
Hybrid Semantic Web Service Retrieval:
A Case Study with OWLS-MX

Matthias Klusch, Patrick Kapahnke
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66121 Saarbruecken, Germany
klusch@dfki.de, patrick.kapahnke@dfki.de

Benedikt Fries
Morgan Stanley Japan Securities Corporation

Tokyo, Japan
benedikt.fries@morganstanley.com

Abstract

The OWLS-MX matchmaker selects OWL-S 1.1 services
that are relevant to a given service request by means of
logic-based matching complemented with syntactic similar-
ity measurement [11]. In this paper, we summarize the re-
sults of our experimental evaluation of the retrieval per-
formance of OWLS-MX in terms of its false positives and
false negatives using the service retrieval test collection
OWLS-TC 2.1. Based on the analysis of false-positives
and false-negatives of OWLS-MX, we implemented a match-
maker OWLS-MX2 with improved precision in average.

1 Introduction

Service discovery is the process of locating existing Web
services based on the description of their functional and
non-functional semantics. Discovery scenarios typically oc-
cur when one is trying to reuse an existing piece of function-
ality (represented as a Web service) in building new or en-
hanced business processes. A Semantic Web service, or in
short semantic service, is a Web service which functionality
is described by use of logic-based semantic annotation over
a well-defined ontology. In the following, we focus on the
discovery of semantic services. Semantic service discovery
can be performed in different ways depending on the service
description language, the means of service selection and its
coordination by means of a broker, matchmaker or mediator
[9], or in a peer-to-peer fashion.

Service selection encompasses semantic matching and
ranking of services to select a single most relevant service
to be invoked, starting from a given set of available services.

Semantic service matching is the pairwise comparison of an
advertised service with a desired service (query) to deter-
mine the degree of their semantic match. This process can
be non-logic-based, logic-based or hybrid depending on the
nature of reasoning means used by the matchmaker to com-
pute partially or totally ordered matching degrees between
given pairs of representations of service semantics. Subse-
quent ranking of services determines the order of their indi-
vidual degrees of semantic matching with a given query.

For example, semantic matching of XML-based WSDL
services is restricted to non-logic-based matching tech-
niques such as those from graph matching, data mining,
linguistics, or content-based information retrieval to ex-
ploit semantics that are either commonly shared (in XML
namespaces), or implicit in patterns or relative frequencies
of terms in service descriptions. Semantic matching of se-
mantic services in OWL-S, WSML or SAWSDL can exploit
standard logic inferences of the considered logic such as
OWL-DL or F-Logic used to define the service semantics.

In line with the recently started shift of Semantic Web
research towards more scalable and approximative rather
than computationally expensive logic-based reasoning with
impractical assumptions [4], we proclaim that the quality
of semantic service selection can be signicantly improved
by combining both logic-based only and syntactic match-
ing where each of them alone would fail. One example
of a hybrid semantic service matchmaker for OWL-S ser-
vices is our OWLS-MX [11] which complements the result
of logic-based reasoning with selected token-based syntac-
tic similarity measurement to avoid some logic-based only
false positives and false negatives. The experimental evalu-
ation of its retrieval performance provided strong evidence
in favor of the above claim [11, 10]. Further evidence is



provided by experimental results recently reported in [1, 6].
In this paper, building upon our work in [11, 10] we pro-

vide a revised experimental analysis of the retrieval perfor-
mance of OWLS-MX in terms of its false positive and false
negatives, and then the preliminary evaluation of a respec-
tively improved hybrid matchmaker version OWLS-MX2.
Though OWLS-MX is designed for OWL-S services only,
the reported results could be helpful for further development
of semantic service matchmakers in general.

In the following we assume the reader to be sufficiently
familiar with OWL-S, and first summarize the basic idea
and hybrid matching filter definitions of OWLS-MX in sec-
tion 2. This is followed by a detailed analysis of the false
positives and false negatives of OWLS-MX in section 3.
Based on these results, we briefly present the improved
version OWLS-MX2 and its performance compared to the
original OWLS-MX in section 4. We conclude the paper in
section 5.

2 OWLS-MX

The core idea of the OWLS-MX matchmaker is to
complement crisp logic-based with approximate IR-based
matching where appropriate to improve the retrieval perfor-
mance. OWLS-MX takes any OWL-S service as a query,
and returns an ordered set of relevant services that seman-
tically match the query. Each relevant service is annotated
with both degree of logical matching, and syntactic similar-
ity value. The user can specify the desired logical matching
degree, and syntactic similarity threshold.

2.1 Matching algorithm overview

OWLS-MX performs signature-based service matching
only, that is, it compares the input and output parameter
values of a given pair of desired and registered OWL-S 1.1
services. Each provider registers OWL-S services at the
matchmaker by sending (a) the service description, (b) the
set of self-contained service input and output concept ex-
pressions that are computed by unfolding the concept defi-
nitions in the respective ontologies, and (c) the set of map-
pings between that is the set of semantic correspondences
between primitive terms (left formally undefined in the on-
tology) in these service concept expressions and those in
the shared basic vocabulary of the matchmaker1. Service
registration is completed by the matchmaker through (a)
classifying the service I/O concept expressions in OWL-
DL into its own matchmaker ontology, and (b) transforming
them into weighted keyword vectors for future text similar-

1Primitive terms of a commonly shared minimal vocabulary like Word-
Net can be used to canonically build up heterogeneous ontologies includ-
ing equally named concepts with different logical definitions.

ity measurements. The same holds for any description of a
desired service the matchmaker receives as a query.

OWLS-MX pairwisely determines the degree of logical
(concept subsumption) match according to its logic-based
filter definitions. We assume that the type of computed ter-
minological subsumption relation determines the degree of
semantic relation between any pair of I/O concepts. Any
failure of logical concept subsumption produced by the in-
tegrated description logic reasoner of OWLS-MX will be
tolerated, if and only if the degree of syntactic similarity
between the respective unfolded service and query concept
expressions exceeds a given similarity threshold. Details
about the matching algorithm are given in [11].

2.2 Matching filters

Let T be the terminology of the OWLS-MX matchmaker
ontology specified in OWL-DL; CTT the concept subsump-
tion hierarchy of T ; LSC(C) the set of least specific con-
cepts (direct children) C ′ of C, i.e. C ′ is immediate sub-
concept of C in CTT ; LGC(C) the set of least generic con-
cepts (direct parents) C ′ of C, i.e., C ′ is immediate super-
concept of C in CTT ; INS (OUTS) an input (output) concept
of service S defined in T ; SynSim(S,R) = (SynSim(S,R)in

+ SynSim(S,R)out)/2 ∈ [0, 1] the real-valued syntactic sim-
ilarity between advertised service S and desired service
R as the averaged syntactic similarity of their serialized
(i.e, terminologically unfolded, then concatenated and pre-
processed to weighted keyword vector in, resp., out) input,
respectively, output concepts according to a given text IR
metric, and given syntactic similarity threshold α ∈ [0, 1];
.= and ≥̇ denote terminological concept equivalence and
subsumption, respectively. The semantic service matching
degrees computed by OWLS-MX are as follows.

Exact match. Service S EXACTLY matches request R ⇔ ∀
INS ∃ INR: INS

.= INR ∧ ∀ OUTR ∃ OUTS : OUTR
.=

OUTS .

Plug-in match. Service S PLUGS INTO request R ⇔ ∀ INS

∃ INR: INS ≥̇ INR ∧ ∀ OUTR ∃ OUTS : OUTS ∈
LSC(OUTR). All service input parameters (concepts)
are matched by a more specific one in the request R.
If the OWL input concept definitions can be mapped
to equivalent WSDL input messages and service sig-
nature data types, this constraint guarantees at a min-
imum that S is executable with any input provided by
the requestor. In addition, S is expected to return more
specific output data whose logically defined semantics
are exactly the same or very close to what has been
requested.

Subsumes match. Request R SUBSUMES service S ⇔ ∀
INS ∃ INR: INS ≥̇ INR ∧ ∀ OUTR ∃ OUTS : OUTR

2



≥̇ OUTS . Compared to the plug-in filter the constraint
of immediate output concept subsumption is relaxed
which leads to an extended return set of relevant ser-
vices in principle.

Subsumed-by match. Request R is SUBSUMED BY ser-
vice S ⇔ ∀ INS ∃ INR: INS ≥̇ INR ∧ ∀ OUTR ∃
OUTS : (OUTS

.= OUTR ∨ OUTS ∈ LGC(OUTR)) ∧
SYNSIM(S,R)≥ α. This filter selects services whose
output data is more general than requested, hence, in
this sense, subsumes the request. We focus on di-
rect parent output concepts to avoid selecting services
which returned data might be considered too general
and require the service I/O concepts to be sufficiently
syntactic similar. The latter constraint can avoid false
positives caused by logical subsumed-by matches in
coarse-grained ontologies, hence potentially increases
the precision of the matchmaker.

Logic-based fail. Service S fails to match with request R
according to the above logic-based semantic matching
filters.

Nearest-neighbor match. Service S is a NEAREST

NEIGHBOR of request R ⇔ (∀ INS ∃ INR: INS

≥̇ INR ∨ SynSim(S,R)in ≥ α1) ∧ (∀ OUTR ∃
OUTS : OUTR ≥̇ OUTS ∨ SynSim(S,R)out ≥ α2) ∨
SynSim(S,R)≥ α. Service S is considered relevant
to R if either R approximatively subsumes S or both
are sufficiently syntactically similar as a whole. This
matching constraint can help to avoid logic-based
false negatives, hence potentially increases the recall
of the matchmaker.

Fail. Service S does not match with request R according to
any of the above filters.

The above semantic matching filters are totally ordered
according to their relaxation, hence the size of results they
would return:

EXACT < PLUG-IN < SUBSUMES < SUBSUMED-BY <
LOGIC-BASED FAIL < NEAREST-NEIGHBOR < FAIL.

2.3 OWLS-MX variants

We implemented the following hybrid variants of
OWLS-MX, called OWLS-M1 to OWLS-M4, each of
which using the same logic-based semantic filters (Exact,
Plug-in, subsumes, subsumed-by without SynSim()) but a
different token-based IR similarity metric SynSim(S,R) for
content-based service I/O matching. The variant OWLS-
MO performs logic-based only semantic matching.

OWLS-M0. The logic-based semantic filters EXACT,
PLUG-IN, and SUBSUMES are applied as defined in

2.2, whereas the hybrid filter SUBSUMED-BY is uti-
lized without checking the syntactic similarity con-
straint.

OWLS-M1 to OWLS-M4. The hybrid semantic match-
maker variants OWLS-M1, OWLS-M2, OWLS-M3,
and OWLS-M4 compute the syntactic similarity
value SIMIR (OUTS , OUTR) by use of the loss-of-
information measure (M1), extended Jaccard sim-
ilarity coefficient (M2), the cosine/TFIDF similar-
ity value (M3), and the Jensen-Shannon information
divergence-based similarity value (M4), respectively.

2.4 Implementation

The OWLS-MX matchmaker has been implemented in
Java using the OWL-S API 1.1 beta with the tableaux OWL-
DL reasoner Pellet developed at the university of Maryland
(cf. http://pellet.owldl.com/). As the OWL-S
API is tightly coupled with the Jena Semanic Web Frame-
work, developed by the HP Labs Semantic Web research
group (cf. http://jena.sourceforge.net/), the
latter is also used to modify the OWLS-MX matchmaker
ontology. The OWLS-MX matchmaker in its current ver-
sion 1.1c comes with a convenient graphical user interface,
and is available as open source from the software portal
semwebcentral.org of the semantic Web community 2.

3 Experimental Evaluation

In this section, we first provide an overview of the re-
trieval performance of logic-based and hybrid OWLS-MX
variants in terms of their recall and precision, and then pro-
vide a general analysis of their false positives and false neg-
atives.

3.1 Overall R/P performance

We measured the macro-averaged precision for standard
recall levels of each OWLS-MX variant over the OWL-
S service retrieval test collection OWLS-TC 2.1 available
at the portal semwebcentral.org. The evaluation results
showed that hybrid matching can improve logic-based only
service selection in terms of both precision and recall (cf.
figure 1).3

The reason of higher precision of OWLS-M1 to OWLS-
M4 is that they avoided most of logic-based false positives
in case of subsumed-by matches in the given test collection
by complementary syntactic similarity measurement. In

2http://projects.semwebcentral.org/projects/owls-mx/
3While OWLS-M0 reached precision 0.67 and recall 0.50 in average

for its top-20 ranked services, the hybrid OWLS-M3 achieved this with
higher precision (0.74) and recall (0.557).

3



Figure 1. R/P performance of logic-based
OWLS-M0 vs. syntactic matching (Co-
sine/TFIDF, threshold 0.6) vs. hybrid match-
ing with OWLS-M3.

addition, the hybrid semantic matchmakers avoided logic-
based false negatives caused by wrongly returned match-
ing degree of logical fail through complementary syntactic
similarity measurements (nearest neighbour) which led to
a better recall. All hybrid variants showed almost equal
performance in average. In the following, we show main
cases of logic-based and hybrid false positives (FP) and
false negatives (FN) lowering precision, respectively, re-
call of OWLS-MX. The quantitative impact of the above
mentioned FP/FN cases on the matchmaker performance, of
course, depends on the used test collection. In this respect,
our experimental evaluation results are preliminary as long
as there is no (quasi-)standard collection for semantic ser-
vice retrieval available, similar to TREC in the IR domain.

3.2 Logic-based false positives

There are two main reasons for logic-based false
positives of OWLS-MX: First, in the context of service
matching, the known logical mismatch problem of knowl-
edge representation is manifested by inappropriate logical
definitions of input or output concepts used to define
service or query semantics in the logic-based matchmaker
ontology. Second, the all-quantified logical matching
constraints wrongly tolerates the missing of input or output
concepts. These types of logic-based false positives of
OWLS-M0 are illustrated by example in the following.

Granularity of matchmaker ontology. Any logic-based
semantic service matchmaker risks to return false positives,
if the given logical concept definitions in its ontology are
not capturing the real-world semantics of the concepts used

to defined the service semantics. That logical mismatch
is a general problem of knowledge representation. In the
context of semantic service matching, the decision whether
some service is a false positive for a given query is subjec-
tive for each individual user. The same holds for the defin-
ition of relevance sets for each query in the test collection
OWLS-TC2.2 we used to evaluate the retrieval performance
of OWLS-MX.

Figure 2. Example: False positive due to tol-
erated unlimited logical parent-child relation
between input concepts.

For example, in figure 2, the service at best logically
plug-in matches with the query, since the (equally named)
output concepts ”price” are determined logically equivalent,
and the query input concept ”HybridRotaryEnginePowered-
Car” is far more specific than the service input concept ”Au-
tomobile”. According to the developers of the test collec-
tion, the real-world semantic distance between both input
concepts in the matchmaker ontology can be considered too
large for being of any interest which renders the service ir-
relevant. The reason why all logic-based matching filters of
OWLS-M0 fail to reckognize this, hence return the service
as relevant, is that they accept an unlimited input concept
distance in the matchmaker ontology.

Similarly, in the second example (cf. figure 3) the logical
comparison of service and query output definitions result in
a direct subsumption relation in the matchmaker ontology
which could be (subjectively) considered wrong, hence
produce a false positive. In this case even a restrictive least
generic concept match of the logical subsumed-by filter
of OWLS-M0 does not help to avoid this. However, in
both cases the additional syntactic matching of the hybrid
subsumed-by matching filter of OWLS-M1 to OWLS-M4
can potentially avoid logical subsumed-by matches that
are classified as false positives. This holds under the IR
assumption that the degree of syntactic similarity suffi-
ciently corresponds with the degree of real-world semantic

4



Figure 3. Example: False positive due to log-
ical mismatch of output concepts with direct
parent-child relation.

similarity.

All-quantified logical matching constraints. Many
false positives of OWLS-M0 are caused by the restrictive
all-quantified logical matching constraints. Since the
hybrid variants inherit the decision of OWLS-M0 in case of
a logical (except subsumed-by) match, these become false
positives of OWLS-M1 to OWLS-M4 too.

Query input without corresponding service input. The
surjective mapping of service input concepts to query in-
put concepts (∀ INS ∃ INR) can lead to false positives: It
tolerates the missing of service input concepts that corre-
spond to those query input concepts that are important part
of or even key for defining the intended query semantics.
For example, in figure 4, the input ”SFNovel” of the query
”SFNovelPrice” does not match with any input of the ser-
vice ”EntranceFee” but ”Author” with ”Person”. As a re-
sult, OWLS-M0 determines a plug-in match, hence wrongly
returns the service as relevant.

Figure 4. Example: False positive due to all-
quantified matching. Incomplete coverage of
query input by service input is tolerated.

Even worse, the surjective concept mapping by OWLS-

MX can lead to false logical exact matches in case of no
input or output concepts provided. For example, in figure 5,
the query ”BuyBook” and service ”DatingService” are re-
turned as semantically equivalent by OWLS-M0. The rea-
son is that in this particular case there does not exist any
query output concept which can be matched against the ex-
isting service output concept. Similarly, the same holds for
the query ”RoutingService” and the service ”Map” without
any input concept to map making the service-centred input
matching constraints of all logical filters true by default.

Figure 5. Example: False positives due to tol-
erated lack of service or query I/O.

Same I/O concepts used to express different query and
service semantics. Similarly, the surjective mapping of I/O
concepts by all logical filters ignores the possible use of the
same concept to describe different real-world semantics of
a query of a service. For example, the real-world semantics
of service ”BookCopyCheck” and query ”BookReview” in
figure 6 are assumed to be not related at all, that is the ser-
vice is not relevant to the query.

However, OWLS-M0 classifies the service as semanti-
cally equivalent with the query, hence produces a false pos-
itive. The same concept ”Book” is used twice in the service
input but with different semantics than in the query. In these
cases, even syntactic similarity measurement would return
high relevance but at least not identity, since the term un-
folded concept ”Book” can be detected as surplus term of
the input string by means of fine-grained syntactic overlap
measurement like the extended Jaccard coefficient.

Figure 6. Example: False positive caused by
using the same concept ”book” for describ-
ing different service and query semantics

5



3.3 Avoiding logic-based FP

The hybrid variants OWLS-M1 to OWLS-M4 can in-
crease their precision compared to OWLS-M0 by avoiding
its false logic-based subsumed-by matches (cf. figure 3)
through additional syntactic similarity measurement. In
fact, the hybrid subsumed-by filter allows to detect the
irrelevance of a service S that logically subsumes the query
R with insufficient syntactic similarity (SynSim(S,R)≤ α).

Hybrid false positives. However, due to sequential ex-
ecution of ordered logic-based and hybrid matching filters,
they inherit the remaining logic-based false positives from
OWLS-M0. These can be avoided by syntactic matching
which led to the development of OWLS-MX2 (cf. section
3.6.

Syntactic false positives only. On the other hand, the
complementary syntactic matching can cause hybrid false
positives in case of sufficient syntactic similarity but non-
matching real-world semantics between service and re-
quest correctly determined by OWLS-M0 by means of a
logical matching failure. For example, logical connec-
tives like ”and”, ”or” in concept definitions are ignored by
syntactic matching, since they are eliminated as classical
stop-words in the preprocessing step of unfolded service
and query I/O concept expressions to weighted keyword
vectors for text similarity measurements (SynSim(S,R)out;
SynSim(S,R)in). For example, in figure 3.3 we are asking
for a service that is capable of either colouring or framing
a given picture, and consider a service that is restricted to
jointly perform both actions irrelevant. In this case, the
logic-based OWLS-M0 correctly returns a logical match-
ing failure while OWLS-M1 to OWLS-M4 ignore the sub-
tle difference between ”and” and ”or” detecting a syntactic
exact match of both pairs of I/O strings, hence return the
service as relevant with a hybrid nearest-neighbour match-
ing degree with text similarity value of 1.0.

Figure 7. Example: Hybrid false positives due
to ignorance of logical connectives by com-
plementary syntactic matching.

3.4 Logic-based false negatives

Like for logic-based false positives, the reasons of
logic-based false negatives are mainly due to the logical
mismatch problem of the matchmaker ontology and the
implication of the all-quantified matching constraints of
OWLS-MX.

Ontology granularity: Similar concept siblings with logical
disjoint definitions. The problem of logical mismatches
due to insufficient ontology modeling can also cause false
negatives, that are services wrongly classified as irrelevant
by OWLS-M0. One example of such logic-based only
false negatives is the case of logically disjoint concept
siblings with similar real-world semantics in a fine-grained
ontology. Please note that these concepts are not explicitly
defined disjoint in the ontology but determined to be
disjoint by the matchmaker while matching the service with
the query. For example, in figure 8, query output ”Hopital-
Physician” and service output ”Emergency-Physician” are
assumed to be semantically close such that the service is
considered relevant to the query. However, the matchmaker
classifies both conjunctive concept definitions differing in
only one pair of their (equally weighted) logical constraints
as logically disjoint, hence produces a false negative.

Figure 8. Example: False negative caused by
semantically similar but (not defined as) log-
ically disjoint concept siblings in the match-
maker ontology.

All-quantified logical matching constraints: More generic
service input only. The all-quantified matching filters of
OWLS-M0 require that the service input must be logically

6



more generic than or equal to the query input. In case of a
linear mapping of service and query I/O concepts to corre-
sponding WSDL grounding data types, this guarantees that
the service can be invoked with the information specified in
the query by the user, in principle. However, this can lead to
false negatives as shown in figure 9, since no logical filter
of OWLS-M0 evaluates to true in cases where the service
input is more specific than requested.

Figure 9. Example: False negative due to re-
quired genericity of service input.

All-quantified logical matching constraints: Logical con-
cept relations of same type. Finally, the matching filters of
OWLS-M0 require each pair of service and query I/O con-
cepts having the same type of logical subsumption relation.
For example, in figure 10, the subsumption relations be-
tween output concepts of query ”CarPlusBike” and service
”4WheeledCarPackage” are different. As a result, OWLS-
M0 fails to detect the service as relevant.

Figure 10. Example: False negative due
to different concept subsumption relations
not accepted by the all-quantified filter con-
straints of OWLS-MX

3.5 Avoiding logic-based FN

Due to complementary syntactic matching in case of
logical matching failure returned by OWLS-M0, the hy-
brid variants OWLS-M1 to OWLS-M4 can avoid the above
cases of logic-based false negatives, thereby increasing their
recall compared to OWLS-M0. This is achieved by de-
tecting (hybrid) nearest-neighbour matches, if the degree
of syntactic similarity between the considered pairs of con-
cepts or service and query I/O-signature as a whole is suffi-
cient.

3.6 OWLS-MX2

The version OWLS-MX2 integrates syntactic similarity-
based matching with logic-based subsumes and plug-in
matching like the only hybrid subsumed-by filter in OWLS-
MX. That avoids false-positives the hybrid OWLS-M1 to
OWLS-M4 inherit from OWLS-M0. Our experiments over
the new test collection OWLS-TC 2.24 showed that OWLS-
MX2 did outperform OWLS-MX for this reason, and per-
formed slightly better than text IR by avoiding syntactic
similarity-based only FPs.

Figure 11. R/P performance of hybrid OWLS-
MX2, OWLS-M3, and IR metric cosine/TFIDF.

Since the number of cases for FPs of text IR in OWLS-
TC 2.2 is significantly less than for logic-based FPs, the

4http://projects.semwebcentral.org/projects/owls-tc/. OWLS-TC2.2
consists of more than 1000 OWL-S services from seven application do-
mains, 28 test queries with relevance sets of 15 services in average. It
contains cases for all of the above mentioned FPs and FNs.

7



hybrid OWLS-M3 did not outperform syntactic matching
only. In fact, we observed that in most domain ontologies
fine-grained logical concept definitions other than pure sub-
class relations are rare in practice which handicaps logic-
based matching. However, the quantitative relation between
logic-based and text IR only FPs and FNs in the Semantic
Web is unknown.

4 Related Work

There are only a few hybrid semantic service profile
matchmakers available for OWL-S, most notably the hybrid
profile matchmaker FC-MATCH [2], the non-logic-based
service matchmaker iMatcher1 [1, 6] and its successor the
adaptive hybrid matchmaker iMatcher2[7].

Though inspired by the first hybrid matchmaker LARKS
[12], OWLS-MX is different: It compares OWL-S services,
performs signature (I/O) matching only while LARKS per-
forms an IOPE matching, and offers additional types of
logic-based and hybrid semantic matching. OWLS-M0 is
similar to the OWLS-UDDI matchmaker [13] but differs
from it in several aspects. First, OWLS-UDDI makes use of
a different notion of logical plug-in matching and does not
perform any subsumed-by matching. Second, OWLS-M0
classifies arbitrary query concepts into its ontology based
on a shared minimal basic vocabulary of primitive com-
ponents instead of limiting the set of query I/O concepts
to logically equivalent service I/O concepts in a globally
shared OWL ontology as the OWLS-UDDI matchmaker
does. Most closely related to our work is the hybrid match-
maker iMatcher2[7]. Like OWLS-MX, it logically un-
folds service and query concepts in related OWL ontolo-
gies and processes them into weighted keyword vectors for
syntactic similarity-based matching. It does not perform
logic-based matching which resulted in lower precision and
recall compared to OWLS-MX. However, in its adaptive
mode iMatcher2 learns (over a test collection like OWLS-
TC2.2) which of its ten text similarity measures to select
best for a given query such that it can significantly outper-
form OWLS-MX in terms of precision. A survey of Seman-
tic Web service matchmakers is provided in [8].

5 Conclusions

The hybrid Semantic Web service matchmaker OWLS-
MX complements logic-based with approximative reason-
ing in terms of syntactic similarity measurement. Our ex-
perimental evaluation of OWLS-MX provide evidence that
logic-based only semantic service matching can be im-
proved by such hybrid matching. This concerns, for ex-
ample, user-interactive business service applications or se-
mantic search engines for which fast back-end semantic ser-

vice search with high precision and recall is of most im-
portance but not automated logic-based service composition
planning.

References

[1] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic
Retrieval in Ontologies Using Similarity Joins. Proc. ACM
Symposium on Applied Computing, Dijon, France, ACM
Press, 2006.

[2] D. Bianchini, V. De Antonellis, M. Melchiori, D. Salvi:
Semantic-enriched Service Discovery. Proceedings of IEEE
ICDE 2nd International Workshop on Challenges in Web In-
formation Retrieval and Integration (WIRI06), Atlanta, Geor-
gia, USA, 2006.

[3] W. Cohen, P. Ravikumar, S. Fienberg: A Comparison of String
Distance Metrics for Name-Matching Tasks. Proc. Interna-
tional Joint Conference on AI (IJCAI), 2003.

[4] D. Fensel, F. van Harmelen: Unifying reasoning and search to
Web scale. IEEE Internet Computing, March/April 2007.

[5] S. Grimm. Discovery - Identifying Relevant Services. In: R.
Studer, S. Grimm, A. Abecker (eds.). Semantic Web Services.
Springer, 2007.

[6] C. Kiefer, A. Bernstein: The Creation and Evaluation of iS-
PARQL Strategies for Matchmaking. Proc. European Seman-
tic Web Conference (ESWC), Tenerife, 2007.

[7] C. Kiefer, A. Bernstein: The Creation and Evaluation of iS-
PARQL Strategies for Matchmaking. Proceedings of Euro-
pean Semantic Web Conference, Springer, 2008.

[8] M. Klusch: Semantic Service Coordination. In: M. Schu-
macher, H. Helin, H. Schuldt (Eds.): CASCOM - Intelli-
gent Service Coordination in the Semantic Web. Chapter 4.
Birkhaeuser Verlag, Springer, 2008.

[9] M. Klusch, K. Sycara: Brokering and Matchmaking for Co-
ordination of Agent Societies: A Survey. In: Coordination
of Internet Agents: Models, Technologies and Applications.
Springer, 2001.

[10] M. Klusch, B. Fries: Hybrid OWL-S Service Retrieval with
OWLS-MX: Benefits and Pitfalls Proceedings 1st Interna-
tional Joint Workshop on Service Matchmaking and Resource
Retrieval in the Semantic Web (SMR2), CEUR 243, 2007.

[11] M. Klusch, B. Fries, and K. Sycara. Automated Seman-
tic Web Service Discovery with OWLS-MX. Proc. 5th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Hakodate, Japan, 2006

[12] K. Sycara, M. Klusch, S. Widoff, J. Lu: LARKS: Dynamic
matchmaking among heterogeneous software agents in cy-
berspace. Autonomous Agents and Multi-Agent Systems, 5(2),
Kluwer, 2002.

[13] K. Sycara, M. Paolucci, A. Anolekar, N. Srinivasan: Au-
tomated discovery, interaction and composition of Semantic
Web services. Web Semantics, 1(1), Elsevier, 2003.

8



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


