
Distributed Data Mining and Agents

Josenildo C. da Silva2, Chris Giannella1, Ruchita Bhargava3,
Hillol Kargupta1;4, and Matthias Klusch2

1 Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County,

Baltimore, MD 21250 USA
fcgiannel,hillolg@cs.umbc.edu

2 German Research Center for Artificial Intelligence
Stuhlsatzenweghaus 3, 66121 Saarbruecken, Germany

fjcsilva,kluschg@dfki.de
3 Microsoft Corporation

One Microsoft Way
Redmond, WA 98052 USA

4 AGNIK LLC
8840 Stanford Blvd. Suite 1300

Columbia, Maryland 21045 USA

Abstract. Multi-Agent Systems (MAS) offer an architecture for distributed prob-
lem solving. Distributed Data Mining (DDM) algorithms focus on one class of
such distributed problem solving tasks—analysis and modeling of distributed
data. This paper offers a perspective on DDM algorithms in the context of multi-
agents systems. It discusses broadly the connection between DDM and MAS.
It provides a high-level survey of DDM, then focuses on distributed clustering
algorithms and some potential applications in multi-agent-based problem solv-
ing scenarios. It reviews algorithms for distributed clustering, including privacy-
preserving ones. It describes challenges for clustering in sensor-network environ-
ments, potential shortcomings of the current algorithms, and future work accord-
ingly. It also discusses confidentiality (privacy preservation) and presents a new
algorithm for privacy-preserving density-based clustering.

Keywords: multi-agent systems, distributed data mining, clustering, privacy,
sensor networks

1 Introduction

Multi-agent systems (MAS) often deal with complex applications that require distributed
problem solving. In many applications the individual and collective behavior of the
agents depend on the observed data from distributed sources. In a typical distributed
environment analyzing distributed data is a non-trivial problem because of many con-
straints such as limited bandwidth (e.g. wireless networks), privacy-sensitive data, dis-
tributed compute nodes, only to mention a few. The field of Distributed Data Mining
(DDM) deals with these challenges in analyzing distributed data and offers many al-
gorithmic solutions to perform different data analysis and mining operations in a fun-
damentally distributed manner that pays careful attention to the resource constraints.

Since MAS are also distributed systems, combining DDM with MAS for data intensive
applications is appealing.

This paper underscores the possible synergy between MAS and DDM technology.
It particularly focuses on distributed clustering, a problem finding increasing number
of applications in sensor networks, distributed information retrieval, and many other
domains. The paper provides a detailed literature review of existing clustering algo-
rithms in DDM (including privacy-preserving ones). Then, it discusses one application
domain, sensor networks, underscoring some challenges, potential shortcomings of the
current algorithms, and future work accordingly. Finally, this paper discusses privacy
(confidentiality) and presents a new algorithm for privacy-preserving clustering.

The paper is organized as follows. Section 2 provides the motivation behind the
material presented in this paper. Section 3 introduces DDM and presents an overview
of the field. Section 4 focuses on a particular portion of the DDM literature and takes
an in-depth look at the distributed clustering literature. Section 5 considers distributed
clustering algorithms in the context of sensor networks which are drawing an increasing
amount of interest from the multi-agent systems community. Sections 6 and 7 discuss
the issue of privacy (confidentiality) and present a new algorithm for privacy-preserving
density-based clustering. Finally, Section 9 concludes the paper.

2 Motivation

Agents in MAS need to be pro-active and autonomous. Agents perceive their envi-
ronment, dynamically reason out actions based on conditions, and interact with each
other. In some applications the knowledge of the agents that guide reasoning and action
depend on the existing domain theory. However, in many complex domains this knowl-
edge is a result of the outcome of empirical data analysis in addition to pre-existing
domain knowledge. Scalable analysis of data may require advanced data mining for de-
tecting hidden patterns, constructing predictive models, and identifying outliers, among
others. In a multi-agent system this knowledge is usually collective. This collective
“intelligence” of a multi-agent system must be developed by distributed domain knowl-
edge and analysis of distributed data observed by different agents. Such distributed
data analysis may be a non-trivial problem when the underlying task is not completely
decomposable and computing resources are constrained by several factors such as lim-
ited power supply, poor bandwidth connection, and privacy sensitive multi-party data,
among others.

For example, consider a defense related application of monitoring a terrain using
a sensor network that has many tiny mote-type [28] sensors for measuring vibration,
reflectance, temperature, and audio signals. Let us say the objective is to identify and
track a certain type of vehicle (e.g. pick-up trucks). The sensors are battery-powered.
Therefore, in the normal mode they are designed not be very active. However, as soon as
someone detects a possible change in scenario, the sensors must wake up, observe, rea-
son, and collaborate with each other in order to track and identify the object of interest.
The observations are usually time-series data sampled at a device specific rate. There-
fore, collaboration with other sensor-nodes would require comparing data observed at
different nodes. This usually requires sending a window of observations from one node

to another node. This distributed problem solving environment appears to fit very well
with the multi-agent framework since the solution requires semi-autonomous behavior,
collaboration and reasoning among other things. However, regardless of how sophisti-
cated the agents are, from the domain knowledge and reasoning perspective, they must
perform the underlying data analysis tasks very efficiently in a distributed manner. The
traditional framework of centralized data analysis and mining algorithms does not re-
ally scale very well in such distributed applications. For example, if we want to compare
the data vectors observed at different sensor nodes the centralized approach will be to
send the data vectors to the base station (usually connected through a wireless network)
and then compare the vectors using whatever metric is appropriate for the domain. This
does not scale up in large sensor networks since data transmission consumes a lot of bat-
tery power and heavy data transmission over limited bandwidth channel may produce
poor response time. Distributed data mining technology offers more efficient solutions
in such applications. The following discussion illustrates the power of DDM algorithms
using a simple randomized technique for addressing this sensor network-related prob-
lem.

Given vectors a = (a1; : : : ; am)T and b = (b1; : : : ; bm)T at two distributed sites
A and B, respectively, we want to approximate the Euclidean distance between them
using a small number (compared to m) of messages between A and B. Note that the
problem of computing the Euclidean distance between a pair of data tuples a and b

can be represented as the problem of computing the inner products between them as
follows:

d2e(a; b) =< a;a > + < b; b > �2 < a; b >

where d2e(a; b) denotes the Euclidean distance between a and b; < a; b > rep-
resents the inner product between a and b, defined as

Pm
i=1 aibi. Therefore, the core

challenge is to develop an algorithm for distributed inner product computation. One can
approach this problem in several ways. Algorithm 2.0.1 is a simple, communication-
efficient randomized technique for computing the inner product between two vectors
observed at two different sites.

Algorithm 2.0.1 Distributed Dot Product Algorithm(a; b)
1: A sends B a random number generator seed. [1 message]
2: A and B cooperatively generate k � m random matrix R where k � m. Each entry is

generated independently and identically from some fixed distribution with mean zero
and finite variance. A and B compute â = Ra, b̂ = Rb, respectively.

3: A sends â to B. [k messages]
4: B computes D = âT b̂

k
.

So instead of sending am-dimensional vector to the other site, we only need to send
a k-dimensional vector where k � m (a user-defined parameter) and the dot product
can still be estimated accurately. Indeed, it can be shown that the expected value of D
is < a; b > and Figure 1 shows some experimental results concerning accuracy.

This algorithm illustrates a simple communication-efficient way to compare a pair
of data vectors observed at two different nodes. It potentially offers a building block to
support the collaborative object identification and tracking problem in sensor networks
where the centralized solution does not work because of limited bandwidth and power
supply for the sensor nodes.

k Mean Var Min Max
100(1%) 0.1483 0.0098 0.0042 0.3837
500(5%) 0.0795 0.0035 0.0067 0.2686
1000(10%) 0.0430 0.0008 0.0033 0.1357
2000(20%) 0.0299 0.0007 0.0012 0.0902
3000(30%) 0.0262 0.0005 0.0002 0.0732

Fig. 1. Relative errors in computing the dot product between two synthetic binary vectors each
with 10000 elements. k is the number of randomized iterations. k is also represented as the per-
centage of the size of the original vectors. Each entry of the random matrix is chosen indepen-
dently from U(1,-1).

Privacy of the data can be another reason for adopting the DDM technology. In many
applications, particularly in security-related applications, data is privacy-sensitive (con-
fidential). As such, centralizing the distributed data sets is not acceptable. Therefore,
data mining applications in such domains must analyze data in a distributed fashion
without having to first down-load everything to a single site. Furthermore, these appli-
cations must pay careful attention to the amount and type of information revealed to
each site about the other sites’ data. In some cases, strict privacy requirements must be
met, namely, no information regarding other sites’ data can be obtained beyond that of
the analysis output e.g. the decision tree learned. Privacy preserving data mining has
emerged in the last five years to address these needs.

3 Distributed Data Mining: A Brief Overview

Data mining [20], [21], [22],and [61] deals with the problem of analyzing data in scal-
able manner. DDM is a branch of the field of data mining that offers a framework to
mine distributed data paying careful attention to the distributed data and computing
resources.

In the DDM literature, one of two assumptions is commonly adopted as to how
data is distributed across sites: homogeneously (horizontally partitioned) and heteroge-
neously (vertically partitioned). Both viewpoints adopt the conceptual viewpoint that
the data tables at each site are partitions of a single global table. In the homogeneous
case, the global table is horizontally partitioned. The tables at each site are subsets of the
global table; they have exactly the same attributes. In the heterogeneous case the table
is vertically partitioned, each site contains a collection of columns (sites do not have
the same attributes). However, each tuple at each site is assumed to contain a unique
identifier to facilitate matching. It is important to stress that the global table viewpoint

is strictly conceptual. It is not necessarily assumed that such a table was physically
realized and partitioned to form the tables at each site. Figures 2 and 3 illustrate the ho-
mogeneously distributed case using an example from weather data. Both tables use the
same set of attributes. On the other hand, Figures 4 and 5 illustrate the heterogeneously
distributed case. The tables have different attributes and tuples are linked through a
unique identifier, Timestamp.

The development of data mining algorithms that work well under the constraints
imposed by distributed datasets has received significant attention from the data mining
community in recent years. The field of DDM has emerged as an active area of study.
The bulk of DDM methods in the literature operate over an abstract architecture which
includes multiple sites having independent computing power and storage capability. Lo-
cal computation is done on each of the sites and either a central site communicates with
each distributed site to compute the global models or a peer-to-peer architecture is used.
In the latter case, individual nodes might communicate with a resource rich centralized
node, but they perform most of the tasks by communicating with neighboring nodes by
message passing over an asynchronous network. For example, the sites may represent
independent sensor nodes which connect to each other in an ad-hoc fashion.

Some features of a distributed scenario where DDM is applicable are as follows.

1. The system consist of multiple independent sites of data and computation which
communicate only through message passing.

2. Communication between the sites is expensive.
3. Sites have resource constraints e.g. battery power.
4. Sites have privacy concerns.

Typically communication is a bottleneck. Since communication is assumed to be carried
out exclusively by message passing, a primary goal of many DDM methods in the
literature is to minimize the number of messages sent. Some methods also attempt to
load-balance across sites to prevent performance from being dominated by the time
and space usage of any individual site. As pointed out in [47], “Building a monolithic
database, in order to perform non-distributed data mining, may be infeasible or simply
impossible” in many applications. The cost of transferring large blocks of data may be
prohibitive and result in very inefficient implementations.

Surveys [31] and [45] provide a broad, up-to-date overview of DDM touching on is-
sues such as: clustering, association rule mining, basic statistics computation, Bayesian
network learning, classification, the historical roots of DDM. The collection [30] de-
scribes a variety of DDM algorithms (association rule mining, clustering, classification,
preprocessing, etc.), systems issues in DDM (security, architecture, etc.), and some top-
ics in parallel data mining. Survey [63] discusses parallel and distributed association
rule mining in DDM. Survey [64] discusses a broad spectrum of issues in DDM and
parallel data mining and provides a survey of distributed and parallel association rule
mining and clustering. Many of the DDM applications [52, 32] deal with continuous
data streams. Therefore, developing DDM algorithms that can handle such stream sce-
narios is becoming increasingly important. An overview of the data stream mining lit-
erature can be found elsewhere [4].

City Humidity Temperature Rainfall

Baltimore 10% 23� F 0 in.
Annapolis 13% 43� F 0.2 in.
Bethesda 56% 67� F 1 in.

Glen Burnie 88% 88� F 1.2 in.

Fig. 2. Homogeneously distributed weather data at site 1

City Humidity Temperature Rainfall

San Jose 12% 69� F 0.3 in.
Sacramento 18% 53� F 0.5 in.
Los Angeles 86% 72� F 1.2 in.
San Diego 8% 58� F 0 in.

Fig. 3. Homogeneously distributed weather data at site 2

Timestamp Humidity Temperature Rainfall

t0 10% 23� F 0 in.
t1 13% 43� F 0.2 in.
t2 56% 67� F 1 in.
t3 88% 88� F 1.2 in.

Fig. 4. Heterogeneously distributed weather data

Timestamp Body Temp. Heart Rate

t0 98:5� F 60 bpm
t1 98:8� F 70bpm
t2 99� F 75 bpm
t3 99:3� F 80 bpm

Fig. 5. Heterogeneously distributed health data

3.1 Privacy Preserving Data Mining

Privacy plays an important role in DDM as some participants may wish to not share
their data, but still participate in DDM. Next we briefly review PPDM providing a high
level overview of the field. For detailed literature survey of PPDM, we refer the reader
to [60]. Moreover, in Section 4, we provide a detailed survey of privacy-preserving
distributed clustering.

One of the earliest discussions about privacy in the context of data mining can be
found in [7]. Most recent efforts addressing the privacy issue in data mining include the
sanitation, data distortion approaches and cryptographic methods.

Sanitation: These approaches aim to modify the dataset so that sensitive patterns
cannot be mined. They were developed primarily to handle privacy in association rule

mining. Techniques were developed by Atallah et al. [2] and Dasseni et al. [9]. Their
basic idea is to remove or modify items in a database to reduce or increase the support
of some frequent itemsets. By doing so, the data owner expects to hide some sensitive
frequent itemsets with as little as possible impact on other non-sensitive frequent item-
sets. Further developments of this technique can be found in [50], [51], [43], [26], and
[6].

Data distortion: These approaches (also called data perturbation or data random-
ization) provides privacy for individual data records through modification of the original
data. These techniques aim to design distortion methods after which the true value of
any individual record is difficult to ascertain, but ”global” properties of the data re-
main largely unchanged. For example, the use of random noise on market basket data is
studied in [48], [14], and [15]. The authors argue that individual transactions are diffi-
cult to recover but frequent itemsets remain largely unchanged. Data distortion has also
been applied to decision tree based classification [1], among other places. However,
one weakness of using data distortion for preserving data privacy is that under certain
conditions randomization does not prevent an attacker from reconstructing original data
with reasonably high probability [29, 33].

Cryptographic Methods: These apply techniques from cryptography to carry out
a data mining task and provably not reveal any information regarding the original data
except that which can be inferred from the task output. Secure Multi-Party Computa-
tion (SMC) offers an assortment of basic tools for allowing multiple parties to jointly
compute a function on their inputs while learning nothing except the result of the func-
tion. A survey of such tools can be found in [46, 5]. Application of SMC can be found,
for example, in [29], [58], [57](association rule mining) and [39] and [11] (decision-
tree based data classification). However, the primary weakness of SMC based methods
is their high communication and computational costs – a problem made worse by the
typically large data sets often encountered in data mining.

3.2 Our Focus: Distributed Clustering

Instead of looking at the broad spectrum of DDM algorithms, we restrict ourselves
to distributed clustering methods and their applicability in MAS. In the next section
we provide a detailed survey of distributed clustering algorithms that have appeared in
the data mining literature. The survey is organized into two broad categories: efficiency
focused and privacy focused. Efficiency focused algorithms strive to increase communi-
cation and/or computational efficiency. While in some cases they can offer nice privacy
preservation, this is not their primary goal. Privacy focused algorithms hold privacy
maintenance as their primary goal. While they also try to maximize communication
and computational efficiency, they first preserve privacy.

Section 5 describes an application domain for efficiency focused algorithms, sen-
sor networks with a peer-to-peer communication architecture. It identifies some of the
constraints in clustering data in such environments, offers a perspective of the existing
distributed clustering algorithms in the context of this particular application, and points
out areas that require further research.

Sections 6 and 7 address privacy issues. Unlike the previous section, however, chal-
lenges from an application domain are not described. Instead, a new privacy preserving
algorithm for density based clustering is presented.

4 Survey of Distributed Clustering Algorithms

We first describe efficiency focused algorithms, then privacy focused. Efficiency fo-
cused algorithms are further classified into two sub-categories. The first consists of
methods requiring multiple rounds of message passing. These methods require a signif-
icant amount synchronization. The second sub-category consists of methods that build
local clustering models and transmit them to a central site (asynchronously). The cen-
tral site forms a combined global model. These methods require only a single round of
message passing, hence, modest synchronization requirements.

4.1 Efficiency Focused: Multiple Communication Round

Dhillon and Modha [10] develop a parallel implementation of the K-means clustering
algorithm on distributed memory multiprocessors (homogeneously distributed data).
The algorithm makes use of the inherent data parallelism in the K-means algorithm.
Given a dataset of size n, they divide it into P blocks, (each of size roughly n=P). Dur-
ing each iteration ofK-means, each site computes an update of the currentK centroids
based on its own data. The sites broadcast their centroids. Once a site has received all
the centroids from other sites it can form the global centroids by averaging.

Forman and Zhang [19] take an approach similar to the one presented in [10], but
extend it to K-harmonic means. Note that the methods of [10] and [19] both start by
partitioning and then distributing a centralized data set over many sites. This is different
than the setting we consider: the data is never centralized – it is inherently distributed.
However, their ideas are useful for designing algorithms to cluster homogeneously dis-
tributed data.

Kargupta et al. [34] develop a collective principle components analysis (PCA)-
based clustering technique for heterogeneously distributed data. Each local site per-
forms PCA, projects the local data along the principle components, and applies a known
clustering algorithm. Having obtained these local clusters, each site sends a small set
of representative data points to a central site. This site carries out PCA on this collected
data (computes global principal components). The global principle components are sent
back to the local sites. Each site projects its data along the global principle components
and applies its clustering algorithm. A description of locally constructed clusters is sent
to the central site which combines the cluster descriptions using different techniques
including but not limited to nearest neighbor methods.

Klusch et al. [36] consider kernel-density based clustering over homogeneously
distributed data. They adopt the definition of a density based cluster from [23] data
points which can be connected by an uphill path to a local maxima, with respect to the
kernel density function over the whole dataset, are deemed to be in the same cluster.
Their algorithm does not find a clustering of the entire dataset. Instead each local site
finds a clustering of its local data based on the kernel density function computed over all

the data. In principle, their approach could be extended to produce a global clustering by
transmitting the local clusterings to a central site and then combining them. However,
carrying out this extension in a communication efficient manner is non-trivial task and
is not discussed by Klusch et al.

An approximation to the global, kernel density function is computed at each site
using sampling theory from signal processing. The sites must first agree upon a cube
and a grid (of the cube). Each corner point can be thought of as a sample from the space
(not the data set). Then each site computes the value of its local density function at
each corner of the grid and transmits the corner points along with their local density
values to a central site. The central site computes the sum of all samples at each grid
point and transmits the combined sample grid back to each site. The local sites can
now independently estimate the global density function over all points in the cube (not
just the corner points) using techniques from sampling theory in signal processing. The
local sites independently apply a gradient-ascent based density clustering algorithm to
arrive at a clustering of their local data.

Eisenhardt et al. [13] develop a distributed method for document clustering (hence
operates on homogeneously distributed data). They extendK-means with a “probe and
echo” mechanism for updating cluster centroids. Each synchronization round corre-
sponds to a K-means iteration. Each site carries out the following algorithm at each it-
eration. One site initiates the process by marking itself as engaged and sending a probe
message to all its neighbors. The message also contains the cluster centroids currently
maintained at the initiator site. The first time a node receives a probe (from a neighbor
site p with centroidsCp), it marks itself as engaged, sends a probe message (along with
Cp) to all its neighbors (except the origin of the probe), and updates the centroids in
Cp using its local data as well as computing a weight for each centroid based on the
number of data points associated with each. If a site receives an echo from a neighbor
p (with centroids Cp and weights Wp), it merges Cp and Wp with its current centroids
and weights. Once a site has received either a probe or echo from all neighbors, it sends
an echo along with its local centroids and weights to the neighbor from which it re-
ceived its first probe. When the initiator has received echos from all its neighbors, it has
the centroids and weights which take into account all datasets at all sites. The iteration
terminates.

While all algorithms in this section require multiple rounds of message passing, [34]
and [36] require only two rounds. The others require as many rounds as the algorithm
iterates (potentially many more than two).

4.2 Efficiency Focused: Centralized Ensemble-Based

Many of the distributed clustering algorithms work in an asynchronous manner by first
generating the local clusters and then combining those at the central site. These ap-
proaches potentially offer two nice properties in addition to lower synchronization re-
quirements. If the local models are much smaller than the local data, their transmission
will result is excellent message load requirements. Moreover, sharing only the local
models may be a reasonable solution to privacy constraints in some situations; indeed,
a trade-off between privacy and communication cost is for one particular algorithm is
discussed in Section 4.3.

We present the literature in chronological order. Some of the methods were not
explicitly developed for distributed clustering, rather for combining clusterings in a
centralized setting to produce a better overall clustering. In these cases we discuss how
well they seem to be adaptable to a distributed setting.

Johnson and Kargupta [12] develop a distributed hierarchical clustering algorithm
on heterogeneously distributed data. It first generates local cluster models and then
combines these into a global model. At each local site, the chosen hierarchical cluster-
ing algorithm is applied to generate local dendograms which are then transmitted to a
central site. Using statistical bounds, a global dendogram is generated.

Lazarevic et al. [38] consider the problem of combining spatial clusterings to pro-
duce a global regression-based classifier. They assume homogeneously distributed data
and that the clustering produced at each site has the same number of clusters. Each lo-
cal site computes the convex hull of each cluster and transmits the hulls to a central site
along with regression model for each cluster. The central site averages the regression
models in overlapping regions of the hulls.

Samatova et al. [49] develop a method for merging hierarchical clusterings from
homogeneously distributed, real-valued data. Each site produces a dendogram based on
local data, then transmits it to a central site. To reduce communication costs,they do not
send a complete description of each cluster in a dendogram. Instead an approximation
of each cluster is sent consisting of various descriptive statistics e.g. number of points
in the cluster, average square Euclidean distance from each point in the cluster to the
centroid. The central site combines the dendogram descriptions into a global dendogram
description.

Strehl and Ghosh [54] develop methods for combining cluster ensembles in a cen-
tralized setting. They argue that the best overall clustering maximizes the average nor-
malized mutual information over all clusters in the ensemble. However, they report that
finding a good approximation directly is very time-consuming. Instead they develop
three more efficient algorithms which are not theoretically shown to maximize mutual
information, but are empirically shown to do a decent job. Given n data points and N
clusterings (clustering i has ki clusters), consider an n � (

PN
i=1 ki) matrix H con-

structed by concatenating the collection of n� ki matrices Hi for each clustering. The
(`; j) entry ofHi is one if data point ` appears in cluster j in clustering i, otherwise zero.
One algorithm simply applies any standard similarity based clustering over the follow-
ing similarity matrix HHT

N
. The (p; q) entry is the fraction of clusterings in which data

point p and q appear in the same cluster. The other two algorithms apply hyper-graph
based techniques where each column of H is regarded as a hyperedge.

In principle, Strehl and Ghosh’s ideas can be readily adapted to heterogeneously
distributed data (they did not explicitly address this issue). Each site builds a local
clustering, then a centralized representation of theH matrix is constructed. To compute
H directly, each site sends Hi to a central site. This, however, likely will involve too
much communication on datasets with large numbers of tuples (n) becauseHi is n�ki.
For Strehl and Ghosh’s ideas to be adapted to a distributed setting, the problem of
constructing an accurate centralized representation of H using few messages need be
addressed.

Fred and Jain [18] report a method for combining clusterings in a centralized set-
ting. Given N clusterings of n data points, their method first constructs an n � n,
co-association matrix (the same as HHT

N
as described in [54]). Next a merge algorithm

is applied to the matrix using a single link, threshold, hierarchical clustering technique.
For each pair (i; j) whose co-association entry is greater than a predefined threshold,
merge the clusters containing these points.

In principal Fred and Jain’s approach can be adapted to heterogeneously distributed
data (they did not address the issue). Each site builds a local clustering, then a central-
ized co-association matrix is built from all clusterings Like Strehl and Ghosh’s ideas;
in order for Fred and Jain’s approach to be adapted to a distributed setting, the problem
of building an accurate co-association matrix in a message efficient manner must be
addressed.

Jouve and Nicoloyannis [27] also develop a technique for combining clusterings.
They use a related but different approach than those described earlier. They reduce the
problem of combining clusterings to that of clustering a centralized categorical data
matrix built from the clusterings and apply a categorical clustering algorithm (KER-
OUAC) of their own. The categorical data matrix has dimensions n�N and is defined
as follows. Assume clustering 1 � i � N has clusters labeled 1; 2; : : : ; ki. The (j; i)
entry is the label of the cluster (in the ith clustering) containing data point j. The KER-
OUAC algorithm does not require the user to specify the number of clusters desired
in the final clustering. Hence, Jouve and Nicoloyannis’ method does not require the
desired number of clusters in the combined clustering to be specified.

Like the approaches in [54] and [18], Jouve and Nicoloyannis’ technique can be
readily adapted to heterogeneously distributed data. A centralized categorical data ma-
trix is built from the local clusterings, then the central site applies KEROUAC (or any
other categorical data clustering algorithm). However, the problem of building an accu-
rate matrix in a message efficient manner must be addressed (despite the fact that their
title contains “Applications for Distributed Clustering”, they did not address the issue).

Topchy et al. [56] develop an intriguing approach based on combining many weak
clusterings in a centralized setting. One of the weak clusterings used projects the data
onto a random, low-dimensional space (1-dimensional in their experiments) and per-
formsK-means on the projected data. Then, several methods for combining clusterings
are used based on finding a new clustering with minimum sum “difference” between
each of the weak clusterings (including methods from [54]). His idea does not seem di-
rectly applicable to a distributed setting where reducing message communication is the
central goal. Hence, the work saved at each site by producing a weak clustering is not of
much importance. However, he discusses several new ideas for combining clusterings
which are of independent interest. For example, he shows that when using generalized
mutual information, maximizing the average normalized mutual information consensus
measure of Strehl and Ghosh is equivalent to minimizing a square-error criterion.

Merugu and Ghosh [40] develop a method for combining generative models pro-
duced from homogeneously distributed data (a generative model is a weighted sum of
multi-dimensional probability density functions i.e. components). Each site produces a
generative model from its own local data. Their goal is for a central site to find a global
model from a pre-defined family (e.g. multivariate, 10 component Gaussian mixtures).

which minimizes the average Kullback-Leibler distance over all local models. They
prove this to be equivalent to finding a model from the family which minimizes the KL
distance from the mean model over all local models (point-wise average of all local
models).

They assume that this mean model is computed at some central site. Finally the
central site computes an approximation to the optimal model using an EM-style algo-
rithm along with Markov-chain Monte-carlo sampling. They did not discuss how the
centralized mean model was computed. But, since the local models are likely to be con-
siderably smaller than the actual data, transmitting the models to a central site seems to
be a reasonable approach. They also discuss the privacy implications of this algorithm.
We summarize their discussion in Section 4.3.

Januzaj et al. [25] extend a density-based centralized clustering algorithm, DB-
SCAN, by one of the authors to a homogeneously distributed setting. Each site car-
ries out the DBSCAN algorithm, a compact representation of each local clustering is
transmitted to a central site, a global clustering representation is produced from local
representations, and finally this global representation is sent back to each site. A clus-
tering is represented by first choosing a sample of data points from each cluster. The
points are chosen such that: (i) each point has enough neighbors in its neighborhood
(determined by fixed thresholds) and (ii) no two points lie in the same neighborhood.
ThenK-means clustering is applied to all points in the cluster, using each of the sample
points as an initial centroid. The final centroids along with the distance to the furthest
point in theirK-means cluster form the representation (a collection point, radius pairs).
The DBSCAN algorithm is applied at the central site on the union of the local repre-
sentative points to form the global clustering. This algorithm requires an � parameter
defining a neighborhood. The authors set this parameter to the maximum of all the
representation radii.

Methods [25], [40], and [49] are representatives of the centralized ensemble-based
methods. These algorithms focus on transmitting compact representations of a local
clustering to a central site which combines to form a global clustering representation.
The key to this class of methods is in the local model (clustering) representation. A
good one faithfully captures the local clusterings, requires few messages to transmit,
and is easy to combine.

Both the ensemble approach and the multiple communication round-based cluster-
ing algorithms usually work a lot better than their centralized counterparts in a dis-
tributed environment. This is well documented in the literature. While, the DDM tech-
nology requires further advancement for dealing with peer-to-peer style and hetero-
geneous data, the current collection of algorithms offer a decent set of choices. The
following section organizes the distributed clustering algorithms based on the data dis-
tribution (homogeneous vs. heterogeneous) they can handle.

4.3 Privacy Focused

Klusch et al. [35], [36] develop the KDEC Scheme for kernel-based distributed clus-
tering. Each site transmits the local density estimate to a helper site, which builds a
global density estimate and sends it back to the peers. Using the global density estimate
the sites can execute locally a density-based clustering algorithm. Due to fact that only

sample of the local densities are shared, a degree of privacy is maintained. This issue is
further discussed in [8].

The paper by Merugu and Ghosh [40] described in Section 4.2 also discussed pri-
vacy. Recall, their algorithm outputs a global modelF from a predefined fixed family of
models e.g. multivariate, 10 component Gaussian mixtures. The global model approxi-
mates the underlying probability model that generated the global dataset Z. Assuming
elements of Z are drawn independently, the average log-likelihood of Z given F is

AL(ZjF) =
P

z2Z
log2(Pr(zjF)

jZj : They define privacy as P (Z; F) = 2�AL(ZjF). Intu-
itively, the larger the likelihood that the data was generated by the global model, the
less privacy is retained. If the predefined family has a very large number of mixture
components then the privacy is likely to be low.

Vaidya and Clifton [59] develop a privacy-preserving K-means algorithm on het-
erogeneously distributed data using cryptographic techniques. They offer a proof that
each site does not learn anything beyond its part of each cluster centroid and the cluster
assignment of all points at each iteration. The key problem faced at each iteration is
securely assigning each point to its nearest cluster. Since each site owns a part of each
tuple (which must remain private), this problem is non-trivial. It is solved by applying
the following algorithm for each point x (assuming r � 3 sites).

Let xj and �ij be the portions of x and the ith centroid at the jth site, respectively.
Let �!y j be the length K vector where yij is the distance between xj and �ij . The prob-
lem boils down to securely computing argminKi=1f

Pr
j=1 y

i
jg. Site 1 computes random

vectors (length K) �!v 1; : : : ;�!v r whose sum is zero and, �, a random permutation of
f1; : : : ;Kg. For each 2 � j � r, site 1 then engages in a secure algorithm allowing site
j to compute �(�!v j +�!y j). At the end of this algorithm site 1 does not know anything
new and site 2 does not know � or �!v j . This algorithm uses homomorphic encryption
to achieve security. Next, sites 1; 3; : : : ; r � 1 send �(�!v j +�!y j) to site r. Site r sums
these vectors with its own (note site r does not know the vector at site 2). Now site r
and site 2 uses SMC to securely determine the index ` of the minimum entry of vectorPr

j=1 �(
�!v j+�!y j). Now site 2 knows the minimum distance but not to which centroid

it corresponds (due to the permutation known only to site 1). Site 2 sends ` to site 1,
which then broadcasts ��1(`) to all sites i.e. the closest centroid.

Note that above we limited our discussion to privacy-preserving algorithms for
which multiple sites compute a clustering in a distributed manner. We did not include
data transformation based approaches where a data owner transforms a dataset and al-
lows it to be download by others who then perform clustering in a centralized manner.
The reader is referred to [42], [44] for two example of this approach.

4.4 Homogeneous vs. Heterogeneous Clustering Literature

A common classification of DDM algorithms in the literature is: those which apply
to homogeneously distributed (horizontally partitioned) or heterogeneously distributed
(vertically partitioned) data. To help the reader sort out the clustering methods we have
described, we present the six-way classification seen in Figure 6.

Homogeneous Heterogeneous

Centralized [25], [38], [12], [18],
Ensemble [40], [49] [27], [54]
Multiple [10], [13], [19], [34]

Rounds of [36]
Communication

Privacy [35], [40] [59]
Preserving

Fig. 6. Six-way clustering algorithms classification

5 Sensor Networks, Distributed Clustering, and Multi-Agent
Systems

Sensor networks are finding increasing number of applications in many domains, in-
cluding battle fields, smart buildings, and even the human body. Most sensor networks
consist of a collection of light-weight (possibly mobile) sensors connected via wire-
less links to each other or to a more powerful gateway node that is in turn connected
with an external network through either wired or wireless connections. Sensor nodes
usually communicate in a peer-to-peer architecture over an asynchronous network. In
many applications, sensors are deployed in hostile and difficult to access locations with
constraints on weight, power supply, and cost. Moreover, sensors must process a contin-
uous (possibly fast) stream of data. The resource-constrained distributed environments
of the sensor networks and the need for collaborative approach to solve many of the
problems in this domain make multi-agent systems-architecture an ideal candidate for
application development. For example, a multi-agent sensor-network application utiliz-
ing learning algorithms is reported in [52]. This work reports development of embedded
sensors agents used to create an integrated and semi-autonomous building control sys-
tem. Agents embedded on sensors such as temperature and light-level detectors, move-
ment or occupancy sensors are used in conjunction with learning techniques to offer
smart building functionalities. The peer-to-peer communication-based problem solving
capabilities are important for sensor networks and there exists a number of multi-agent
system-based different applications that explored these issues. Such systems include:
an agent based referral system for peer-to-peer(P2P) file sharing networks [62], and
an agent based auction system over a P2P network [41]. A framework for developing
agent based P2P systems is described in [3]. Additional work in this area can be found
elsewhere [52, 53, 16]. The power of multi-agent-systems can be further enhanced by
integrating efficient data mining capabilities and DDM algorithms may offer a better
choice for multi-agent systems since they are designed to deal with distributed systems.

Clustering algorithms may play an important role in many sensor-network-based
applications. Segmentation of data observed by the sensor nodes for situation aware-
ness, detection of outliers for event detection are only a few examples that may require
clustering algorithms. The distributed and resource-constrained nature of the sensor-
networks demands a fundamentally distributed algorithmic solution to the clustering

problem. Therefore, distributed clustering algorithms may come in handy [32] when it
comes to analyzing sensor network data or data streams.

Clustering in sensor networks offers many challenges, including:

1. limited communication bandwidth,
2. constraints on computing resources,
3. limited power supply,
4. need for fault-tolerance, and
5. asynchronous nature of the network.

Distributed clustering algorithms for this domain must address these challenges.
The algorithms discussed in the previous section addresses some of the issues listed
above. For example, most of these distributed clustering algorithms are lot more com-
munication efficient compared to their centralized counterparts. There exists several ex-
act distributed clustering algorithms, particularly for homogeneous data. In other words,
the outcome of the distributed clustering algorithms are provably same as that of the
corresponding centralized algorithms. For heterogeneous data, the number of choices
for distributed clustering algorithms is relatively limited. However, there do exist sev-
eral techniques for this latter scenario. Most of the distributed clustering algorithms are
still in the domain of academic research with a few exceptions. Therefore, the scala-
bility properties of these algorithms are mostly studied for moderately large number
of nodes. Although the communication-efficient aspects of these distributed clustering
algorithms help addressing the concerns regarding restricted bandwidth and power sup-
ply, the need for fault-tolerance and P2P communication-based algorithmic approach
are yet to be adequately addressed in the literature.

The multiple communication round-based clustering algorithms described in Sec-
tion 4 involve several rounds of message passing between nodes. Each round can be
thought of as a node synchronization point (multiple sensor synchronizations are re-
quired). This may not go very well in a sensor network-style environment.

Centralized ensemble-based algorithms provide us with another option. They do not
require global synchronization nor message passing between nodes. Instead, all nodes
communicate a model to a central node(which combines the models). In absence of a
central controlling site one may treat a peer as a central combiner and then apply the
algorithms. We can envision a scenario in which an agent at a sensor node initiates the
clustering process and as it is the requesting node, it performs the process of combining
the local cluster models received from the other agents. However, most of the cen-
tralized ensemble-based method algorithms are not specifically designed to deal with
stream data. This is a good direction for future research. Algorithms such as [25], [40],
[49] deal with the limited communication issue by transmitting compact, lossy models
(rather than complete specifications of the clusterings), which may be necessary for a
sensor-network-based application.

6 Confidentiality Issues in Distributed Data Clustering

As discussed in Section 3.1, privacy issues can play an important role in DDM. In an
agent-based scenario, we emphasize the privacy threat of data inference carried out by
potentially colluding agents.

The inference problem involves one, possible several adversaries which try to re-
construct hidden data by drawing inferences based on known information. The prob-
lem is difficult because inference channels are not easy to detect and currently has no
known general solution. The problem was first studied in statistical databases and secure
multi-level databases [17]. Many approaches for the inference control were developed
including based on security constraints, conceptual structures, and logic [24, 55, 17].

In a open agent system peers may collude. In general collusion is difficult to detect
and is a powerful form of attack. Therefore, we also consider collusion in our discussion
to follow

Definition 1 (Malicious Peers and Collusion). Denote L = fLj j 1 � j � pg a
group of p peers. A peer Lk is said to be malicious if it tries to learn information about
the data sets Dj , k 6= j. A collusion group C � L is a group of malicious peers trying
to learn about Dj from Lj 2 L n C.

In the following we assume that the above mentioned issues are potential threats in
distributed data clustering (DDC) system. In general, distributed data mining algorithms
require that the sites share local information, such as data summaries or even raw data,
to build up a global data mining result. Since we are assuming a peer-to-peer model, the
problem becomes: how to perform DDC without compromising confidentiality of local
data in each peer, even with collusion of part of the group?

6.1 Confidentiality Measure

Our starting point is the definition of a confidentiality measure, which could be used
in our underling DDM model. Intuitively a measure of confidentiality in a distributed
data mining context has to quantify the difficulty for one mining peer to disclose the
confidential information owned by other peers. In general, the critical point in a dis-
tributed data mining algorithm, with respect to confidentiality, is the data required to be
exchanged among the peers.

One way to measure how much confidentiality some algorithm preserves, is to ask
how close one attacker can get from the original data objects. In the following we de-
fine the notion of confidentiality of data with respect to reconstruction. Considering
multidimensional data objects, we consider each dimension individually.

Definition 2 (Reconstruction precision). Let L be a group of peers, each of them with
a local set of data objects Dj = fxi j i = 1; : : : ; Ng � R

n , with x
(d)
i denoting the

d-th component of xi. Let A be some DDC algorithm executed by the members of L.
Denote by R = fri j i = 1; : : : ; Ng � R

n a set of reconstructed data objects owned
by some malicious peer after the computation of the data mining algorithm, such that
ri 2 R is the reconstructed version of xi 2 Dj ,for all i. We define the reconstruction
precision of A as:

RecA(D
j ; R) = minfjx

(d)
i � r

(d)
i j : xi 2 D

j ; ri 2 R; 1 � i � N; 1 � d � ng

Definition 3 (Confidentiality in presence of collusion). Let A be a distributed data
mining algorithm.Denote Dj = fxi j i = 1; : : : ; Ng � R

n , a set of data objects
owned by peer j. Denote by Rc � R

n a set of data objects reconstructed through
collusion of c peers. We define the function ConfA : N ! R+ [f0g, which represents
RecA when c peers collude, as follows:

ConfA(c) = RecA(D
j ; Rc)

Definition 4 (Inference Risk Level in presence of collusion). Let A be a DDC algo-
rithm being executed by a group L with p peers, where c peers in L forms a collusion
group. Then we define:

IRLA(c) = 2(�ConfA(c))

One can easily verify that IRLA(c) ! 0 when ConfA(c) ! 1 and IRLA(c) ! 1
when ConfA(c) ! 0. In other words, the better the reconstruction the higher the risk.
Therefore, we can capture the informal concepts of insecure algorithm (IRLA = 1) and
secure (IRLA = 0) as well.

In the following, we propose a classification with respect to our confidentiality level
measure.

6.2 Distributed Data Mining Scenarios with Malicious Peers

Here we will define possible scenarios, with respect to the number of malicious peers,
which may occur in an distributed data mining group.

Scenario 1: Individual malicious. In this scenario we consider that each peer may act
maliciously, i.e. each peer is a potential attacker. The peers may be active attackers
or just curious (semi-honest behavior). This scenario will be denoted by c = 1.

Scenario 2: Collusion. In this scenario the malicious peers try to form a group (or
groups) of attackers, exchanging among them all necessary information to get the
victim’s data set reconstructed. This scenario will be represented by c � 2.

Since we cannot assure that a system will operate in a specific scenario, we have to
analyze our algorithm in all possible scenarios, which will imply different IRLA.

6.3 Building More Confidential Densities

In density-based DDC each peer contributes to the mining task with a local density
estimate of the local data set and not with data (neither original nor randomized). Thus,
we need a measure to indicate how much confidentiality a density estimate can provide.

As shown in [8], in some cases, knowing the inverse of the kernel function implies
reconstruction of original (confidential) data. Therefore, we look for a more confidential
way to build the density estimate, i.e. one which doesn’t allow reconstruction of data.

Definition 5. Let f : R+ [f0g ! R+ be a decreasing function and � 2 R+ be
a sampling rate. Let v 2 R

n be a vector of iso-levels5 of f , whose component v(i),
1 � i � n, is defined as follows: v(n) = f(0) and 81 � j � n; v(n�j) = f(minfz 2
Z+jf([z � 1]�) = v(n�j+1) and f([z � 1]�) > f(z�)g�). If f is strictly decreasing,
then v(i) = f([n� i]�).

Definition 6. Let f : R+ [f0g ! R be a decreasing function. Let v be a vector of
iso-levels of f . Then we define the function f;v as:

 f;v(x) =

8><
>:

0; if f(x) < v(0)

v(i); if v(i) � f(x) < v(i+1)

v(n); if v(n) � f(x)

(1)

Definitions 5 and 6 together define a step function based on the shape of some given
function f . Figure 7 shows an example of f;v applied to a Gaussian6 function with
� = 0 and � = 2, using four iso-levels and sampling rate � equal to one.

Fig. 7. f;v , where f is a Gaussian.

Lemma 1. Let � 2 R+ be a sampling interval and f1; f2 be decreasing functions
R+ [f0g ! R+ with the same iso-level vector v. Then, it follows that f1;v = f2;v.

Proof. For k = 0 we get f2(x) = f1(x � 0) and its is trivial to see that the assertion
holds. For 0 < k < � we have f2 = f1(x� k). Without loss of generality, let z > 0 be
some integer. So, f2(z � �) = f1(z � � � k) = f1([z� k=�] � �). If f1([z� 1] � �) = a >
f1(z � �) = b then we have f1;v(z � �) = a. Since z � 1 < z � k=� < z, and since f1
is decreasing, f1([z� 1] � �) = a > f1([z� k=�] � �) > b = f1(z � �). By the definition
6 we can write f1;v([z � k=�] � �) = b = f1;v(z � �)

5 iso-lines used in contour plots
6 Gaussian function is defined by f(x) = 1

�
p
2�
e�(x��)2=2�2

This lemma means that we have some ambiguity associated with the function f;v,
given some � and v, since two functions will issue the same values iso-levels around
the points close together.

With this definition we return to our problem of uncertainty of local density. Since
density estimation are additive, we can define the global density estimate, given a de-
creasing kernel functionK and bandwidth h > 0 as:

'[D](x) =

pX
j=1

'[Dj](x) (2)

where '[Dj](x) =
P

xi2Dj K(d(x;xi)
h

).
We will replace kernel K with K;v, given a sample rate � . According to Lemma

1, we should expect to localize the points in a interval not smaller than j(0; �)j, i.e. the
confidentiality will be ConfA � � . So, we will compute a rough approximation of the
local density estimate using:

X
xi2Dj

 K;v(
d(x; xi)

h
) (3)

Since K;v is a non-increasing function, we can use it as a kernel function. For
input values close to 0 the function K;v will issue the max value and for larger values
 K;v will be zero. Therefore, for points where there is a higher concentration of points,
a dense region, bigger values of ~'[Dj](x) will be computed.

The global approximation will be computed as follow:

~'[D](x) =

pX
j=1

~'[Dj](x) (4)

7 A Secure Density-Based Distributed Clustering Algorithm

The basic idea of KDEC-S is the observation that the clustering algorithm doesn’t
need the exact density estimate function but an essential approximation. The “essen-
tial approximation” in this case is a sampling of points which is as coarse as possible
to preserve data confidentiality while maintaining information to guide the clustering
process.

7.1 Basic definitions

Definition 7. Given two vectors zlow; zhigh 2 Zn, which differ in all coordinates (called
the sampling corners), we define a gridG as the filled-in cube inZn defined by zlow; zhigh.
Moreover for all z 2 G, define nz 2 N as a unique index for z (the index code of z).
Assume that zlow has index code zero.

Definition 8. Let G be a grid, and � 2 R
n be a sampling rate. We define a sampling

Sj of ~'[Dj], as:

Sj =
�
(~'[Dj](z�); z) j z 2 G; ~'[Dj](z�) > 0

	

where z� denote coordinate-wise multiplication. Similarly, the global sampling set
will be defined as:

S = f(~'[D](z�); z) j z 2 G; ~'[D](z�) > 0g

Definition 9 (Cluster-guide). A cluster guide CGi;� is a set of index codes represent-
ing the grid points forming a region with density above some threshold �:

CGi;� = fnz j ~'[D](z�) � �g

such that

8nz1 ; nz2 2 CGi;� : z1 and z2 are grid neighbors

Observe that any two cluster guides are either equal or disjoint i.e. there are no
partially overlapping guides. Let CG� denote the collection of all cluster guides. CG�

is called a complete cluster guide.

CG� = fCGi;�j i = 1; : : : ; Cg

where C is the number of clusters found using a given �.
A cluster-guideCGi;� can be viewed as a contour defining the cluster shape at level

� (an iso-line), but in fact it shows only the internal grid points and not the true border
of the cluster, which should be determined using the local data set.

7.2 Detailed description

Our algorithm has two parts: Local Peer and Helper. The local peer part of our dis-
tributed algorithm is density-based, since this was shown to be a more general approach
to clustering [23].

Initialization. The first step is the function negotiate(), which succeeds only if an
agreement on the parameters is reached.

Sampling set. Using Definition 8, each local peer builds its local sampling set and sends
it to the helper site, H.

Clustering. The clustering step (line 5 in Algorithm 7.2.1) is performed as a lookup in
the cluster-guide CG�. The function cluster() shows the details of the clustering step.
The data object x 2 Dj will be assigned to the cluster i, the cluster label of the nearest
grid point z, if nz 2 CGi;�.

Algorithm 7.2.1 Local Peer
Require:

a local data set Dj

a list of peers L and a special helper peerH;
Ensure: clusterMap;

1: negotiate(L;K; h;G; �; �);
2: Sj buildSamplingSet(K;h;Dj ; G; �; v; �);
3: send(H; Sj);
4: CG� request(H; �);
5: clusterMap cluster(CG�, Dj ; G);
6: return clusterMap

7: function CLUSTER(CG�; D
j ; G)

8: for each x 2 Dj do
9: z nearestGridPoint(x, G);

10: if nz 2 CGi;� then
11: clusterMap(x) i;
12: end if
13: end for
14: return clusterMap;
15: end function

Algorithm 7.2.2 Helper

1: fSjg receive(L);
2: S reconstructGlobalSampling(fSjg);
3: CG� buildClusterGuides(S;�);
4: send(L, CG�);

5: function BUILDCLUSTERGUIDES(S;�)
6: cg fnzj(~'[D](z�); z) 2 S; ~'[D](z�) � �g;
7: i 0;
8: Let n be any element of cg;
9: CGi;� fng;

10: while cg is not empty do
CGi;� fng [CGi;�;
cg cg n fng;

11: if 9a 2 cg such that a 2 neighbors(n) then
12: n a;
13: else
14: i++;
15: end if
16: end while
17: return CG� , the collection of all CGi;� ;
18: end function

Building Cluster-Guides. The helper first reconstructs the global sampling set from all
the local sampling sets. Note, only the grid points which appear in some local sampling
set need be considered. Next, given �, the helper uses Definition 9 to construct the clus-
ter guides CG�. Function buildClusterGuides() in Algorithm 7.2.2 shows the details
of this step.

7.3 Performance Analysis

Local Site. The computation performed by local site j has worst case time O([M j +
log(jGj)]N) where M j is the number of grid points whose ~'[Dj] density is non-zero.
Note, since ~'[Dj] has bounded support, then grid points sufficiently far away from any
point in Dj will have zero density. For datasets Dj occupying only a small portion of
the grid space, M j will be much smaller than jGj.

To build sample set Sj , the site only must examine those grid points z for which
there is a data point inDj whose distance from z� is within the support range of ~'[Dj].
This set of grid points (size M j)can be computed in time O(M jN). Then, for each of
these grid points, a linear scan ofDj will yield their density. Hence Sj can be computed
in time O(M jN). To assign each data point x in Dj to a cluster based on the cluster
guides received from the helper (function cluster), the site must determine which cluster
contains x. Assuming a constant number of clusters and log(jGj) look-up time for any
given cluster, the complexity of this step is O(log(jGj)N):

Helper. The computation carried out by the helper has worst case time complexity
O(pM) where M =

Pp
j=1M

j . Reconstructing the global sample points requires, for
each grid point occurring in some local sample, summing over all local samples. Build-
ing the cluster guide from the global sampling can be done in time O(M) provided that
the time to find all neighbors of a given point in the grid is constant.

Communication The total number of messages sent is at most O(Mp). Each site will
have at mostM sampling points to send to the helper site. A total ofMpmessages. The
helper site will need to send the cluster guide back to each site, at most Mp messages.

7.4 Security Analysis

We will use our scenarios (c = 1, and c � 2) to analyze the inference risk level of
KDEC-S (denoted IRLKDEC-S).

Lemma 2. Let L be a mining group formed by p > 2 peers, one of them being the
helper, and c < pmalicious peers form a collusion group in L. Let � 2 R be a sampling
rate. If c � 1 then IRLKDEC-S (c) � 2�� .

Proof. Assume that c = 1, and that each peer has only its local data set and the cluster-
guides he gets from the helper. The cluster-guides, which are produced by the helper,
contains only code-index representing grid points where the threshold � is reached. This
is not enough to reconstruct the original global estimation. The Helper has all sampling
points from all peers, but it has no information on the kernel nor on sampling param-
eters. Hence, the attackers can not use the inverse of Kernel function to reconstruct

the data. The best precision of reconstruction have to be based on the cluster guides.
So, one attacker may use the width of the clusters in each dimension as the best re-
construction precision. This lead to ConfKDEC-S (1) = a� , with a 2 N, since each
cluster will have at least a points spaced by � in each dimension. Hence, if c = 1 then
IRLKDEC-S (c) = 2�a� � 2�� .

Assume c � 2. Clearly, any collusion group with at least two peers, including the
helper, will produce better results than one collusion which doesn’t include the helper,
since the helper can send to the colluders the original sampling sets from each peer.
However, each sampling set Sj was formed based on the ~'[Dj] (cf. eq. (3)). Using
lemma 1 we expect to have ConfKDEC-S(c) = � . With more colluders, say c = 3,
one of them being the helper, there are no new information which could improve the
reconstruction. Hence, 8c 2 N(c > 1 ! ConfKDEC-S(c) = �). Therefore, if c � 2
then IRLKDEC-S(c) = 2�� .

Comment: In the Statistics literature, many techniques have been developed for
selecting the bandwidth parameter, h, e.g. Silverman’s rule-of-thumb, direct plug-in,
smoothed cross-validation. In our distributed setting, all of these will reveal some in-
formation regarding sites’ local data. Currently, we do not consider these in our privacy
analysis and assume that h is chosen objectively by the sites in such a way to not reveal
extra information. For example, h could be set to some fraction of a public bound on
the data range and readjusted given the algorithm results. As future work we are investi-
gating the incorporation of bandwidth selection techniques from the Statistics literature
in our privacy framework.

8 Experimental Evaluation

We conducted some experiments to evaluate how the increasing privacy (�) affects clus-
tering results.7 We used two synthetic, two-dimensional data sets. The first consists of
500 points, generated from a mixture model of four Gaussian distributions, each with
�2 = 1 in all dimensions. The second consists of 400 points. First, 200 points were
generated from a Gaussian with � = 0 and �2 = 5. Next, 200 points were generated
around the center each with radius R � N(20; 1) and angle� U(0; 2�).

We applied our algorithm to both data sets with the following parameters: band-
width h = 1,neighborhood radius fixed in 4, reference tau set to �ref = h=2, and value
of � going from 0.5 to 3.0 with step 0.1. For the Gaussian data set we used grid corners
((-15,-15), (15, 15)) and threshold � = 1:0. For the polar data set we used grid corners
((-30, -30),(30,30)) and threshold � = 0:1.

We counted the mislabeling error, considering as correct the clustering obtained
with �ref = h/2. We follow [37] and compute the clustering error as follows:

E =
2

jDj(jDj � 1)

X
xi;xj2D;i<j

eij

7 Since the goal was to measure clustering results and not communication or computational
complexity, a distributed algorithm was not necessary. All experiments involve a centralized
data set and algorithm.

Fig. 8. Gaussian Data: four clusters gener-
ated from a Gaussian mixture.

Fig. 9. Polar Data: two clusters with arbi-
trary shape.

where jDj is the size of the data set and eij is defined as:

eij =

8><
>:

0 if (c(xi) = c(xj) ^ c
0(xi) = c0(xj)) _

(c(xi) 6= c(xj) ^ c
0(xi) 6= c0(xj))

1 otherwise

with c(x) denoting the reference cluster label assigned to object x, i.e. the label found
using �ref , and c0(o) denoting the new label found with � > �ref .

Fig. 10. Clustering error bandwidth h = 1 and � ranging from 0.5 to 3.

From the tests results we see that � can be set as large as 2h with no change in
clustering results. For the Gaussian data, with h = 1, error appears just after � = 2:5
and in the polar data set, just after � = 2. The increase in error is due to the fact that
with larger � , more grid points are considered as outliers i.e. their density does not
exceed the threshold �. Since the Gaussian kernel goes to zero exponentially fast (is
nearly zero around 3h), the error ought to become large since the iso levels summation
does not reach the given threshold. Consequently the correspondent grid point is left
out from the cluster guides. A possible solution is to use adaptive thresholds or even
adaptive iso-lines. We are working on this issue.

Comment: We have left the choice of � to be made objectively by the sites so
as to not reveal any extra information. For example, � could be set very small and

increased based on the output of the algorithm. As future work we are investigating
data dependent methods for helping users tune �. For example, if K is assumed to
satisfy the conditions of a probability distribution and ~'[D] is divided by jDjhnc(K;v)
where c(v) =

R
Rn
 K;v(z)dz, the resulting function also satisfies the conditions of a

probability distribution. Hence the density at a grid point can be naturally interpreted
as a probability, thus, helping the user choose �. However, securely normalizing ~'[D]
in this way is non-trivial since jDj cannot be learned by any peer. We are investigating
secure multi-party techniques for addressing this issue.

9 Conclusions

Multi-agent systems are fundamentally designed for collaborative problem solving in
distributed environments. Many of these application environments deal with empirical
analysis and mining of data. This paper suggests that traditional centralized data mining
techniques may not work well in many distributed environments where data centraliza-
tion may be difficult because of limited bandwidth, privacy issues and/or the demand
on response time.

This paper pointed out that distributed data mining algorithms may offer a better
solution since they are designed to work in a distributed environment by paying care-
ful attention to the computing and communication resources. The paper focused on
distributed clustering algorithms. It surveyed the data mining literature on distributed
and privacy-preserving clustering algorithms. It discussed sensor networks with peer-
to-peer architectures as an interesting application domain and illustrated some of the
existing challenges and weaknesses of the DDM algorithms. It noted that while these al-
gorithms usually perform better than their centralized counter-parts on grounds of com-
munication efficiency and power consumption, there exist several open issues. Devel-
oping peer-to-peer versions of these algorithms for asynchronous networks and paying
attention to fault-tolerance are some examples. Also, this paper presents a new privacy-
preserving density based clustering algorithm (not for sensor networks).

In closing, existing pleasures of distributed clustering algorithms do provide a rea-
sonable class of interesting choices for the next generation of multi-agent systems that
may require analysis of distributed data.

Acknowledgments

C. Giannella, R. Bhargava, and H. Kargupta thank the U.S. National Science Foundation
for support through grants IIS-0329143 and IIS-0093353. They also thank Haimonti
Dutta for many useful discussions. J. Silva thanks the CAPES (Coord. de Aperfeicoa-
mento do Pessoal de Nivel Superior) of Ministry for Education of Brazil for support
through grant No. 0791/024. This article is part of the special issue of selected best
papers of the 9th international workshop on cooperative information agents (CIA 2004)
organised by Matthias Klusch, Rainer Unland, and Sascha Ossowski.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In Proc. of
the ACM SIGMOD Conference on Management of Data, pages 439–450. ACM Press, May
2000.

2. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclosure limitation
of sensitive rules. In Proceedings of 1999 IEEE Knowledge and Data Engineering Exchange
Workshop (KDEX’99), pages 45–52, Chicago,IL, November 1999.

3. Babaoglu O., Meling H., and Montresor A. Anthill: a Framework for the Development of
Agent-Based Peer-to-Peer Systems. Technical Report 9, Department of Computer Science,
University of Bologna, November 2001.

4. Babcock B., Babu S., Datar M., Motwani R., and Widom J. Models and Issues in Data
Stream Systems. In Proceedings of the 21th ACM SIGMOD-SIGACT-SIGART Symposium
on Principals of Database Systems (PODS), pages 1–16, 2002.

5. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M.Y. Zhu. Tools for privacy preserving
data mining. ACM SIGKDD Explorations Newsletter key, 4(2):28–34, 2002.

6. Chris Clifton. Using sample size to limit exposure to data mining. Journal of Computer
Security, 8(4):281–307, 2000.

7. Chris Clifton and Don Marks. Security and privacy implications of data mining. In Work-
shop on Data Mining and Knowledge Discovery, pages 15–19, Montreal, Canada, 1996.
University of British Columbia Department of Computer Science.

8. Josenildo C. da Silva, Matthias Klusch, Stefano Lodi, and Gianluca Moro. Inference at-
tacks in peer-to-peer homogeneous distributed data mining. In 16th European Conference
on Artificial Intelligence (ECAI 04), Valencia, Spain, August 2004.

9. Elena Dasseni, Vassilios S. Verykios, Ahmed K. Elmagarmid, and Elisa Bertino. Hiding
association rules by using confidence and support. Lecture Notes in Computer Science,
2137:369–??, 2001.

10. Dhillon I. and Modha D. A Data-clustering Algorithm on Distributed Memory Multiproces-
sors. In Proceedings of the KDD’99 Workshop on High Performance Knowledge Discovery,
pages 245–260, 1999.

11. Wenliang Du and Zhijun Zhan. Building decision tree classifier on private data. In Chris
Clifton and Vladimir Estivill-Castro, editors, IEEE ICDM Workshop on Privacy, Security
and Data Mining, volume 14 of Conferences in Research and Practice in Information Tech-
nology, pages 1–8, Maebashi City, Japan, 2002. ACS.

12. Johnson E. and Kargupta H. Collective, Hierarchical Clustering From Distributed, Hetero-
geneous Data. In M. Zaki and C. Ho, editors, Large-Scale Parallel KDD Systems. Lecture
Notes in Computer Science, volume 1759, pages 221–244. Springer-Verlag, 1999.

13. Eisenhardt M., Muller W., and Henrich A. Classifying Documents by Distributed P2P Clus-
tering. In Proceedings of Informatik 2003, GI Lecture Notes in Informatics, Frankfort, Ger-
many, 2003.

14. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of asso-
ciation rules. In Proceedings of 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD), Edomonton, Alberta, Canada, 2002.

15. Evfimievski A., Gehrke J., Srikant R. Limiting Privacy Breaches in Privacy Preserving Data
Mining. In Proceedings of the 2003 Symposium on the Principals of Database Systems
(PODS), 2003.

16. Farinelli A., Grisetti G., Iocchi L.,Lo Cascio S.,Nardi D. Design and Evaluation of Multi-
Agent Systems for Rescue Operations. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 4, pages 3148–3143, 2003.

17. Csilla Farkas and Sushil Jajodia. The inference problem: A survey. ACM SIGKDD Explo-
rations Newsletter, 4(2):6–11, 2002.

18. Fred A. and Jain A. Data Clustering Using Evidence Accumulation. In Proceedings of the
International Conference on Pattern Recognition 2002, pages 276–280, 2002.

19. Forman G. and Zhang B. Distributed Data Clustering Can Be Efficient and Exact. SIGKDD
Explorations, 2(2):34–38, 2000.

20. Han J. and Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufman Publish-
ers, San Francisco, CA, 2001.

21. Hand D., Mannila H., and Smyth P. Principals of Data Mining. MIT press, Cambridge,
Mass, 2001.

22. Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, Berlin, Germany, 2001.

23. Hinneburg A. and Keim D. An Efficient Approach to Clustering in Large Multimedia
Databases with Noise. In Proceedings of the 1998 International Confernece on Knowledge
Discovery and Data Mining (KDD), pages 58–65, 1998.

24. S. Jajodia and C. Meadows. Inference problems in multilevel secure database management
systems. In Marshall D. Abrams, Sushil Jajodia, and Harold J. Podell, editors, Information
Security: An Integrated Collection of Essays, chapter 24. IEEE Computer Society Press, Los
Alamitos, California, USA, 1995.

25. Januzaj E., Kriegel H.-P., and Pfeifle M. DBDC: Density Based Distributed Clustering. In
Proceedings of EDBT in Lecture Notes in Computer Science 2992, pages 88–105, 2004.

26. Tom Johnsten and Vijay V. Raghavan. A methodology for hiding knowledge in databases. In
Chris Clifton and Vladimir Estivill-Castro, editors, IEEE ICDM Workshop on Privacy, Se-
curity and Data Mining, volume 14 of Conferences in Research and Practice in Information
Technology, pages 9–17, Maebashi City, Japan, 2002. ACS.

27. Jouve P. and Nicoloyannis N. A New Method for Combining Partitions, Applications for
Distributed Clustering. In Proceedings of Workshop on Parallel and Distributed Computing
for Machine Learning as part of the 14th European Conference on Machine Learning, 2003.

28. Kahn J., Katz R., and Pister K. Mobile networking for smart dust. In ACM/IEEE Intl. Conf.
on Mobile Computing and Networking (MobiCom 99), 1999.

29. Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of association
rules on horizontally partitioned data. In The ACM SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery (DMKD’02), June 2002.

30. Kargupta H. and Chan P. (editors). Advances in Distributed and Parallel Knowledge Discov-
ery. AAAI press, Menlo Park, CA, 2000.

31. Kargupta H. and Sivakumar K. Existential Pleasures of Distributed Data Mining. In Data
Mining: Next Generation Challenges and Future Directions, edited by H. Kargupta, A. Joshi,
K. Sivakumar, and Y. Yesha, MIT/AAAI Press, 2004.

32. Kargupta H., Bhargava R., Liu K., Powers M., Blair P., and Klein M. VEDAS: A Mobile
Distributed Data Stream Mining System for Real-Time Vehicle Monitoring. In Proceedings
of the 2004 SIAM International Conference on Data Mining, 2004.

33. Kargupta H., Datta S., Wang Q., and Sivakumar K. Random Data Perturbation Techniques
and Privacy-Preserving Data Mining. Knowledge and Information Systems, 7(4):in press,
2005.

34. Kargupta H., Huang W., Sivakumar K., and Johnson E. Distributed clustering using collec-
tive principal component analysis. Knowledge and Information Systems Journal, 3:422–448,
2001.

35. Matthias Klusch, Stefano Lodi, and Gianluca Moro. Agent-based distributed data mining:
the KDEC scheme. In Matthias Klusch, Sonia Bergamaschi, Pete Edwards, and Paolo Petta,
editors, Intelligent Information Agents: the AgentLink perspective, volume 2586 of Lecture
Notes in Computer Science. Springer, 2003.

36. Klusch M., Lodi S., and Moro G. Distributed Clustering Based on Sampling Local Density
Estimates. In Proceedings of the Joint International Conference on AI (IJCAI 2003), 2003.

37. N. Labroche, N. Monmarché, and G. Venturini. A new clustering algorithm based on the
chemical recognition system of ants. In F. van Harmelen, editor, Proceedings of the 15th
European Conference on Artificial Intelligence, pages 345–349, Lyon, France, july 2002.
IOS Press.

38. Lazarevic A., Pokrajac D., and Obradovic Z. Distributed Clustering and Local Regression
for Knowledge Discovery in Multiple Spatial Databases. In Proceedings of the 8th European
Symposium on Artificial Neural Networks, pages 129–134, 2000.

39. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Lecture Notes in Com-
puter Science, 1880:36–54, 2000.

40. Merugu S. and Ghosh J. Privacy-Preserving Distributed Clustering Using Generative Mod-
els. In Proceedings of the IEEE Conference on Data Mining (ICDM), 2003.

41. Ogston E. and Vassiliadis, S. . A Peer-to-Peer Agent Auction. In First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 150–159, 2002.

42. Stanley Oliveira and Osmar R. Zaiane. Privacy preserving clustering by data transformation.
In Proc. of SBBD 2003, Manaus, AM, Brasil, 2003.

43. Stanley R. M. Oliveira and Osmar R. Zaiane. Privacy preserving frequent itemset mining. In
Chris Clifton and Vladimir Estivill-Castro, editors, IEEE ICDM Workshop on Privacy, Se-
curity and Data Mining, volume 14 of Conferences in Research and Practice in Information
Technology, pages 43–54, Maebashi City, Japan, 2002. ACS.

44. Oliveira S. and Zaïane O. Privacy-Preserving Clustering by Object Similarity-Based Repre-
sentation and Dimensionality Reduction Transformation. In Proceedings of the Workshop on
Privacy and Security Aspects of Data Mining (PSDM) as part of ICDM, pages 21–30, 2004.

45. Park B. and Kargupta H. Distributed Data Mining: Algorithms, Systems, and Applications.
In The Handbook of Data Mining, edited by N. Ye, Lawrence Erlbaum Associates, pages
341–358, 2003.

46. Benny Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD
Explorations Newsletter, 4(2):12–19, 2002.

47. Provost F. Distributed Data Mining: Scaling Up and Beyond. In Advances in Distributed
and Parallel Knowledge Discovery, edited by H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha, MIT/AAAI Press, pages 3–27, 2000.

48. Shariq J. Rizvi and Jayant R. Haritsa. Maintaining data privacy in association rule mining.
In Proceedings of the 28th VLDB – Very Large Data Base Conference, pages 682–693, Hong
Kong, China, 2002.

49. Samatova N., Ostrouchov G., Geist A., and Melechko A. RACHET: An Efficient Cover-
Based Merging of Clustering Hierarchies from Distributed Datasets. Distributed and Parallel
Databases, 11(2):157–180, 2002.

50. Yucel Saygin, Vassilios S. Verykios, and Chris Clifton. Using unknowns to prevent discovery
of association rules. ACM SIGMOD Record, 30:45–54, December 2001.

51. Yucel Saygin, Vassilios S. Verykios, and Ahmed K. Elmagarmid. Privacy preserving associ-
ation rule mining. In Reseach Issues in Data Engineering (RIDE), 2002.

52. Sharples S., Lindemann C., and Waldhorst O. A Multi-Agent Architecture For Intelligent
Building Sensing and Control. In International Sensor Review Journal, 1999.

53. Soh L.-K. and Tsatsoulis C. Reflective Negotiating Agents for Real-Time Multisensor Target
Tracking. In International Joint Conference On Artificial Intelligence, 2001.

54. Strehl A. and Ghosh J. Cluster Ensembles – A Knowledge Reuse Framework for Combining
Multiple Partitions. Journal of Machine Learning Research, 3:583–617, 2002.

55. Bhavani Thuraisingham. Data mining, national security, privacy and civil liberties. ACM
SIGKDD Explorations Newsletter, 4(2):1–5, 2002.

56. Topchy A., Jain A., and Punch W. Combining Multiple Weak Clusterings. In Proceedings
of the IEEE Conference on Data Mining (ICDM), 2003.

57. Jaideep Vaidya and Chris Clifton. Secure set intesection cardinality with application to as-
sociation rule mining, March 2003. Submited to ACM Transactions on Information and
Systems Security.

58. Jaydeep Vaidya and Chris Clifton. Privacy preserving association rules mining in vertically
partitioned data. In Proceedings of 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD), pages 639–644, Edomonton, Alberta, Canada, 2002.

59. Vaidya J. and Clifton C. Privacy-Preserving K-means Clustering Over Vertically Partitioned
Data. In Proceedings of the SIGKDD, pages 206–215, 2003.

60. V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. In SIGMOD Record, 33(1):50–57, March
2004.

61. Witten I. and Frank E. Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufman Publishers, San Fransisco, 1999.

62. Yu B. and Singh M. Emergence of Agent-Based Referral Networks. In Proceedings of
First International Joint Conference on Autonomous Agents and Multi-Agent Systems, pages
1208–1209, 2002.

63. Zaki M. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency,
7(4):14–25, 1999.

64. Zaki M. Parallel and Distributed Data Mining: An Introduction. In Large-Scale Parallel
Data Mining (Lecture Notes in Artificial Intelligence 1759), edited by Zaki M. and Ho C.-T.,
Springer-Verlag, Berlin, pages 1–23, 2000.

