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ABSTRACT
We defineTrusted Kernel-based Coalition Formationas a novel
extension to the traditional kernel-based coalition formation process
which ensures agents choose the most reliable coalition partners
and are guaranteed to obtain the payment they deserve. To this
end, we develop an encryption-based communication protocol and
a payment scheme which ensure that agents cannot manipulate the
mechanism to their own benefit. Moreover, we integrate a generic
trust model in the coalition formation process that permits the se-
lection of the most reliable agents over repeated coalition games.
We empirically evaluate our mechanism when iterated and show
that, in the long run, italwayschooses the coalition structure that
has the maximum expected value and determines the payoffs that
match their level of reliability.

1. INTRODUCTION
Coalition formation (CF) is the coming together of a number of
distinct, autonomous agents in order to act as a coherent grouping
in which they increase their individual gains by collaborating. As
such, it is an important form of interaction in multi-agent systems
(MAS) in general and in particular it has recently been advocated
for task allocation scenarios where agents derive a certain value
(and cost) from tasks being performed in the coalition in return for
payments from other agents in the coalition [11]. Examples of such
scenarios include the Grid (where virtual organisations are formed
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to perform services not achievable by a single agent [4]) and sen-
sor networks (where groups of sensors collaborate to track a target
[6]). Now, in this context, cooperative game theory (CGT) pro-
vides a well developed and mathematically founded framework to
determine which coalitions should be formed and how the respec-
tive coalition values should be distributed in an individually ratio-
nal and stable manner [7] (i.e. no agents finds an incentive to break
away from the coalition structure formed).

CF approaches that rely on CGT to determine stable coalition
structures and payoffs must ensure that all relevant information is
known by all agents. This, however, is an unrealistic assumption
in real world MAS scenarios. In previous work on CF, this prob-
lem has been approached in several ways, incorporating learning,
heuristics, or a communication phase where agents inform about
each other’s private information (see e.g. [2, 5, 11], respectively).
While the latter one enables the agents to find an exact CGT solu-
tion, in [1] it was shown for at least one specific Kernel based CF
protocol that agents are generally able to deceive each other about
their valuations and costs to unjustifiably obtain a higher payoff.
In fact, to date, there is no existing CF mechanism that allows the
sharing of private formation while preventing agents from deceiv-
ing each other. More specifically, existing work does not provide
any protocols which allow agents to safely share private informa-
tion about costs and valuations in a non-manipulable way that per-
mits the calculation of the agents’ exact and justified payoffs in
the coalition. Moreover, extant work in CGT based CF neglects
the fact that, in most complex environments, there exists some un-
certainty about the level of reliability of the participating agents.
Thus, agents may not perform tasks perfectly or even at all and
this may lead to agents overestimating coalition values and con-
sequently choosing inefficient coalitions and selecting the wrong
payoffs. Furthermore, existing work does not provide a protocol
that ensures that agents actually obtain (or effect) the payments that
they should. The problem here is that while a CGT solution is sta-
ble once side-payments have been executed, agents might still have
an incentive to break away from their coalition at some timeduring
this execution.

Against this background, we develop the area of trusted coalition
formation through ourTrusted Kernel-based Coalition Formation
(TKCF) mechanism which caters for the above shortcomings (we
discuss our choice of the Kernel as a solution concept in section 3).
Specifically, this work advances the state of the art in the following
ways. First, we develop a novel communication protocol that relies
on cryptographic techniques to ensure agents can safely exchange
their private information in order to calculate expected coalition
values and the agents’ payoffs. The protocol significantly reduces
the possibility that an agent can exploit any information asymmetry
(i.e. it is aware of another agents’ private information without hav-



ing itself provided its private information) to gain higher payoffs.
Second, we capture the uncertainty about the reliability, or Prob-
ability Of Success (POS), of agents through the concept of trust
and integrate it in a kernel-based payoff calculation mechanism.
Here, trust is defined as the expectation that agents will perform
reliably when defecting would prove more profitable. Specifically,
trust incorporates an agent’s private observation of its counterpart’s
POS, as well as other agents’ reports about it (i.e. the agent’s rep-
utation). Thus, through the use of trust we ensure that the most
reliable agents are selected in the mechanism as the trust values of
agents are refined over repeated coalition games. Third, we develop
the first payment protocol of its kind to ensure agents in the coali-
tion actually obtain their due payoff. This is achieved by specify-
ing both the sequence and amount of payments that should occur.
Moreover, our payment protocol occurs before tasks are actually
performed as doing otherwise may entice the agent not to imple-
ment the payment to maximise its gains (conversely the trust model
incentivises agents not to be unreliable as the agents are considered
to be non-myopic).

The remainder of the paper is organised as follows. Section 2
discusses related work in the area of CF. In section 3 we provide
the definitions from CGT that we use in rest of the paper. In sec-
tion 4, we then discuss how trust is incorporated into the standard
CGT framework and we describe TKCF. Given this, in section 5
we prove the properties of the mechanism. Section 6 empirically
evaluates TKCF, while section 7 concludes the paper and gives a
brief overview of future work in this area.

2. RELATED WORK
Of the three main components we design in TKCF, namely the
communication protocol, the computation of payoffs given uncer-
tainty about the agents’ reliability, and the payment protocol, only
the last two have been considered in the CF literature in MAS (al-
beit in a very limited fashion).

Thus, with regards to uncertainty in CF, we note the work of
[2], where agents learn about each others types (that are uncertain).
This model implies that agents can have different expectations of
coalition values. To account for this, aBayesian Corewas intro-
duced. While covering a broad range of uncertainties, the Bayesian
Core is shown to benot always non-empty, and the already expo-
nential complexity for computing core stable solutions is further in-
creased. In contrast, our incorporation of a trust model in a kernel-
based payoff computation mechanism does not require a specific
extended CGT solution concept. Thus, it allows for applying low-
complexity variants like the polynomial kernel (see e.g. [11]). We
also differentiate our work from that of Vassileva et al. [12] which
uses trust to compute coalitions since they do not consider stable
payoffs which ensure agents will not disengage from the chosen
coalition. We also note the heuristic approach to general CF under
uncertainty of Kraus et al. which, contrary to ours, avoids comput-
ing stable payoffs in the sense of CF (see e.g. [5]).

Regarding the payment protocol, the closest work to ours is that
by Sandholm and Lesser in their model of levelled-commitment
contracts [9]. Though their model is not specifically developed
for CF, it is the only existing protocol that specifies how payments
should be made for task allocation schemes. In particular, it al-
lows agents to decommit from contracts by paying some penalty. It
is however not clear how this penalty payment could be enforced
without the existence of enforcing third parties, which our mecha-
nism does not require.

3. COALITION GAMES
In this section we briefly recall some basic definitions of CGT using
the task allocation scenario we will consider in this paper. Thus,
we define agents as elements of the setI noted as1...I whereI =|
I |. We will use identifiersi, j, k to refer to an agent in the set.
Any subsetC ⊆ I represents a coalition of agents. Acoalition
gamein characteristic function form is a pair(I, v) with the set
of agentsI and thecharacteristic functionv : 2I 7→ R. v(C) is
called the value of the coalitionC and intuitively it can be viewed
as a measure of the total payoff achievable by C if all its members
cooperate effectively (v(∅) = 0). In the task allocation context,
agents can perform and/or request tasksτ ∈ T to be performed.
An agenti requesting a task has a valuationvi : T 7→ R a cost
ci : T 7→ R for tasks it executes. For a given coalitionC, we
denote the set of all possible mappings from tasks to agents asAC .
For anyαC ∈ AC , τ j

i ∈ α denotes that taskτ requested byi is to
be executed byj. Note here that the same task might be requested
by many agents which will all derive a positive value when the
task is performed even if they do not pay for it specifically. Let
vαC :=

P
τ

j
i ∈αC

vi(τ)−cj(τ) be the total payoff forC givenαC .

Thenα∗
C with ∀αC ∈ AC : vα∗ ≥ vα denotes a task allocation

which maximizes the achievable total payoff forC. We call the
value created for agenti if α∗

C is executed, disregarding any side-
payments, thelocal worthof an agenti:

wi(C) :=
X

τ
j
i ∈α∗

C

vi(τ)−
X

τi
j∈α∗

C

ci(τ) (1)

Hence the overall coalition value is the sum of all local worths of
agents in the coalition, i.e.:

v(C) :=
X
i∈C

wi(C) (2)

A configuration(S, u) for a game(I, v) specifies apayoff dis-
tribution u = 〈ui, ..., uI〉 for a coalition structure, which is a par-
tition of I. Formally,S ⊂ 2I with ∀C, C′ ∈ S : C

T
C′ = ∅

and
S

C∈S C = I. Let ui, i ∈ I denote thepayoff for agenti.
Thenu is calledindividually rational iff ∀i ∈ I : ui ≥ v({i})
(i.e. i is better off in(S, u) as it would be by itself) andefficientiff
∀C ∈ S :

P
i∈C ui = v(C) (i.e the overall value of the coalition

is distributed completely amongst the agents forming the coalition).
Individual rationality and efficiency provide minimal constraints

allowing rational agents to agree with a configuration. To also en-
sure agents do not have an incentive to be in another coalition, a
configuration must also satisfy a chosenstability conceptwhich
defines this incentive.

In this paper we choose theKernelbecause of a number of favor-
able properties as compared with other stability concepts; contrary
to the Core or the Shapley value, it isalways non-empty, i.e a solu-
tion always exists (even for non-superadditive games) [7]. In partic-
ular, for every coalition structure for which there exists at least one
individually rational payoff distribution, there also exists a payoff
distribution such that the resulting configuration is Kernel-stable. It
is however to be noted that multiple such payoff distributions might
exist.

Also, polynomial variants of this concept have been proposed in
the literature (see e.g. [11]) which avoid the otherwise exponen-
tial complexity of computing solutions and thus is computationally
tractable. This is achieved by limiting the maximum allowed coali-
tion size. We however omit to apply this variant, because in this
paper, the focus lies on other aspects of the coalition formation
process. We thus use the traditional definition of the Kernel.

TheKernelof a cooperative game(I, v) with respect to a given



coalition structureS is a set of configurations(S, u) wherein each
pair of agentsi, k in each coalitionC ∈ S is in equilibrium. That
is the case if the agents cannot outweigh each other in(S, u) by
having the option to get a better payoff in coalition(s)not in S ex-
cluding the opponent agent (agenti outweighsk, if sik > ski and
uk > wi(C)). Thesurplusof agenti with respect to the opponent
k in a given configuration(S, u) is sik = maxC∈2I{ε(C, u) : i ∈
C andk ∈ I/C}, whereε(C, u) = v(C)−

P
i∈C ui denotes the

excessof alternative coalitionsC.
Now, the above model is sufficient to compute values of coali-

tions if we assume the agents have perfect information about the
valuations and costs of tasks, as well as the matching of requested
and offered tasks. Moreover, it is assumed, in computing Kernel-
stable payoffs, that the agents executing tasks will perform reliably
and the side-payments will actually be implemented. However, as
already argued, many of these assumptions are inappropriate for re-
alistic MAS and, therefore, in what follows we describe our TKCF
mechanism in which these assumptions are relaxed.

4. TRUSTED KERNEL-BASED COALITION
FORMATION

In this section we describe our TKCF mechanism which consists
of four main stages: 1) a communication stage 2) a CF stage 3)
a payment execution stage, and 4) a task execution and evaluation
stage. We will first detail the generic trust model (adapted from [3])
used by the agents in order to choose the most reliable coalition
partners.

4.1 Properties of the Trust Model
Many computational trust models have been developed to allow
agents to choose their most trustworthy interaction partners. How-
ever, at their most fundamental level, these models can be viewed
as alternative approaches for achieving the following properties:

1. The trust measure of an agenti in an agentj depends both
on i’s perception ofj’s POS and on the perception of other
agents aboutj’s POS. This latter point encapsulates the con-
cept of reputationwhereby the society of agents generally
attributes some characteristic to one of its members by ag-
gregating some/all the opinions of its other members about
that member. Thus, each agent can consider this societal
view on other members when building up its own measure
of trust in its counterparts [8]. Specifically, the trust of agent
i in its counterpartj, tj

i ∈ [0, 1], is given by a function,
g : [0, 1]|I| → [0, 1], (which, in the simplest case, is a
weighted sum) of all POS measures sent by other agents to
agenti about agentj as shown below:

tj
i = g({ηj

1, . . . , η
j
i , . . . , η

j
N}) (3)

whereηj
i ∈ [0, 1] is the POS of agentj as perceived by agent

i andg is the function that combines both personal measures
of POS and other agents’ measures. In general, trust models
compute the POS measures over multiple interactions. Thus,
the level of success recorded in each interaction is normally
averaged to give a representative value (see [8] for a general
discussion on trust metrics).

2. Trust results from an analysis of an agent’s POS in perform-
ing a given task. The more successful, the more trustworthy
it is. Thus, the models assume that trust monotonically in-
creases with POS. Therefore, the relationship between trust

and POS is expressed as:
∂t

j
i

∂η
j
i

> 0, wheretj
i is the trust of

i in agentj andηj
i is the actual POS of agentj as perceived

by i.

Given the above, agents can update their trust rating for another
agent each time they perceive the execution of a task (both by
recording their view of the success of their counterpart and by gath-
ering new reports from other agents about it). Thus, if an agent’s
POS does not change, the trust measure in it should become more
precise as more observations are made and received from other
agents.

4.2 The Coalition Formation Mechanism
Given the trust model, we now introduce a CF protocol that uses
trust to compute Kernel stable payoffs and enforces incentive com-
patibility in all aspects of the process. In the following sections, we
describe each TKCF stage in detail.

4.2.1 Communication
This covers the protocol agents use to exchange valuations, costs,
and trust values with one another so that no information asymmetry
can exist among them such that one agent can find exploit another
(which would make the mechanism unattractive to potential par-
ticipants). Perhaps the easiest way of achieving this is to ensure
that all agents get information about these variables at the same
time. Otherwise, agents can simply wait for messages about other
agents’ valuations and costs, analyse these and, in turn, transmit
their own valuations and costs such that the latter exploit the agents
that have already transmitted their private information. To achieve
such simultaneous information revelation, we adapt the common
Data Encryption Standard (DES) cryptographic technique [10] to
build our communication protocol. Specifically, we assume that
each agent has a unique keyei (randomly chosen) that allows it to
encrypt a message (e.g. containing information about valuations
and costs) using a commonly known functionenc. The message
can only be decrypted using that key and inverting the function
enc−1. The protocol is as follows:

1. All agents transmitenc(〈τ , vi, ci, ηi, gi(.)〉, ei). This means
that they encrypt their private information with their keyei.
Then, this encrypted message is sent to all agents directly
(it is reasonable to assume here that all agents are directly
connected to each other).

2. All agents confirm to all other agents that they have received
all encrypted messages from all the other agents. This means
that forI agents, each one needs to receiveI − 1 encrypted
messages and send a confirmation of this to all others.

3. WhenI − 1 confirmations (of the reception ofI − 1 mes-
sages) have been received by each agent, all agents send their
keyei to all agents in the population. Then all agents can use
this key to decrypt received messages simultaneously using
enc−1(enc(〈τ , vi, ci, ηi, gi(.)〉), ei)) = 〈τ , vi, ci, ηi, gi(.)〉.

The above protocol guarantees that there is no information asym-
metry between any pair of agents in the population. Note that the
agents need to obtainI−1 confirmations before sending their keys
since, doing otherwise, results in an information asymmetry that
could lead to agents being exploited. For example, let agent A send
its (encrypted) private information to agents B and C, while B sends
its private information to A and C, and C only sends its private in-
formation to B. Then, let A send its key to B, and B responds by
sending its key to A. C then sends its key to B and gets B’s key in
return. Now, C can analyse its own information and B’s informa-
tion in order to select valuations, costs, and trust vectors that could



allow it to exploit unfairly both A and B. This happens because C
can calculate what it can profitably reveal (i.e. its valuations and
costs) to A since A does not already possess C’s encrypted private
information while C already has A’s private information which it
can no more change (i.e. there exists an information asymmetry).
To avoid this, our protocol forces agents to wait forI−1 confirma-
tions each time private information is shared, and ensures that all
agents have the same informations.

4.2.2 Kernel Stable Solution Computation
We now provide a protocol that lets the agents achieve a Kernel-

stable configuration given the information they obtained by execut-
ing the communication protocol of section 4.2.1. As has been stated
in section 3, there generally exist multiple coalition structures for
which Kernel-stable solutions can be found. In the proposed pro-
tocol, a coalition structure which maximizes the sum of the values
(sometimes also calledsocial welfare) of the formed coalitions is
chosen. We consider this a favorable approach with respect to the
experimental evaluation (see section 6), because it enables us to
compare the quality of the generated coalition structures to a theo-
retical optimum. But there exist also other, more individual agent
or coalition centric coalition structure generation approaches (as
e.g. proposed in [11]).

Now, since there might exist multiple optimal coalition struc-
tures, task assignments in individual coalitions, and kernel stable
payoff distributions for a given coalition structure we introduce a
function to allow the agents to jointly make unambiguous choices.
We therein assume that each agent possesses a strictly ordered list
LI of all agents inI. This list could, for example, be obtained by
the agents’ joining order in the system, but since the exact method
is not important here, we simply consider it as given.

Let p be a task assignment, coalition structure, or payoff dis-
tribution, let pi denote thatp was computed by agenti and let
P := 〈p1, . . . , p|I|〉. Then letChoose(P ) returnp which was
computed by the greatest number of agents. If there are more than
one such elements, among them choose the one which was com-
puted by an agent which is considered lowest byLI . To achieve a
kernel stable configuration which maximizes the sum of the coali-
tion values, each agenti ∈ I performs:

1. Compute expected coalition values; for eachC ⊆ I do:

(a) Compute an optimal task allocationαi
C for C and send

it to each other agentj ∈ C; receive allαCj . P α :=
〈αC1 , . . . , αC|I|〉; determineα∗

C := Choose(P α).

(b) Given the trust values about agents, for each coalition
C ∈ S assess theexpected local worthswk(C) for all
agents ink ∈ C :

wk(C) :=
X

τ
j
k
∈α∗

C

tj
k × vk(τ)−

X
τk

j ∈α∗
C

ck(τ) (4)

(c) Compute the overallexpected coalition value:

v(C) =
X
k∈C

wk(C) (5)

2. Find a coalition structureSi such that
P

C∈Si
v(C) is max-

imised. SendSi to each other agentj ∈ I and receive
all otherSj . Let PS := 〈S1, . . . ,S|I|〉; determineS :=

Choose(PS)

3. Compute a kernel stable payoff distributionui for S.

4. Sendui to all other agentsj and receive alluj .

5. Determineu := Choose(Pu)

After completing the execution of this protocol, each agent is as-
signed to a coalition and a payoff, which completes the traditional
coalition formation process. However, these coalitions and payoffs
still have to be implemented in order to actually realize the solution.
While the task execution performace of the agents is measured via
the trust values, it is still unclear how to enforce the execution of
the side-payments resulting from the solution. This is covered in
the following section.

4.2.3 Payment Execution
We now develop a payment protocol which provides the incen-

tives to the agents to faithfully implement it so as to ensure that
each agenti ∈ I derives the paymentmi. As explained in section
1, our protocol specifieswhatmonetary transfers are made between
agents in a coalition andhowthese occur, rather than computing the
actual payoffs (which is dealt with in section 4.2.2).

Our protocol initially involves the creation of|S| strictly ordered
lists for each coalition in the stable configuration computed in sec-
tion 4.2.2. WithPLC = {1, . . . , k, . . . , K} we denote the list of
all agents in a coalitionC (henceK = |C|) with agents sorted in
descending order of the difference,ui(C) − wi(C). Ties are bro-
ken such that an agent inPLC gets a higher index if it has a higher
index in the listLI . Thus agent1 in PLC corresponds to the agent
which has the maximumui(C) − wi(C). Since all information
required to form this list has already been transmitted in the com-
munication stage (described in section 4.2.1),PLC is commonly
known to all agents in|C|. Now, our protocol intuitively works
by cascading payments between agents, with an agent providing a
payment before it receives one. The sorted list allows us to con-
dition payments such that agents always make positive transfers to
each other. The transfermk

k+1 each agentk + 1 makes to agentk
is computed as:

mk
k+1 = uk − wk(C) + mk−1

k (6)

The following specification of the payment protocol is designed
for the case when|C| ≥ 3 (figure 1 graphically depicts the protocol
when all agents implement it faithfully with each step below corre-
sponding to the labelled steps in the figure). Note that the payment
protocols for the cases when|C| ≤ 2 are trivial. When|C| = 1, no
transfers occur and when|C| = 2 a single transfer occurs between
the two agents.

I. The protocol is initiated by agentK sending an encrypted but
verifiable payment,enc(mK−1

K , e′K), to agentK−1. That is,
agentK−1 can check the amount but cannot access it. This is
what secure digital cash achieves and can be intuitively seen
as an unbreakable glass safe [10]. AgentK − 1 then broad-
casts the message〈start payment〉 to all agents in the list
if the value of the encrypted transfer from agentK to K − 1
is according to equation 6. Otherwise, agentK − 1 trans-
mits 〈bmK−1

K rec〉 (which means paymentbmK−1
K has been

received) and the coalition dissolves and a new coalition struc-
ture is computed without agentK.

II. Each agentk + 1 (k ∈ PLC \K) then pays agentk accord-
ing to equation 6 if it receives the message〈mk−1

k rec〉 from
agentk − 1. Otherwise, if it receives message〈bmk−1

k rec〉
where bmk−1

k 6= mk−1
k , it then decides according to whether

it has also received a message〈bmk−2
k−1 rec〉 from agentk− 2.

If it has received such a message andmk−2
k−1 − bmk−2

k−1 + δ =

mk−1
k − bmk−1

k , it then implements the transfer according to



equation 6. Otherwise, it then implements the following trans-
fer:

mk
k+1 = uk − wk(C) + bmk−1

k − δ (7)

whereδ ∈ <+ is a penalty applied for wrong payment (which
may happen if the agent is irrational). The transferm21 is
initialised to beu1 − w1(C).

III. Upon receipt of paymentmk
k+1, each agentk (k ∈ PLC \K)

transmits message〈mk−1
k 〉 to agentk + 2. However, if the

payment received isbmk
k+1 where bmk

k+1 6= mk−1
k , agentk

then transmits〈bmk
k+1 rec〉 to both agentsk + 2 andk + 3.

IV. The protocol is different for the last three agents since these
agents control the message which will start the task execution
stage. If agentK receives the message〈mK−2

K−1 rec〉 (or if it
receives message〈bmk−1

k rec〉 from K−2 and it also receives
〈bmK−3

K−2 rec〉 from agentK − 3 andmK−2
K−1 − bmK−2

K−1 − δ =

mK−3
K−2 − bmK−3

K−2) it then transmits the key and broadcasts
the message〈key sent〉. If wK−1 ≥ 0, agentK transmits
the key to agentK − 1 who then broadcasts the message
〈start tasks〉. Otherwise, it then transmits the key to the
agentn such thatwn ≥ 0 and has the highest index inPLC .
This agent then transmits the key to agentK − 1 and broad-
casts the message〈start tasks〉. If ever agentK receives
〈bmk−1

k rec〉 and it detects a deviation byK − 1, agentK
then broadcasts the message〈no key sent〉.

We now show that a rational agent would not find it in its best
interest to deviate from the payment protocol, i.e. it will implement
the payments specified by equation 6 and would not send erroneous
messages once it has received the payments.

THEOREM 1. Every rational agent in the game follows the pay-
ment scheme faithfully.

PROOF. (Sketch) We prove the above theorem by comparing the
utility that an agent derives when following the protocol faithfully
to that when it deviates.

The net utility an agent derives when following the protocol faith-
fully is its payoff which can be rewritten from equation 6 as :

uk(C) = wk +

8><
>:

m21, k = 1

mk
k+1 −mk−1

k , ∀k ∈ PLC \ {K, 1}
−mK−1

K , k = K

(8)

Now consider each agent’s opportunity to defect as the protocol
proceeds (assuming all other agents have followed it till that point).
At the beginning, agentK can deviate by not sending the correct
value in the encrypted payment. Then, this is detected by agent
K − 1 and thus the coalition does not start. AgentK then derives
a utility of uK(K) (uK(K) < uK(C) by the definition of kernel
stability) and thus will not deviate.

On the second step, agentK−1 may deviate by not acknowledg-
ing the payment and not sending the〈start payment〉 message.
Again, sinceuK−1(K − 1) < uK−1(C), agentK − 1 does not
deviate.

On the third step, agent2 can deviate by sending an incorrect
payment,bm1

2, to agent1. In this case, agent1 sends to agent3
and agent4 the message〈bm1

2 rec〉 and agent3 then pays agent
2 the amountuk(C) − wk(C) + bm1

2 − δ. As a result, the net
transfer to agent2 is uk(C) − wk(C) − δ which is strictly less
than in equation 8. Thus, agent2 cannot benefit by providing a
paymentbm1

2 6= m12. Notice also that by the protocol, agent3 de-
rives a benefit ofδ when applying the correct penalty and will not

get charged by agent4 who has been informed of agent2’s devi-
ation. However, if agent3 deviates and does not apply the correct
penalty, then agent4 will also penalise it. Notice also that if agent
1 receives the correct payment, it can still deviate by misreporting
this payment. Furthermore, the agent is indifferent between all the
messages it can send (in a scenario where the coalition game is run
only once) once it has received its correct payment. However, in a
repeated coalition game (which is the case we consider here), this
would amount to penalising a good payer or not penalising a bad
payer, which is clearly not what an agent would like to do here. The
same argument as used for agents1 and2 can now be used for all
other payments between agents until agentK − 1.

Now if agentK−1 deviates when paying, then agentK−2 will
report this deviation to agentK who will withhold the key. Then
agentK − 1 will derive a net payment of−bmK−2

K−1 which is less
than the amount it derives in equation 8. AgentK can also deviate
by sending the wrong key. In this case agentK does not derive
any higher utility by so doing. Finally the agent who has to send
the message〈start tasks〉 can deviate by not sending it. However,
the agent sending it (either agentK−1 or some other agent) would
not find any utility in doing so since it gains a positivewk when the
coalition tasks are performed.

4.2.4 Task Execution
Once the payment execution phase is completed (i.e. after the

agents have received the two broadcasted messages〈key sent〉
and〈start tasks〉 or the single message〈no key sent〉), the agents
start performing their tasks. All agents deriving value from a task
τ ∈ T then measure the POS values of the respective executing
agents, and the next round of CF starts.

5. RATIONALITY OF TRUTH-TELLING
In our model, the coalition values are defined as the sum of the local
worths of the agents in a coalition. Each agent’s local worth is de-
termined by its reported valuation of requested tasks, the costs of its
offered tasks and its trust values. Now according to the Myerson-
Sattherthwaite impossibility result, no incentive-compatible, budget-
balanced (i.e. all payments between agents sum to zero, which
translates to efficiency in terms of CGT) and individually rational
mechanism can exist [7]. Hence, here we instead prove that our
mechanism achievesnear incentive-compatibility, with which we
define as the fact that agents cannot determinehowto lie profitably,
even if the possibility to do so theoretically exists.

Let x̂ denote thereported valuefor a valuex, which could repre-
sent the valuation, cost, or POS. Now suppose that for an execution
of the TKCF in order to achieve a solution for a game(I, v) there
exists at least onex with x̂ 6= x. Then the game that is actually
solved is different from the original game(I, v). We call this new
game(I, v′).

THEOREM 2. In the TKCF, no agenta is able to determine val-
uesx̂ 6= x to report that will unjustifiably increasea’s payoff wrt
the original game(I, v).

PROOF. (Sketch) We first look at reporting false task valuations.
Suppose an agenti reports v̂i(τ) = vi(τ) + r, r ∈ R, as its
valuation of taskτ . Let α∗

C and α∗′
C be the task allocations es-

tablished by the TKCF forC in (I, v) and (I, v′), respectively,
andwe′ be the expected local worths in(I, v′). Now, if r ≥ 0,
∀Cτ .

i ∈ α∗
C , alsoτ .

i ∈ α∗′
C with w′

i(C) = wi(C) + r holds.
∀Cτ .

i /∈ α∗
C , eitherτ .

i /∈ α∗′
C with w′

i(C) = wi(C) or τ .
i ∈ α∗′

C

with w′
i(C) = wi(C) + r2, r2 ≤ r. The latter can happen if



(a) For agents1, . . . , K − 3 (b) For agentsK − 2, K − 1 andK

Figure 1: Payment Protocol

there are other agents whose valuation ofτ is betweena’s real and
reported valuations. Because the expected coalition values are the
sum of the local worths of the respective coalition members, we get
∀C, i ∈ C, v′(C) = v(C) + rC with rC ∈ [0, r].

However, ifr < 0, it can analogously be shown that∀C, i ∈ C,
v′(C) = v(C) + rC with rC ∈ [r, 0). But, because of our
encryption-based communication, no agent knows any coalition
values before the keys are sent around. Thus, there is no way for
i to know which coalition values will increase by which amount
when reporting anŷvi(τ) 6= vi(τ). Obviously, reported costs
ĉi(τ) 6= ci(τ) have a symmetric impact on the coalition values,
thus we will not show this in detail.

As mentioned earlier, the agents are expected to actually bring
their local worths into their coalition. So, let(S, u) and(S ′, u′)
be kernel stable configurations for(I, v) and(I, v′), respectively.
Suppose agenti ∈ C ∈ S, andi ∈ C′ ∈ S ′. Thus, theexpected

profit pu′,u
i of i in u′ as opposed tou is given bypu′,u

i = u′i−ui−
(w′

i(C
′)− wi(C

′)). To obtain a positive profitpu′,u
i > 0, i must

therefore ensure that:

u′i − ui > w′
i(C

′)− wi(C
′) (9)

But since we assume that the agents have no a priori knowledge
about each others’ valuations of tasks and costs,i’s local worths,
and, in particular, the differences between them and possible kernel
stable solutions are unknown toi.

For the case whereC′ = C, we will now show (9) can only be
true if the surplus ofi also changes in a specific way:

LEMMA 1. In the case where the coalition structure does not
change due to the reporting of false values byi, generallypu′,u

i ≥ 0
only if

1

|C| − 1

X
k∈C,k 6=i

s′i,k − si,k ≥ we′
i (C)− wi(C) = rC

wheres′ denotes the surplus for the game(I, v′).

PROOF. We first consider the case forrC > 0. For any kernel
stable configuration(S, u) with C ∈ S for (I, v) with ∀k ∈ C :
uk > v({k}) it was shown in [1] that ifC is the only coalition with
u′i = ui + rC and∀k ∈ I, k 6= i, u′k = uk, (S, u′) is not kernel
stable for(I, v′). That is, the additional amount brought intoC by
i as opposed to the game(I, v) is not completely paid back toi in a
kernel stable configuration(S, u+) for (I, v′). More specifically,
it was shown thats′i,k = si,k − rC < si,k in (S, u′). Let Cs.,.

denote a coalition withe(C, u) = s.,. for a given surplus. Now

consider the case where for one agentk ∈ C \ {i} : rC
si,k < rC

and for all other agentsj ∈ C \ {i, k} : rC
si,k = rC . Then for

u′ with u′i = ui + rC , we haves′i,j = si,j + rC − rC = si,j , but
s′i,k = si,k + rC

si,k − rC < si,k + rC − rC = si,k. Thus, even if
the other agents’ surpluses do not increase,i (besides other agents)
would have to make some transfer payment tok in order to obtain
a kernel stable configuration. In the case where surpluses of other
agents inC do increase,i’s kernel stable payoff obviously further
decreases.

For rC < 0, we just have to consider the reverse step from the
modified to the original game. Then, because of the above,pu,u′

i ≥
0 only if:

1

|C| − 1

X
k∈C,k 6=i

si,k − s′i,k ≥ −rC

⇔ 1

|C| − 1

X
k∈C,k 6=i

s′i,k − si,k ≤ rC

Now, sincepu,u′

i = −pu′,u
i , the lemma then follows.

But i cannot infer whether the average of its surplusses will
change by a greater or smaller amount than the value of the coali-
tion thati will join. Thus, i cannot determine if the condition for it
to obtain an unjustified profit is met for any reportedv̂i or ĉi.

In the case whereC′ 6= C, we havev′(C′)−v(C′) > v′(C)−
v(C) because otherwise the optimal coalition structure would not
have changed. But because of lemma 1, this does not allow any
conclusion about the size ofu′i. In fact, sinceC′ now belongs to
the optimal coalition structure, it is quite unlikely thati’s average
surplus in the game(I, v′) is increased by a greater or decreased by
a smaller value thanv′(C′)−v(C′) with respect to a kernel stable

solution(S ′, u+) for (I, v). Thus,pu′,u
i ≥ 0 is only likely if u′i −

ui > v′(C′)− v(C′). But sincei does not a priori know anything
about the game, it is not able to decide if such a coalitionC′ exists.
Moreover, sincei cannot manipulate its local worths independently
of each other, it has no facility to enforce the formation ofC′.

However, there is also the possibility for reporting false POS val-
uesη̂k

i = ηk
i + r about another agentk. This changes other agents’

valuation of tasks executed byk and thus will increase or decrease
their local worths in coalitions containingk. Note that this also
includesi. Thus, this case is equivalent to each agent inI \ {k}
reporting false task valuations for tasks executed byk. But then, as
shown above, each agent, and, in particulari, has likewise chances
of obtaining a profit or a loss.

We have thus shown in this section that no agent can determine



the actual way in which to lie so as to make an unjustified positive
improvement over what it could achieve when reporting truthfully.

6. EXPERIMENTAL EVALUATION
Having ensured that TKCF incentivises agents to reveal their true
costs and valuations and that they execute the payments that are
due, we now turn to evaluating the effectiveness of TKCF in choos-
ing the coalitions where the most reliable agents are selected to
execute certain tasks. To this end, we aim to see whether TKCF
can use the trust model defined in section 4.1 in order to evaluate
the reliability of agents over multiple interactions. Here we con-
sider a super-additive game, but restrict the maximum coalition size
(which remains non-trivial) in order to analyze the TKCF’s behav-
iour when finding an optimal coalition structure. This size is fixed
to half of the number of agents in our case. The agents’ valuations
and costs are taken from a uniform distribution between 0 and 1.
The agents’ POS are determineda priori and their actual success
after each coalition executes tasks is taken from a uniform distri-
bution whose mean is equal to their POS. Then, according to our
trust model, the agents’ reported POS in each other are summed
using a weight vector to give the actual trust values. Given this, a
number of agents, six in this case, are allowed to form coalitions
of a maximum of 3 agents. To simplify the analysis, each agent is
allowed to execute more than one task and asks for only one task
to be completed. However, agents might request different tasks and
vary valuations and costs in each game. Thus, in each iteration, a
solution to a possibly different game is to be found. Although this
might increase the number of iterations until the correct POS are
determined, and thus the correct solutions are found, we consider
this a more realistic situation than the case of repeating just one
game all the time.

Given that the payoffs described in section 4 are calculated ac-
cording to the expected value (resulting from the trustworthiness of
agents) of coalitions (see equation 4), we postulate the following
hypothesis:

H1:The agents’ payoffs converge to those reflecting their actual
POS in the long run. Given this, the coalition structureS cho-
sen converges toS∗ which maximises the overall valueυ(S) =P

C∈S v(C). To test this hypothesis we performed an experiment
given the above settings and recorded each agent’s payoff and de-

termined the ratio|u
∗
i −ui|
ui

which indicates the distance of the cal-
culated payoffui from the exact payoffu∗i . We also recorded the
ratio υ(S)

υ(S∗)
to check whether we actually chose the most valu-

able coalition structures. We repeated the CF game 200 times over
which trust measures were refined each time the tasks were exe-
cuted. The results are shown on figure 2. As can be seen, the
difference between the payoffs converge to 0 indicating that the
exact payoffs are chosen in the long run. Moreover, an optimal
coalition structure (S∗) is chosen well before the payoffs stabilise
(when the trust is exactly determined after 200 interactions). This
means that even though an optimal coalition structure has been cho-
sen (after around 167 interactions in this case), the payoffs are still
affected by slight deviations of the trust perceived by agents.We
used ANOVA (Analysis Of VAriance) to determine whether there
were any significant differences between means of|u∗−u|

u∗ of the
agents. Thus, it was found that for 10 samples of 200 games that
p = 0.5534 for α = 0.5 such thatp > α and the null hypoth-
esis is validated. Also, for the value ofυ(S)

υ(S∗)
, it was found that

p = 0.182 for α = 0.1. This validates the null hypothesis in this
case sincep > α, which tells us there is no significant difference
between the means of the samples.

We can also note that the results show that as trust is being learnt
by all agents, the agents’ payoffs may, at times, significantly di-
verge from the optimal ones (the spikes in the graph), though the
size of this occasional divergence decreases over time (due to more
precises trust values). In such cases, the spikes are due tou∗i being
very low compared to the differenceu∗i − ui. These, in turn, are
due to the sensitivity of the kernel-based payoffs to slight changes
in the trust values.

The convergence of the TKCF might seem slow, but taking into
account that different games are played and thus different coali-
tions are formed in each iteration, we consider the result at least
reasonable.

7. CONCLUSIONS
In the task allocation via coalition formation domain, we proposed
a novel model to compute expected coalition values that account
for agents’ trust in each others’ ability to execute tasks with sat-
isfactory reliability. Instead of specifying a particular trust model,
we identified necessary properties of trust models in general in or-
der that they can be soundly applied within this context. Thus, any
trust model exhibiting these properties can be used.

We further presented a protocol that allows the agents, based on
the expected coalition values, to form kernel stable coalitions. The
protocol accounts for every step in the coalition formation process
from the communication of individual valuations and costs to the
actual execution of side payments and tasks, as well as updating
of the trust values. It was experimentally shown that for the real-
istic case of repeated games with varying task requests, valuations
and costs, the computed solutions over time converge to their the-
oretical optimum. Moreover, it was formally shown that for all
communications and payments required by this protocol, it is not
rational for any agent to deviate from what we specify. To achieve
this, we applied encryption-based communication techniques and
developed a sequential payment protocol.

In our proposed mechanism, expected optimal coalition struc-
tures and kernel stable solutions are computed and this involves
exponential complexities. This was done in order to demonstrate
convergence to the theoretical optimum in the experiments. How-
ever, we believe that none of our results actually depend on this
property, and that polynomial kernel based coalition formation can
equally be applied. However further work is needed to confirm this
conjecture.
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