relevance sets for each query in the test collec-
tion OWLS-TC2.2 we used to evaluate the retrieval
performance of OWLS-MX.

Fig. 5. Example: False positive due to tolerated unlimited
logical parent-child relation between input concepts.

For example, in figure 5, the service at best log-
ically plug-in matches with the query, since the
(equally named) output concepts ”price” are de-
termined logically equivalent, and the query input
concept ”HybridRotaryEnginePoweredCar” is far
more specific than the service input concept ”Au-
tomobile”. According to the developers of the test
collection, the real-world semantic distance between
both input concepts in the matchmaker ontology
can be considered too large for being of any inter-
est which renders the service irrelevant. The reason
why all logic-based matching filters of OWLS-M0
fail to reckognize this, hence return the service as
relevant, is that they accept an unlimited input
concept distance in the matchmaker ontology.

Similarly, in the second example (cf. figure 6) the
logical comparison of service and query output defi-
nitions result in a direct subsumption relation in the
matchmaker ontology which could be (subjectively)
considered wrong, hence produce a false positive.

Fig. 6. Example: False positive due to logical mismatch of
output concepts with direct parent-child relation.

In this case even a restrictive least generic concept
match of the logical subsumed-by filter of OWLS-
M0 does not help to avoid this. However, in both
cases the additional syntactic matching of the hy-
brid subsumed-by matching filter of OWLS-M1 to
OWLS-M4 can potentially avoid logical subsumed-
by matches that are classified as false positives.
This holds under the IR assumption that the degree
of syntactic similarity sufficiently corresponds with
the degree of real-world semantic similarity.

All-quantified logical matching constraints.
Many false positives of OWLS-M0 are caused by
the restrictive all-quantified logical matching con-
straints. Since the hybrid variants inherit the deci-
sion of OWLS-M0 in case of a logical match, these
become false positives of OWLS-M1 to OWLS-M4
too.

Query input without corresponding service input.
The surjective mapping of service input concepts
to query input concepts (∀ inS ∃ inR) can lead to
false positives: It tolerates the missing of service in-
put concepts that correspond to those query input
concepts that are important part of or even key for
defining the intended query semantics. For exam-
ple, in figure 7, the input ”SFNovel” of the query
”SFNovelPrice” does not match with any input of
the service ”EntranceFee” but ”Author” with ”Per-
son”. As a result, OWLS-M0 determines a plug-in
match, hence wrongly returns the service as rele-
vant.

Even worse, the surjective concept mapping by
OWLS-MX can lead to false logical exact matches
in case of no input or output concepts provided. For
example, in figure 8, the query ”BuyBook” and ser-
vice ”DatingService” are returned as semantically

13

Fig. 7. Example: False positive due to all-quantified match-
ing. Incomplete coverage of query input by service input is
tolerated.

equivalent by OWLS-M0. The reason is that in this
particular case there does not exist any query out-
put concept which matches with the existing ser-
vice output concept. Similarly, the same holds for
the query ”RoutingService” and the service ”Map”
without any input concept to match which makes
the service-centred input matching constraints of all
logical filters of OWLS-MX true by default.

Fig. 8. Example: False positives due to tolerated lack of
service or query I/O.

Same I/O concepts used to express different
query and service semantics. Besides, this surjec-
tive matching of I/O concepts by all logical filters
of OWLS-MX ignores the possible use of the same
concept to describe different real-world semantics
of a query or a service. For example, the real-world
semantics of service ”BookCopyCheck” and query
”BookReview” in figure 9 are assumed to be not
related at all, that is the service is not relevant to
the query.

However, OWLS-M0 classifies the service as se-
mantically equivalent with the query, hence pro-
duces a false positive. The same concept ”Book” is
used twice in the service input but with obviously
different real-world semantics than in the query. In
these cases, even syntactic similarity measurement
would return a high relevance degree but at least
not identity between service and query, since the
term unfolded concept ”Book” can be detected as
a surplus term of the input string by means of fine-
grained syntactic overlap measurement like the ex-
tended Jaccard coefficient.

Fig. 9. Example: False positive caused by using the same
concept ”book” for describing different service and query
semantics

7.2. Avoiding logic-based false positives

The hybrid variants OWLS-M1 to OWLS-M4 can
increase their precision compared to OWLS-M0 by
avoiding its false logic-based subsumed-by matches
through additional syntactic similarity measure-
ment. In fact, the hybrid subsumed-by filter allows
to detect the irrelevance of a service S that logically
subsumes the query R with insufficient syntactic
similarity value (SynSim(S,R)≤ α).

Hybrid false positives. However, due to se-
quential execution of ordered logic-based and hy-
brid matching filters, the hybrid filters inherit the
remaining logic-based false positives from OWLS-
M0. That can be avoided by complementary syn-
tactic matching for all logic-based filters (except
the exact match) which led to the development of
OWLS-MX2 (cf. section 8).

Syntactic false positives only. On the other
hand, the complementary syntactic matching can
also cause hybrid false positives in case of sufficient
syntactic similarity but non-matching real-world
semantics between service and request which would
be correctly determined by OWLS-M0 (logical
matching failure). For example, logical connectives
like ”and”, ”or” in the logically unfolded concept
expressions are ignored by syntactic matching, since
they are eliminated as classical stop-words in the
preprocessing step of unfolded service and query I/O
concept expressions to weighted keyword vectors
for text similarity measurements (SynSim(S,R)out;
SynSim(S,R)in).

For example, in figure 10 we are asking for a ser-
vice that is capable of either colouring or framing
a given picture, and consider a service that is re-
stricted to jointly perform both actions irrelevant.
In this case, the logic-based OWLS-M0 correctly re-
turns a logical matching failure while OWLS-M1 to
OWLS-M4 ignore the subtle difference between the

14

use of the terms ”and” and ”or” in the concept ex-
pressions, hence detect a syntactic exact match of
both pairs of I/O strings and return the service as
relevant with a hybrid nearest-neighbour matching
degree (text similarity value of 1.0).

Fig. 10. Example: Hybrid false positives due to ignorance of
logical connectives by complementary syntactic matching.

7.3. Logic-based false negatives

Like for logic-based false positives, the reasons
of logic-based false negatives are mainly due to
the logical mismatch problem of the matchmaker
ontology and the implication of the all-quantified
matching constraints of OWLS-MX.

Ontology granularity: Similar concept siblings with
logical disjoint definitions. The problem of logical
mismatches due to insufficient ontology modeling
can also cause false negatives, that are services
wrongly classified as irrelevant by OWLS-M0. One
example of such logic-based only false negatives is
the case of logically disjoint concept siblings with
similar real-world semantics in a fine-grained on-
tology. Please note that these concepts are not
explicitly defined disjoint in the ontology but de-
termined to be disjoint by the matchmaker while
matching the service with the query. For example,
in figure 11, the query output ”Hopital-Physician”
and service output ”Emergency-Physician” are as-
sumed to be semantically close such that the service
is considered relevant to the query. However, the
matchmaker classifies both conjunctive concept de-
finitions differing in only one pair of their (equally
weighted) logical constraints as logically disjoint,
hence produces a false negative.

All-quantified logical matching constraints: More
generic service input only. The all-quantified match-
ing filters of OWLS-M0 require that the service

Fig. 11. Example: False negative caused by semantically sim-
ilar but (not defined as) logically disjoint concept siblings in
the matchmaker ontology.

input must be logically more generic than or equal
to the query input. In case of a linear mapping of
service and query I/O concepts to corresponding
XMLS signature data types on the service ground-
ing level, this guarantees that the WSDL service
can be invoked with the information specified in the
query by the user, in principle. However, this can
lead to false negatives as shown in figure 12, since
no logical filter of OWLS-M0 evaluates to true in
cases where the service input is more specific than
requested.

Fig. 12. Example: False negative due to required genericity
of service input.

All-quantified logical matching constraints: Logical
concept relations of same type. Finally, the match-
ing filters of OWLS-M0 require each pair of service
and query I/O concepts having the same type of
logical subsumption relation. For example, in figure
13, the logical subsumption relations between out-
put concepts of query ”CarPlusBike” and service

15

”4WheeledCarPackage” are different. As a result,
OWLS-M0 fails to detect the service as relevant.

Fig. 13. Example: False negative due to different concept
subsumption relations not accepted by the all-quantified fil-
ter constraints of OWLS-MX

7.4. Avoiding logic-based false negatives

Due to complementary syntactic matching in case
of logical matching failure returned by OWLS-M0,
the hybrid variants OWLS-M1 to OWLS-M4 can
avoid the above cases of logic-based false negatives,
thereby increasing their recall compared to OWLS-
M0. This is achieved by detecting (hybrid) nearest-
neighbour matches, if the degree of syntactic sim-
ilarity between the considered pairs of concepts or
service and query I/O-signature as a whole is suffi-
cient.

8. OWLS-MX2

The version OWLS-MX2 integrates syntac-
tic similarity-based matching with logic-based
subsumes and plug-in matching like the hybrid
subsumed-by filter in OWLS-MX. That avoids
false-positives the hybrid OWLS-M1 to OWLS-M4
inherit from OWLS-M0. Our experiments over the
OWLS-TC 2.2 that contains cases for all of the
above mentioned false positives and false negatives
showed that OWLS-MX2 did outperform OWLS-
MX for this reason, and performed slightly better
than text IR by avoiding syntactic similarity-based
only false positives.

Since the number of cases for false positives of
text IR in the collection OWLS-TC 2.2 is still signif-
icantly less than those for logic-based false positives,
the hybrid OWLS-M3 did not outperform syntac-
tic matching only. In fact, we observed that in most

Fig. 14. R/P performance of hybrid OWLS-MX2, OWL-
S-M3, and IR metric cosine/TFIDF.

domain ontologies fine-grained logical concept def-
initions other than pure subclass relations are rare
in practice which still handicaps logic-based only se-
manric service matching in practice. However, the
quantitative relation between logic-based and text
IR only false positives and false negatives in the Se-
mantic Web is unknown.

9. Related Work

There are only a few other hybrid semantic service
matchmakers available for OWL-S service profiles.
We discuss each of them in very brief only (see also
figure 1 in section 3), and refer to [10] for a coverage
of SWS matchmaking in general.

Our OWLS-MX matchmaker is strongly inspired
by the hybrid matchmaker LARKS [17]. However,
LARKS differs from OWLS-MX in several aspects:
LARKS performs IOPE matching of service pro-
files written in a proprietary capability description
language with a description logic different from
OWL-DL. Besides, LARKS does not offer logical
subsumes nor subsumed-by nor hybrid nearest-
neighbour matching, and has never been experi-
mentally evaluated.

The logic-based variant OWLS-M0 of OWLS-MX
is similar to the prominent OWLS-UDDI match-
maker [18] but is different with respect to the follow-
ing issues: OWLS-UDDI makes use of a different no-
tion of plug-in matching and does not perform addi-
tional subsumed-by matching. Further, OWLS-M0

16

allows to use arbitrary rather than known service
query concepts into its local matchmaker ontology,
and is not integrated with the UDDI registry stan-
dard for Web service discovery.

The hybrid semantic OWL-S service profile
matchmaker iMatcher [9] uses multiple edit- or
token-based text similarity metrics (Bi-Gram, Lev-
enshtein, Monge-Elkan and Jaro similarity mea-
sures) to determine the degree of semantic matching
between a given pair of OWL-S service profiles. Like
OWLS-MX, the iMatcher transforms each struc-
tured service profile description into a weighted
keyword vector that includes not only the names
but terms derived by means of logic-based unfold-
ing of its service input and output concepts. In
this sense, iMatcher classifies as a hybrid match-
maker. However, it does not perform logic-based
matching which resulted in lower precision and re-
call compared to OWLS-MX. In its adaptive mode
iMatcher2 learns (over a test collection like OWLS-
TC2.2) which of its ten text similarity measures to
select best for a given query. It has been experimen-
tally shown that the combined logical deduction
and regression-based learning of text similarities of
iMatcher2 is superior to logic-based only matching;
iMatcher2 did outperform OWLS-MX in terms of
precision.

The hybrid semantic service matchmaker FC-
MATCH [1] performs a combined logic-based
and text similarity-based matching of mono-
lithic service and query concepts written in
OWL-DL. In this approach, a service concept
S is defined as logical conjunction of existen-
tial qualified role expressions where each role
corresponds to a selected profile parameter: S
= ∃hasCategory(C1) � ∃hasOperation(C2) �
∃hasInput(C3) � ∃hasOutput(C4)). Unlike mono-
lithic logic-based service matching, FC-MATCH
determines hybrid matching degrees by means of
logic-based subsumption of their profile parameter
concepts (Ci) together with computing the so-called
Dice (name affinity) similarity coefficient between
terms occuring in these concepts according to given
terminological relationships of the thesaurus Word-
Net. However, to the best of our knowledge, FC-
MATCH has not been experimentally evaluated yet.

[12] presents an approach to hybrid matching of
monolithic logic-based semantic service descriptions
in OWL-DL extended with pricing policies (modeled
in DL-safe SWRL rules) according to given prefer-
ences by means of SPARQL queries to a given ser-
vice repository.

10. Conclusions

The presented approach to hybrid semantic Web
service matching, called OWLS-MX, utilizes both
logic based reasoning and non-logic based IR tech-
niques for semantic Web services in OWL-S. Exper-
imental evaluation results provide strong evidence
in favor of the proposition that the performance
of logic-based matchmaking can be considerably
improved by incorporating non-logic based infor-
mation retrieval techniques into the matching algo-
rithms.

The hybrid matchmaker OWLS-MX has been
successfully used in two fielded mobile e-health
sysems for emergency medical assistance and repa-
triation planning, namely the Health-SCALLOPS
system (www.dfki.de/scallops) and the CASCOM
system (www.ist-cascom.org).

References

[1] D. Bianchini, V. D. Antonellis, M. Melchiori, D. Salvi,
Semantic-enriched service discovery, in: Proceedings of
IEEE ICDE 2nd International Workshop on Challenges
in Web Information Retrieval and Integration (WIRI06),
Atlanta, Georgia, USA, 2006.

[2] L. Botelho, A. Fernandez, M. Klusch, L. Pereira,
T. Santos, P. Pais, M. Vasirani, Service discovery., in:
M. Schumacher, H. Helin (Eds.): CASCOM - Intelligent
Service Coordination in the Semantic Web. Chapter 10.
Birkh”auser Verlag, Springer, 2008.

[3] W. Cohen, P. Ravikumar, S. Fienberg, A comparison
of string distance metrics for name-matching tasks, in:
Proc. IJCAI-03 Workshop on Information Integration on
the Web (IIWeb-03), DBLP at http://dblp.uni-trier.de,
2003.

[4] D. Fensel, F. van Harmelen, Unifying reasoning and

search to web scale., in: IEEE Internet Computing,
March/April 2007.

[5] S. Grimm, Discovery - identifying relevant services., in:
Semantic Web Services. Concepts, Technologies, and
Applications. Springer, 2007.

[6] I. Horrocks, P. Patel-Schneider, F. van Harmelen, From
shiq and rdf to owl: The making of a web ontology
language, Web Semantics, 1(1), Elsevier.

[7] M. Jaeger, G. Rojec-Goldmann, C. Liebetruth,
G. M”uhl, K. Geihs, Ranked matching for service
descriptions using owl-s., in: Proceedings of 14. GI/VDE
Fachtagung Kommunikation in Verteilten Systemen
KiVS, Kaiserslautern, 2005.

[8] F. Kaufer, M. Klusch, Wsmo-mx: A logic programming
based hybrid service matchmaker., in: Proceedings of
the 4th IEEE European Conference on Web Services
(ECOWS 2006), IEEE CS Press, Zurich, Switzerland,
2006.

17

[9] C. Kiefer, A. Bernstein, The creation and evaluation of
isparql strategies for matchmaking., in: Proceedings of
European Semantic Web Conference, Springer, 2008.

[10] M. Klusch, Semantic web service coordination., in: In
M. Schumacher, H. Helin (Eds.): CASCOM - Intelligent
Service Coordination in the Semantic Web. Chapter 4.

Birkh”auser Verlag, Springer, 2008.
[11] M. Klusch, Z. Xing, Deployed semantic services for

the common user of the web: A reality check., in:
Proceedings of the 2nd IEEE International Conference
on Semantic Computing (ICSC), Santa Clara, USA,
IEEE Press, 2008.

[12] S. Lamparter, A. Ankolekar, Automated selection of
configurable web services., in: 8. Internationale Tagung
Wirtschaftsinformatik. Universitaetsverlag Karlsruhe,
Karlsruhe, Germany, March 2007.

[13] L. Li, I. Horrocks, A software framework for
matchmaking based on semantic web technology, in:
Proceedings of the Twelfth International Conference on
World Wide Web, ACM Press, 2003.

[14] T. D. Noia, E. Sciascio, F. Donini, M. Mogiello, A
system for principled matchmaking in an electronic
marketplace., in: Electronic Commerce, 2004.

[15] OWL-S, Semantic markup
for web services; w3c member submission 22 november
2004, http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/.

[16] M. Paolucci, T. Kawamura, T. Payne, K. Sycara,
Semantic matching of web services capabilities.,
in: Proceedings of 1st International Semantic Web
Conference (ISWC), 2002.

[17] K. Sycara, M. Klusch, S. Widoff, J. Lu, Larks: Dynamic
matchmaking among heterogeneous software agents
in cyberspace, Autonomous Agents and Multi-Agent
Systems, 5(2), Kluwer.

[18] K. Sycara, M. Paolucci, A. Anolekar, N. Srinivasan,
Automated discovery, interaction and composition of
semantic web services, Web Semantics, 1(1), Elsevier.

[19] TREC, Text retrieval conference,
http://trec.nist.gov/data/.

[20] C. van Rijsbergen, Information Retrieval, 1979.
[21] A. M. Zaremski, J. M. Wing, Specification matching

of software components, in: 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
1995.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

