
WSMO-MX: A Logic Programming Based Hybrid Service Matchmaker

Frank Kaufer Matthias Klusch

German Research Center for Artificial Intelligence

Deduction and Multi-Agent Systems Lab

Stuhlsatzenhausweg 3, Saarbrücken

E-mail: {frank.kaufer,klusch}@dfki.de

Abstract

In this paper, we present an approach to hybrid semantic
web service matching based on both logic programming,
and syntactic similarity measurement. The implemented
matchmaker, called WSMO-MX, applies different matching
filters to retrieve WSMO-oriented service descriptions that
are semantically relevant to a given query with respect to
seven degrees of hybrid matching. These degrees are re-
cursively computed by aggregated valuations of ontology
based type matching, logical constraint and relation match-
ing, and syntactic similarity as well.

1 Introduction

The problem of efficiently retrieving relevant services in

the envisioned semantic web has been solved so far by only

a few approaches for services described in OWL-S [15, 10],

and WSML [7, 17]. Though, existing proposals for rule

based service mediation in WSMO do not provide a general

purpose matchmaking scheme for services in WSML.

This, in particular, motivated us to develop a hybrid se-

mantic matchmaker, called WSMO-MX, that applies dif-

ferent matching filters to retrieve WSMO services that are

semantically relevant to a given query including the goal

to be satisfied. Both services and goals are described in a

Logic Programming (LP) variant of WSML, called WSML-

MX, which is based on WSML-Rule. The hybrid matching

scheme of WSMO-MX combines the ideas of hybrid se-

mantic matching realized by OWLS-MX [10], the object-

oriented structure based matching proposed by Klein &

König-Ries [9], and the concept of intentional matching in-

troduced by Keller et. al [6].

The remainder of this paper is structured as follows. In

section 2, we introduce WSML-MX, align it with WSML-

Rule, and describe the modelling of services in WSML-

MX. Section 3 presents the hybrid semantic matching ap-

proach of our matchmaker WSMO-MX by means of its dif-

ferent filters of matching, which is then exemplified in sec-

tion 4. We provide some details of the implementation of

WSMO-MX in section 4, and briefly discuss related work

and conclude in section 5 and 6, respectively.

2 Service modelling with WSML-MX

The web service modelling language WSML is the

formal language for the web service modelling ontology

(WSMO). However, WSML still is under development, and

there is no full-fledged reasoner with WSML parser avail-

able yet. Therefore we developed a formally grounded vari-

ant of WSML called WSML-MX directly in F-Logic [8, 1].

WSML-MX is similar expressive as WSML-Rule, which

has a different (more verbose) syntax as F-Logic but can be

mapped into this.

Central to WSML-MX is the notion of derivative which

is an extended version of the object set introduced by Klein

and König-Ries [9]. A derivative DT in WSML-MX encap-

sulates an ordinary concept T (in this context called type)

defined in a given ontology by attaching meta-information

merely about the way how T can be matched with any other

type. Such information is defined in terms of different meta-

relations of the derivative DT . As type T is defined to be ei-

ther atomic or a complex type with relations, the derivative

DT can also have a set of relations different from T , though

this set is empty by default. The structure of a derivative

is shown in figure 1. Per naming convention, the identifier

of a derivative DT of type T is denoted by T Dn such as

Person D42 for type Person.

WSML-MX uses the main and clearly motivated el-

ements required for service matching from WSML, that

are goal, service, capabilities, preconditions, and

postconditions but not effect and assumption. Please

note that the formal semantics of capabilities in WSML is

still open. Any service in WSML-MX is modelled as a

derivative with a relation called capability and a derivative

of type capability as range. Pre- and postcondition are re-

lations of the latter derivative both referring to a so called

1

Figure 1. Derivative structure in WSML-MX

state. A state is a set of state parts, which are derivatives

each defined as atomic, or as complex by means of rela-

tions with derivatives as range. Hence, any service deriva-

tive in WSML-MX can be represented as a directed object-

oriented graph with derivatives considered as nodes and re-

lations between them as edges, as shown in figure 2.

Figure 2. Service derivative in WSML-MX

The language WSML-MX allows for constraints on both

relations and derivatives formulated in the full Horn frag-

ment of F-logic. Hence, WSML-MX constraints are as ex-

pressive and, in general, only semi-decidable as are WSML-

Rule axioms. In WSMO-MX, we use relative query con-

tainment for constraint matching (cf. section 3.2.3). How-

ever, matching of parts of WSML-MX expressions repre-

sented as acyclic object-oriented graphs without constraints

is decidable in polynomial time. The emphasis of WSML-

MX on these parts of service modelling is motivated not

only by clear separation of computationally tractable ele-

ments but the fact that it allows the matchmaker for a more

detailed explanatory feedback to the user in case the match-

ing of given service and goal derivatives failed.

An example for a service in WSML-MX is shown in fig-

ure 3; the service offers tickets for any trip between any

two German towns, but if the user departs from Berlin, her

destination must be Hamburg.

Figure 3. Example service in WSML-MX

3 Hybrid matching of derivatives

3.1 Overview

The result of matching a derivative DG from a goal

description with a derivative DW from a service descrip-

tion is a vector v ∈ R7 of aggregated valuations of

ontology based type matching, logical constraint match-

ing, relation matching, and syntactic matching. Each

real-valued entry in the so called valuation vector v =
(π≡, π�, π�, π�, π∼, π◦, π⊥) with πi ∈ [0, 1] (i ∈ {≡,�
,�,∼,�, ◦,⊥}) and

∑
πi = 1, denotes the extent to which

both derivatives DG and DW match with respect to the hy-

brid semantic matching degrees πi of WSMO-MX.

These degrees are the logical relations equivalence,

plug − in known from software component retrieval [18]

or the similar rule of consequences from Hoare logic [4],

inverse − plugin, intersection and disjunction (fail)
as degrees of logic based semantic match. The degree

of fuzzy similarity refers to a non-logic based semantic

match such as syntactic similarity, while the degree neutral
stands for neither match nor fail, hence declares the toler-

ance of matching failure. The set-theoretic semantics of the

hybrid matching degrees are given in Table 1 based on the

relations between the maximum possible instance sets of

the derivatives DG and DW , denoted by G and W . Since

we use the heuristic relative query containment for the con-

straint matching, these sets are restricted to instances in the

matchmaker knowledge base which satisfy the constraints.

In order to compute the degrees of hybrid semantic

matching of given goal and service derivative, WSMO-MX

recursively applies different matching filters to their precon-

ditions and postconditions, and returns not only the aggre-

gated matching valuation vector but also annotations of the

matching process results as a kind of explanatory feedback

to the user. That facilitates a more easy iterative goal refine-

ment by the user in case of insufficient matching results.

The individual matching filters and their valuation for the

degrees of hybrid semantic matching are described in sub-

sequent sections, and exemplified in section 4.

2

order symbol degree of match pre post
1 ≡ equivalence G = W
2 � plugin G ⊆ W W ⊆ G
3 � inverse-plugin G ⊇ W W ⊇ G
4 � intersection G ∩W �= ∅
5 ∼ fuzzy similarity G ∼ W
6 ◦ neutral by derivative specific definition
7 ⊥ disjunction (fail) G ∩W = ∅

Table 1. Degrees of hybrid semantic matching of WSMO service and goal derivatives

3.2 Matching filters

3.2.1 Type matching

The matching of types TG and TW of the goal and ser-

vice derivative DG and DW is performed by means of

computing the degree of their semantic relation in the

matchmaker ontology according to a requested type sim-

ilarity relation TSR defined as meta-relation values in

DG[typeSimRel→→TSR]. WSMO-MX offers the follow-

ing derivative type similarity relations (in F-Logic):

• equivalent: TW = TG ∨ TW :: TG ∧ TG :: TW

• sub: TW :: TG (TW subtype of TG); super: TG :: TW

• sibling: ∃TP .TG :: TP ∧TW :: TP∧
¬(∃TX .∃TY .TX ∈ {TG, TW }∧TX :: TY ∧TY :: TP);
types with one immediate common ancestor (parent).

• spouse:

∃TC .TC :: TG ∧ TC :: TW ∧ ¬(∃TX .∃TY .TX ∈
{TG, TW } ∧ TC :: TY ∧ TY :: TX); types with one

immediate common descendant (child)

• comAnc (common ancestor):

∃TP .TG :: TP ∧ TW :: TP

• comDes (common descendant):

∃TC .TC :: TG ∧ TC :: TW

• relative: exists a path in the undirected ontology

graph between TG and TW

The maximum distance TD ∈ N\{0} between types in the

matchmaker ontology with respect to which each of the lat-

ter three relations gets evaluated to true is specified in the

goal derivative in terms of DG[typeDistance→→TD]. TD
is the path length between both types in the undirected on-

tology graph; for the type relations comAnc and comDesc
it must hold that the addition of the path lengths from both

derivatives to their nearest common child/parent type is at

most TD. Optionally, the same restriction can be imposed

on the type relations sub and super with TD greater or

equal the path length from DG to DW .

The valuation of the type matching of DG and DW for

each of the hybrid semantic matching degrees of WSMO-

MX is listed in Table 2. If more than one type similarity

relation TSR is specified in the goal, the maximum of the

valuation vectors is selected as a result.

3.2.2 Relation matching

Given that the DG and DW are complex, the hybrid

semantic matching must continue recursively with com-

paring their relations. Let the relation signatures of

DG and DW be defined as follows: DG[R1⇒⇒E1; ...;
Rk⇒⇒Ek; S1⇒⇒F1; ...; Sl⇒⇒Fl; ...; Sm⇒⇒Fm], and

DW [R1⇒⇒G1; ...; Rk⇒⇒Gk; T1⇒⇒H1; ...; Tn⇒⇒Hn],
where R1, ..., Rk, S1, ..., Sm, T1, ..., Tn are unique relation

names with
⋃

i∈[1,m] Si ∩
⋃

j∈[1,n] Tj = ∅ and derivatives

E1, ..., Ek, G1, ...Gk, F1, ..., Fm, H1, ...,Hn the respective

ranges of the relations.

The relations R1, ..., Rk of the goal derivative DG for

which equally named relations do exist in DW are valuated

for the hybrid degree of matching by recursively matching

their ranges with each other. That is, WSMO-MX attempts

to match the (goal) derivatives Eτ with the (service) deriv-

atives Gτ for all τ ∈ [1, k] and compute the respective val-

uation vectors.

We assume that for all relations Sµ, µ ∈ [1, l] in

DG that cannot be paired with an equally named rela-

tion in DW (under unique name assumption for shared

namespaces) there exist one so called missing strategy
which indicates the matchmaker how to cope with this prob-

lem. Such a missing relation strategy is specified in the

goal in terms of DG[missingStrat@(Sµ)→→MSµ], with

MSµ ∈ {assumeEquivalent, assumeFailed, ignore}.

The valuations for relations with missing strategies are

given in table 3. It lists also the valuations for the rela-

tions without missing strategy (Sl, . . . Sm and T1, . . . , Tn),

which depend on whether they are part of a pre- or postcon-

dition.

The final valuation vector for the recursive relation

matching between DG and DW is an aggregation of all

valuation vectors computed for the missing relations, and

those for the relation range derivative matchings. The cor-

3

type valuation vector
similarity valpre valpost

relation (π≡,π�,π�,π�,π∼,π◦,π⊥) (π≡,π�,π�,π�,π∼,π◦,π⊥)

equivalent (1 , 0 , 0 , 0 , 0 , 0 , 0) (1 , 0 , 0 , 0 , 0 , 0 , 0)

sub (0 , 0 , 1 , 0 , 0 , 0 , 0) (0 , 1 , 0 , 0 , 0 , 0 , 0)

super (0 , 1 , 0 , 0 , 0 , 0 , 0) (0 , 0 , 1 , 0 , 0 , 0 , 0)

sibling (0 , 0 , 0 , 1 , 0 , 0 , 0) (0 , 0 , 0 , 1 , 0 , 0 , 0)

comAnc (0 , 0 , 0 , 1 , 0 , 0 , 0) (0 , 0 , 0 , 1 , 0 , 0 , 0)

spouse (0 , 0 , 0 , 0 , 1 , 0 , 0) (0 , 0 , 0 , 0 , 1 , 0 , 0)

comDes (0 , 0 , 0 , 0 , 1 , 0 , 0) (0 , 0 , 0 , 0 , 1 , 0 , 0)

relative (0 , 0 , 0 , 0 , 1 , 0 , 0) (0 , 0 , 0 , 0 , 1 , 0 , 0)

Table 2. Valuation of type matching for hybrid matching degrees

missing valuation vector
strategy valpre,webservice/valpost,goal valpost,webservice/valpre,goal

(π≡,π�,π�,π�,π∼,π◦,π⊥) (π≡,π�,π�,π�,π∼,π◦,π⊥)

assumeEquivalent (1 , 0 , 0 , 0 , 0 , 0 , 0) (1 , 0 , 0 , 0 , 0 , 0 , 0)

none (0 , 1 , 0 , 0 , 0 , 0 , 0) (0 , 0 , 1 , 0 , 0 , 0 , 0)

ignore (0 , 0 , 0 , 0 , 0 , 1 , 0) (0 , 0 , 0 , 0 , 0 , 1 , 0)

assumeFailed (0 , 0 , 0 , 0 , 0 , 0 , 1) (0 , 0 , 0 , 0 , 0 , 0 , 1)

Table 3. Valuation of relation matching with missing strategies for hybrid matching degrees

responding relation matching algorithm is outlined in the

subsequent section (cf. algorithm 5).

3.2.3 Constraint matching

Let D a derivative, C a F-Logic rule body and XD a

free variable in C, then we call c a constraint of D,

if D[constraint→→c]. and ∀XD.satCons(XD, c) ← C.
holds. Variable XD is bound with potential instances of D,

and satCons verifies whether such an instance satisfies c.

A derivative can have zero or many constraints including a

special constraint for nominals; the respective meta-relation

oneOf denoted as D[oneOf→→{i1, . . . , im}] means that an

instance of D has to be one of i1, . . . , im.

In WSMO-MX, the matching of logical constraints of

goal and service derivatives is performed by means of so

called relative query containment. That is, any clause A
is relatively contained in clause B, or B relatively implies

A, with respect to a given knowledge base KB, denoted by

A �KB B, if the answer set QKB(A) of querying KB with

A, is a subset of QKB(B). Under the open world assump-

tion, KB does not contain all possible instances of a query

(universal closure), hence relative query containment can

only be considered as an approximation of logical impli-

cation (query containment) which is, in general, undecid-

able for first-order languages such as F-Logic [2]. An al-

ternative would be to approximate logical implication by

means of clause theta-subsumption [13] which is, in gen-

eral, NP-complete decidable [3]. Since fast deterministic

algorithms for partial testing of theta-subsumption are also

known [14], the correct but incomplete theta-subsumption

relation is used as a consequence relation in many ILP sys-

tems [12], and the matchmaker LARKS [16].

However, for pragmatic reasons of implementation,

WSMO-MX uses relative query containment for matching

constraints over the instances stored in the matchmaker

ontology. For each derivative D of type T , WSMO-MX

determines a set of potential instances against which its

constraints are evaluated as queries. This set comprises all

instances of the concept T and instances of derivatives of

type T :

∀D,XD. potentialInstance(D,XD) ←
∃T.D[type→→T]∧
(XD : T ∨ (∃DT . DT [type→→T] ∧ XD : DT)).

The constraint matching filter then returns only those

instances of this set which satisfy all constraints of D:

∀XD, D. satAllCons(XD, D) ←
potentialInstance(D,XD)∧
(∀C.D[constraint→→C] → satCons(XD, C))∧
((∃X. D[oneOf→→X]) → D[oneOf→→XD]).

The valuation of constraint matching is determined

by the type of the set relation ρ, which is defined

as IKB(DG) ρ IKB(DW) over the set IKB(D) :=
{XD|satAllCons(XD, D)} of matching instances of

derivative D with respect to the given knowledge base KB
of the matchmaker (cf. table 4).

4

set valuation vector
relation valpre valpost

IKB(DG) ρ IKB(DW) (π≡,π�,π�,π�,π∼,π◦,π⊥) (π≡,π�,π�,π�,π∼,π◦,π⊥)

IKB(DG) = IKB(DW) (1 , 0 , 0 , 0 , 0 , 0 , 0) (1 , 0 , 0 , 0 , 0 , 0 , 0)

IKB(DG) ⊇ IKB(DW) (0 , 0 , 1 , 0 , 0 , 0 , 0) (0 , 1 , 0 , 0 , 0 , 0 , 0)

IKB(DG) ⊆ IKB(DW) (0 , 1 , 0 , 0 , 0 , 0 , 0) (0 , 0 , 1 , 0 , 0 , 0 , 0)

IKB(DG) ∩ IKB(DW) �= ∅ (0 , 0 , 0 , 1 , 0 , 0 , 0) (0 , 0 , 0 , 1 , 0 , 0 , 0)

IKB(DG) ∩ IKB(DW) = ∅ (0 , 0 , 0 , 0 , 0 , 0 , 1) (0 , 0 , 0 , 0 , 0 , 0 , 1)

Table 4. Valuation of constraint matching for hybrid matching degrees

3.2.4 Syntactic matching

The filter of WSMO-MX for syntactic matching of goal and

service derivatives, DG and DW , is intended to comple-

ment those for semantic matching as described above. For

this purpose, it transforms the description of each deriv-

ative into a weighted keyword vector as known from in-

formation retrieval, and applies one of the selected syn-

tactic similarity metrics cosine, extended Jaccard, loss-of-

information (LOI), and weighted LOI [10], depending on

the user preferences specified as instances of the following

meta-relations of goal derivatives DG.

• DG[synSimUsage→→U] with U ∈ {alternative,
compensative, complementary} specifies whether

syntactic matching shall be performed either as an ex-

clusive alternative to semantic matching, or only in

case of semantic matching failure, or in any case.

• DG[synSimScope→→S] with S ∈ {scpType,
scpRelation, scpDescription} denotes whether only

the types, or the relations, or the whole text of the

description of the derivatives are used for syntactic

matching. In case of scpType, all type names (no rela-

tion names) of the derivative are recursively unfolded

in the matchmaker ontology and the resulting set of

primitive components used to compute a weighted key-

word vector, whereas for scpRelation only the relation

names of the derivative are used for this purpose. Any

combination of scopes is allowed.

• DG[synSimMetric→→M] with M ∈ {cosine, loi,
loiWeighted, jaccard} specifies which IR similarity

metric to use. For details of computation, we refer to

[10].

• DG[synSimMinDegree→→α] with α ∈ [0, 1] spec-

ifies the minimum degree of syntactic similarity re-

quired (threshold).

The valuation of syntactic matching is considered only

with respect to the degree of fuzzy similarity π∼ and set to

0, if the computed syntactic similarity value does not exceed

α, and to 1 otherwise.

3.2.5 Parameter matching

A derivative can be tagged to be an input and/or output pa-

rameter by the meta-relation param. The parameter match-

ing filter checks whether goal and service derivative are dif-

ferently tagged and returns no valuation vector but an an-

notation indicating the deviations. This allows the service

requester to understand the interface of the service and if

needed to adjust the interface as it was expected and de-

noted by the parameters tags in the goal description.

3.2.6 Intentional matching

Optionally, WSMO-MX does perform a kind of intentional

matching of goal and service derivatives. For this pur-

pose, we adopt the approach proposed by Keller et al. [6].

In particular, the semantics of their notions of ∃-intention

and ∀-intention correspond with the evaluation of our meta-

relation existentialIntention to true and false, respec-

tively. The valuation vector of hybrid semantic matching

can be ”intentionally recomputed” by its multiplication with

the transformation matrix that corresponds to the requested

combination of intended provision of relevant instances as

it is declared for the goal and the service derivative by the

requester and provider, respectively.

The case in which ∀-intentions are declared for both

derivatives, DG and DW , is equal to not using intentions at

all, hence can simply be ignored by WSMO-MX. As a con-

sequence, there remain three cases for each pre- and post-

condition matching. These are computed by means of six

intentional matching matrices (to be multiplied with the val-

uation vector) of which we show only those for the postcon-

dition matching cases 1: (1) Ipost,∃G,∀W : only DG has an

∃-intention, (2) Ipost,∀G,∃W : only DW has an ∃-intention,

(3) Ipost,∃G,∃W : both derivatives have ∃-intentions. The

matrices are defined as follows.

1For the cases of precondition matching the lines and columns for π�
and π� in the matrices have to be inverted.

5

Ipost,∃G,∀W =

1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Ipost,∀G,∃W =

1
2

1
2 0 0 0 0 0

0 1 0 0 0 0 0
1
5

1
5

1
5

1
5 0 0 1

5
0 0 1

3
1
3 0 0 1

3
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Ipost,∃G,∃W =

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1
3 0 1

3 0 0 0 1
3

1
3 0 1

3 0 0 0 1
3

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Due to space restrictions, we refer the interested reader

for more details to [5].

3.3 WSMO-MX matching algorithm

The request for a semantically relevant service is speci-

fied by the user as a goal derivative in WSML-MX, together

with a matching configuration Conf . The configuration

contains default values for minimum syntactic similarity de-

gree, weights for the aggregation of different matching filter

results, and the minimum valuation of each degree of hybrid

matching returned by the matchmaker. WSMO-MX takes

the precondition state and the postcondition state of each

advertised service from its local knowledge base (cf. algo-

rithm 1), and then matches them pairwise with the states of

the given goal (cf. algorithm 2). In case of no precondi-

tions, the result of their matching is set to equivalence by

default.

The state of the goal is matched with that of the ser-

vice by matching their state part derivatives (cf. algorithm

3) and then recursively by the pairwise matching of rela-

tion range derivatives of equally named relations (cf. al-

gorithm 5). Subsequently, WSMO-MX computes the max-
imum weighted bipartite graph match, where nodes of the

graph correspond to the goal and service state parts and the

computed valuation vectors act as weights of edges existing

between matched state parts.

At each step in the recursion, the parameter matching fil-

ter is applied first, since its result, an annotation record, is

not valuated for any of the hybrid matching degrees. Then

each of the semantic matching filters (type, constraint, and

relation matching) is applied. Syntactic matching is per-

formed in case one of these filters fails (compensative), or

complementary in any case, if not specified differently. The

user can also ask for just a first coarse-grained filtering by

means of exclusively syntactic matching without any se-

mantic matching.

Finally, all valuation vectors computed during recursive

matching of goal and service derivatives are aggregated into

one single valuation vector. For aggregation, each individ-

ual valuation vector is weighted for the respective matching

filter as specified in the configuration (Conf) for the given

goal; the weighting is assumed to be equal by default. This

aggregated valuation of hybrid matching degrees is then re-

computed with respect to the intentions of the considered

derivatives (cf. in section 3.2.6).

The overall result of the matching process is a ranked

list of services with their hybrid matching valuation vec-

tor, and annotations. Services are ranked with respect to

the maximum value of hybrid semantic matching degrees in

descending order (cf. table 1), starting with π≡.

Algorithm 1 WSMO-MX matching of query (goal G, con-
figuration Conf) with registered services in WSML-MX:
matchGoal

1: function MATCHGOAL(G, Conf)

WS := GETREGISTEREDWEBSERVICES()

2: SG,pre := GETPRECONDITION(G)

3: SG,post := GETPOSTCONDITION(G)

4: Confpre := Conf + (modus : pre)
5: Confpost := Conf + (modus : post)
6: Wmatched := empty set

7: for all W ∈ WS do
8: SW,pre := GETPRECONDITION(W)

9: SW,post := GETPOSTCONDITION(W)

10: (V alW,pre, AnnW,pre) :=

MATCHSTATES(SG,pre,SW,pre, Confpre)

11: (V alW,post, AnnW,post) :=

MATCHSTATES(SG,post,SW,post, Confpost)

12: Wmatched += (W,V alW,pre, V alW,post,
AnnW,pre, AnnW,post)

13: end for
14: return Wmatched

15: end function

3.4 Implementation

WSMO-MX has been fully implemented in Java 5 and

F-Logic using the F-Logic reasoner OntoBroker2. Its main

components are a matching engine which is interfaced

with an ontology manager communicating with the rea-

soner. Type and constraint matching is done directly within

the OntoBroker, whereas the WSMO-MX matching engine

2developed by Ontoprise, http://www.ontoprise.de

6

Algorithm 2 matchStates
1: function MATCHSTATES(SG,SW , Conf)

2: � build bipartite weighted graph from

3: � matching state parts of goal and webservice

4: Graph := empty graph

5: for all StatePartG ∈ SG do
6: for all StatePartW ∈ SW do
7: (V alW , AnnW) := MATCHDERIVATIVES

(StatePartG, StatePartW , Conf)
8: if ¬ ISFAIL(V alW) then
9: Graph += edge(StatePartG,

StatePartW , V alW , AnnW)
10: end if
11: end for
12: end for
13:

14: � find maximum weighted graph matching

15: M := GETGRAPHMATCHING(Graph)

16: (V al, Ann) := GETVALANN(M,Conf)

17:

18: � valuate not matched state parts

19: SG−M := NOTMATCHEDSTATEPARTS(SG,M)

20: SW−M := NOTMATCHEDSTATEPARTS(SW ,M)

21: for all StatePartG ∈ SG−M do
22: V al += VALSTATEPART(goal, Conf)

23: Ann += (G, W, state,

(StatePartG, notMatched, goal))
24: end for
25: for all StatePartW ∈ SW−M do
26: V al += VALSTATEPART(webservice, Conf)

27: Ann += (G, W, state,

(StatePartW , notMatched, webservice))
28: end for
29:

30: � normalize cumulated valuation

31: V al /= |M | + SG−M + SW−M

32: return (V al, Ann)
33: end function

Algorithm 3 matchDerivatives
1: function MATCHDERIVATIVES(DG, DW , Conf)

2:

3: if DG = DW then return ((1, 0, 0, 0, 0, 0, 0), ())
4: end if
5:

6: AnnParams := MATCHPARAMS(DG, DW)

7: synMatchUsage :=

GETSYNMATCHINGUSAGE(DG, Conf)

8:

9: if synMatchUsage = alternative then
10: (V alSyn, AnnSyn) :=

MATCHSYNTACTIC(DG, DW , Conf)

11: if ¬ISFAIL(V alSyn) then
12: Ann += AnnParams + AnnSyn

13: return (V alSyn, Ann)
14: end if
15: end if
16:

17: (V alSem, AnnSem) :=

MATCHSEMANTIC(DG, DW , Conf)

18:

19: if ISFAIL(V alSem) then
20: if synMatchUsage = compensative then
21: (V alSyn, AnnSyn) :=

MATCHSYNTACTIC(DG, DW , Conf)

22: if ¬ISFAIL(V alSyn) then
23: Ann += AnnParams + AnnSyn

24: return (V alSyn, Ann)
25: end if
26: end if
27: else if synMatchUsage = complementary then
28: (V alSyn, AnnSyn) :=

MATCHSYNTACTIC(DG, DW , Conf)

29: if ¬ISFAIL(V alSyn) then
30: Ann += AnnParams +AnnSyn +AnnSem

31: V al :=

AGGREGATEVAL(V alSem, V alSyn, Conf)

32: return (V al, Ann)
33: end if
34: else
35: Ann += AnnParams + AnnSem

36: V al :=

AGGREGATEVAL(V alSem, null, Conf)

37: return (V al, Ann)
38: end if
39: end function

7

Algorithm 4 matchSemantic
1: function MATCHSEMANTIC(DG, DW , Conf)

2: (V alType, AnnType) :=

MATCHTYPES(DG, DW , Conf)

3: (V alCons, AnnCons) :=

MATCHCONSTRAINTS(DG, DW , Conf)

4: (V alRel, AnnRel) :=

MATCHRELATIONS(DG, DW , Conf)

5:

6: V al := (V alType, V alCons, V alRel)
7: Ann := AnnType + AnnCons + AnnRel

8:

9: return (V al, Ann)
10: end function

Algorithm 5 matchRelations
1: function MATCHRELATIONS(DG, DW , Conf)

2: � RelsG - relations defined only for DG

3: � RelsW - relations defined only for DW

4: � RelsG,W - relations defined for both

5: (RelsG, RelsW , RelsG,W) :=

GETRELATIONS(DG, DW)

6:

7: � for all relations defined in DG and DW

8: � match the derivatives in their range

9: for all R ∈ RelsG,W do
10: RangeG := GETRELRANGE(DG)

11: RangeW := GETRELRANGE(DW)

12: (V alRange, AnnRange) :=

MATCHDERIVATIVES(RangeG, RangeW)

13: V al += V alRange

14: Ann += AnnRange

15: end for
16: � valuate relations defined only for DG

17: for all R ∈ RelsG do
18: MSR :=

GETMISSINGSTRATEGY(DG, R, Conf)

19: V al +=

VALUATEMISSREL(webservice, MSR, Conf)

20: Ann += (DG, DW , rel,

(R,missing, webservice,MSR))
21: end for
22: � valuate relations defined only for DW

23: for all R ∈ RelsW do
24: V al += VALUATEMISSREL(goal, null, Conf)

25: Ann += (DG, DW , rel, (R,missing, goal))
26: end for
27:

28: V al /= |RelsG| + |RelsW | + |RelsG,W |
29: end function

takes the results and does the rest, that is relation matching,

syntactic matching, aggregation of valuation vectors, state

matching including the computation of maximum weighted

bipartite graph matching. The OntoBroker loads the match-

maker ontology from a given set of F-Logic files that con-

tain the types, derivatives (including goals and services), in-

stances, and constraints, as well as the rules for type and

constraint matching, unfolding and some auxiliary tasks.

In an upcoming version of WSMO-MX, the goals will be

passed by the matching engine to the ontology manager

only at the time of the respective request to the matchmaker.

4 Example

Goal, service, ontology. Suppose the user defines a goal

derivative Ticket D4 as shown in figure 4. That is, she is

looking for any ticket for a trip between two arbitrary towns,

but if it starts in Berlin, then it must not end in Bremen.

Please note, that the user may specify matching relaxations

for any object of the goal as exemplified, but also different

weights for the matching filters to be applied. In this exam-

ple, we assume the filters to be equally weighted.

Figure 4. Example goal in WSML-MX

The part of the type hierarchy in the matchmaker ontology

and all instances used in this example are shown in figure 5.

For reasons of efficiency and data privacy, mediation

between service providers and requesters by means of an

autonomous matchmaker is not appropriate for constraint

matching over different instance bases. Alternatively, an

autonomous WSMO-MX matchmaker could perform con-

straint matching without instance sets by polynomial means

of theta-subsumption reasoning for restricted set of Horn

clauses like in LARKS [16]. This is part of our future work

on WSMO-MX.

In this example, the service derivative Ticket D5 given

in section 2 will be matched against the goal derivative

Ticket D4. Please note, that the service offers tickets for

any trip between any two German towns, but if the user

8

Figure 5. Example ontology (type hierarchy
and instances)

departs from Berlin, her destination must be Hamburg.

Matching. Since the capabilities of both goal and service

derivatives do not include any precondition, the hybrid se-

mantic matching of them is restricted to the matching of

their postcondition states as follows.

1. match types: the types of Ticket D4 and Ticket D5

are equal. Hence the valuation is v1 =
(1, 0, 0, 0, 0, 0, 0).

2. match parameters: both are output parameters, no

annotation necessary

3. match relations

(a) departure: the types of Town D3 and German-

Town D1 are not equivalent, but Town D3 allows

subtypes. Since GermanTown is a subconcept of

Town, the valuation is v2 = (0, 1, 0, 0, 0, 0, 0, 0).

(b) via: this relation is not defined for Ticket D3,

but the missingStrategy for this relation is as-
sumeEquivalent yielding a valuation v3 =
(1, 0, 0, 0, 0, 0, 0, 0).

(c) arrival: analogous to departure types of the

ranges of arrival are subtypes and yield the valu-

ation v4 = (0, 1, 0, 0, 0, 0, 0, 0).

(d) date: is equal in goal and service, hence valuated

as v5 = (1, 0, 0, 0, 0, 0, 0, 0)

(e) purchaser: type matching fails for Customer D1

and Client D1, but compensative syntactic

matching is allowed using loss of information

(LOI) metric. For the unfolding only the types of

the derivatives should be used (scpType), yield-

ing the term vectors (Customer : 1, T own :
1, P erson : 1, Location : 1, T own : 1) and

(Client : 1, T own : 1, P erson : 1, Location :
1, T own : 1) for Customer D1 and Client D1,

respectively. The similarity degree is 0.75, and

therefore greater than the declared minimum of

0.7. The resulting valuation vector is v6 =
(0, 0, 0, 0, 0, 0, 1, 0).

The aggregated relation valuation is v7 = v2+...+v6
5 =

(0.4, 0.4, 0, 0, 0, 0.2, 0)

4. match constraints: Ticket D4 has the constraint c1.

This is satisfied by the instances t1, . . . , t5. The con-

straint c2, which is imposed on Ticket D5 is satisfied

by the instances t3, . . . , t5. That means the instances

for Ticket D5 are a subset of those of Ticket D4 and

hence the valuation is v8 = (0, 1, 0, 0, 0, 0, 0, 0)

Finally, the aggregated valuation for the derivative matching

of Ticket D4 and Ticket D5 is

v9 = v1+v7+v8
3 = (7

15 , 7
15 , 0, 0, 0, 1

15 , 0).

5 Related work

To the best of our knowledge, WSMO-MX is the first

implemented full-fledged matchmaker for WSMO-oriented

services. It borrows the approach to recursive object-

oriented structure matching from [9], the notion of inten-

tional matching from [6], and the hybrid semantic matching

from [10]. The mediator based discovery approaches pre-

sented in [7, 17] do not allow for a general goal-service

matching, but require problem specific mapping, or con-

struction rules. Besides, like in [15], they define their no-

tions of match on the assumption that an advertisement

postcondition has to subsume the goal’s postcondition for a

full match, which is diametrically opposed to our approach

and to the original idea of how to match program capabili-

ties initially proposed in [4, 18].

Other relevant approaches to automated selection of se-

mantic web services include those for retrieving relevant

OWL-S services [11, 15]. Most of them rely on DL based

subsumption reasoning. However, OWL still lacks the sup-

port of rules and subsumption reasoning in the underlying

description logic SHOIN (D) is NEXPTIME. Besides,

unlike WSMO, there is no way in OWL-S to link I/O pa-

rameters in the signature with preconditions and effects as

shared variables. Thus, most OWL-S matchmakers perform

9

signature matching only. OWLS-MX [10] complements the

logic based semantic matching of OWL-S service signa-

tures with syntactic matching, which is also rudimentary

performed in LARKS [16]. For WSMO-MX, we did im-

prove on this idea of OWLS-MX by allowing for a more

fine-grained parametrisation, and integrated interleaving of

syntactic and semantic matching.

6 Conclusions

In this paper we presented the general purpose match-

maker WSMO-MX for services described in WSML-MX

which is a LP based variant of WSML-Rule that facilitates

matching of pre- and postconditions of object-oriented de-

scriptions of goals and services. WSMO-MX applies dif-

ferent matching filters to retrieve WSMO services that are

semantically relevant to a given goal with respect to seven

degrees of hybrid matching. Each of these degrees are re-

cursively computed by aggregated valuations of ontology

based type matching, logical constraint and relation match-

ing, and syntactic similarity of goal and service derivatives.

It integrates signature matching with state matching, and re-

turns not only the final aggregated valuation vector for the

hybrid matching degrees but an annotation of the match-

ing results for interactive goal refinement by the user. Cur-

rently, relation cardinalities are not considered by WSMO-

MX but will be integrated as soon as they become stan-

dardised 3 and supported by an F-Logic reasoner. Though

the matchmaker has been fully implemented, the evaluation

of its performance is ongoing work with generating the re-

quired WSMO service retrieval test collection first. Like

with OWLS-MX, we intend to make WSMO-MX (without

OntoBroker4) available to the semantic community under

GPL-like license at the semwebcentral.org portal.

References

[1] J. Angele and G. Lausen. Ontologies in f-logic. In S. Staab

and R. Studer, editors, Handbook on Ontologies, pages 29–

50. Springer, 2004.

[2] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Com-

plexity and expressive power of logic programming. ACM
Computing Surveys, 33(3):374–425, September 2001.

[3] G. Gottlob and A. Leitsch. On the efficiency of subsumption

algorithms. Journal of the ACM (JACM), 32(2):280 – 295,

April 1985.

[4] C. Hoare. An axiomatic basis for computer programming.

Communications of the ACM (CACM), 12(10):576–580, 10

1969.

3For more information see http://forum.projects.
semwebcentral.org/

4research licences can be obtained from Ontoprise

[5] F. Kaufer. WSMO-MX: A Logic programming based hybrid
semantic web service matchmaker. Computer Science Dept.,

University of the Saarland, Saarbruecken, Germany, 2006.

[6] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel.

Automatic location of services. In Proceedings of the 2nd
European Semantic Web Symposium (ESWS2005), Herak-

lion, Crete, June 2005.

[7] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller,

H. Lausen, and D. Fensel. A logical framework for web ser-

vice discovery. In Proceedings of the ISWC 2004 Workshop
on Semantic Web Services: Preparing to Meet the World of
Business Applications, volume 119, Hiroshima, Japan, No-

vember 2004. CEUR Workshop Proceedings.

[8] M. Kifer, G. Lausen, and J. Wu. Logical foundations of

object-oriented and frame-based languages. Journal of the
ACM, 42, 1995.

[9] M. Klein and B. König-Ries. Coupled signature and spec-

ification matching for automatic service binding. In Pro-
ceedings of European Conference on Web Services (ECOWS
2004), LNCS 3250, page 183, Erfurt, Germany, September

2004. Springer.

[10] M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx:

Hybrid owl-s service matchmaking. In Proceedings of 1st
Intl. AAAI Fall Symposium on Agents and the Semantic Web,

Arlington VA, USA, November 2005.

[11] L. Li and I. Horrocks. A software framework for match-

making based on semantic web technology. In Proceedings
of the Twelfth International Conference on World Wide Web,

pages 331–339. ACM Press, 2003.

[12] S. Muggleton and L. D. Raedt. Inductive logic pro-

gramming: Theory and applications. Logic Programming,

19(20):629–679, 1994.

[13] J. Robinson. A machine-oriented logic based on the resolu-

tion principle. Journal of the ACM, 12(1), 1965.

[14] T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient algo-

rithms for theta-subsumption. JAIR, 1997.

[15] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.

Automated discovery, interaction and composition of se-

mantic web services. Journal of Web Semantics, 1(1):28,

2003.

[16] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-

namic matchmaking among heterogeneous software agents

in cyberspace. Autonomous Agents and Multi-Agent Sys-
tems, 5:173–2003, June 2002.

[17] E. D. Valle and D. Cerizza. Cocoon glue: a prototype of

wsmo discovery engine for the healthcare field. In Pro-
ceedings of the WIW 2005 Workshop on WSMO Implemen-
tations, volume 134, Innsbruck, Austria, June 2005. CEUR

Workshop Proceedings.

[18] A. M. Zaremski and J. M. Wing. Specification matching of

software components. In 3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 10 1995.

10

