5th International Semantic Service Selection Contest
– Performance Evaluation of Semantic Service Matchmakers –

Matthias Klusch (DFKI, Germany)
Birgitta König-Ries (University of Jena, Germany)
David Martin (Apple Inc., USA)
Massimo Paolucci (NTT DoCoMo Research Europe, Germany)
Abraham Bernstein (University of Zurich, Switzerland)
Ulrich Lampe (TU Darmstad, Germany)
Stefan Schulte (TU Vienna, Austria)
Terry Payne (U Liverpool, UK)

Outline

- Semantic Selection
- Evaluation Framework
- Evaluation Results & Lessons Learned

Semantic Service Selection

- **Service discovery**
 - Centralized in Web service registries (W3C SOA) or with search engines
 - Decentralized in P2P service networks

- **Semantic selection** (aka semantic matchmaking)
 1. Semantic matching of registered services S with desired service description Q
 2. Relevance ranking of S (answer set) for final selection of services by user

NO brokerage (composition, publish/subscribe negotiation, execution handling)

Shared ontology KB for semantic annotation: In/Out, Non-func params

Match(S, Q, KB)
Evaluation of Semantic Selection

(1) Support of service description languages
 - OWL-S, WSML, SAWSDL, SA-REST, USDL, hRESTS
 - Agnostic: Semantic-preserving transformations, metamodels

(2) Support of composition
 - Pruning of composition search space by selection
 - Iterative selection for forward/backward chaining

(3) Security (data privacy)

(4) Usability and configuration efforts

(5) Performance of selection
 Correctness: Precision, Recall, MAP, F1, etc.
 Speed: Average query response time
Other Evaluation Initiatives

- Comparison with other service evaluation initiatives:

<table>
<thead>
<tr>
<th></th>
<th>SWS Challenge</th>
<th>WS Challenge</th>
<th>S3 Contest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>composition</td>
<td></td>
<td>discovery</td>
</tr>
<tr>
<td></td>
<td>(given scenarios)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>-</td>
<td>runtime</td>
<td>IR measures, runtime</td>
</tr>
<tr>
<td>Usability/effort</td>
<td>adaptation effort</td>
<td>-</td>
<td>description effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cross-eval track in 2009)</td>
</tr>
<tr>
<td>Correctness</td>
<td>Alg. correctness</td>
<td></td>
<td>Retrieval correctness</td>
</tr>
</tbody>
</table>

Participants of S3 Contest 2012

Track 1 OWL-S Service Matchmakers

1. iSeM 1.1 (DFKI, Germany)
2. OWLS-MX3 (DFKI, Germany)
3. SeMa2 v2 (TU Berlin, Germany)
4. Nuwa-OWLS (URJC Madrid, Spain)
5. OWLS-iMatcher (U Zurich, Switzerland)
6. SPARQLent (HP, Italy)
7. OWLS-SLR (Aristotle U of Thessaloniki, Greece)
8. XSSD (Beihang U, China)
9. EMMA (U Seville, Spain)
10. iSeM-TSM1 (Payame Noor U, Iran / DFKI)
Service Selection By Participants in Brief

- iSeM 1.1
 - Selection: Hybrid; Signature (I/O), Specification (P/E), Service description tag
 - Logic-based matching
 - Logical I/O concept subsumption + information-theoretic valuation of approximated logical I/O concept subsumption
 - Logical P/E plugin checking (theta-subsumption)
 - Non-logic-based matching
 - Text similarity of unfolded service signatures (I/O) and service description tags,
 - Ontology-based structural I/O match - Separated filters
 - Adaptive (offline): SVM relevance classifier with coherence-based weighting scheme
 [TS = 5% OWLS-TC4] for aggregation of matching degrees with subsequent ranking
 - Dev: Patrick Kapahnke, Matthias Klusch (DFKI, Germany), 2010
Service Selection By Participants in Brief

- **iSeM-TSM1**

 Selection: *Non-logic-based; Signature (I/O), Service description tag*

 - Non-logic-based matching
 - Text similarity of unfolded service signatures (I/O) and service description tags,
 - Ontology-based structural I/O match - Separated filters

 - Dev: Elyad Alaei, Ahmad Faraahi (Payame Noor U, Iran),
 Mohammad-Reza Feizi-Derakhshi (U Tabriz, Iran)
Selection: *Hybrid; Signature (I/O), Service description text*

- **Logic-based matching:** Logical concept subsumption
- **Non-logic-based matching:**
 - Ontology-based (WordNet) structural I/O concept label match
 (I/O concept label e.g. http://foo/bar.owl#door --> label: “door“)
 - Text similarity (Cosine TF-IDF) of keywords extracted from:
 Semantic I/O concept URI fragments, labels
 Service textual description
 Service name and service URI fragment
- **Ranking:** Weighted sum of results of both matching types

Dev: Zije Cong, Alberto Fernandez (URJC Madrid, Spain)
Service Selection By Participants in Brief

- **SeMa² v2**

 - Selection: *Hybrid; Signature (I/O), Specification (P/E)*

 - **Logic-based matching:**

 - Logical I/O concept subsumption relation as numeric score
 - Logical P/E (SWRL rule) plugin matching with theta-subsumption (no ABox) + separated precondition checking over given ABox

 - **Non-logic-based matching:**

 - String matching of I/O concept names (string.equal() / .contains())
 - Structural and taxonomic matching of variable types in SWRL (P/E) rules

- **Ranking:** Linear weighted aggregation of all matching scores

- Dev: Nils Masuch (TU Berlin, Germany)
Service Selection By Participants in Brief

- **OWLS-SLR lite**
 - Selection: *Hybrid; Signature (I/O)*, *Non-functional parameters*
 - **Logic-based match:** Logical I/O concept subsumption relations as basis for ...
 - **Non-logic-based match:** ... Ontology-based structural match (edge distance, upward co-topic distance)
 - **Ranking:** Structural similarity
 - Dev: Georgios Meditskos, Nick Bassiliades (U Thessaloniki, Greece)

- **OWLS-iMatcher**
 - Selection: *Syntactic; Signature (I/O)*
 - **Non-logic-based:** Vector-based text similarities of unfolded service signatures
 - **Ranking:** Text similarity
 - Dev: Christoph Kiefer, Avi Bernstein (U Zurich, Switzerland)
Service Selection By Participants in Brief

- **OWLS-MX3**
 - Selection: *Hybrid, adaptive; Signature (I/O)*
 - Logic-based match: Logical I/O concept subsumption
 - Non-logic-based match: Text similarity of unfolded service signatures, Ontology-based structural match - Separated filters
 - Adaptive (offline): SVM relevance classifier [TS = 10% OWLS-TC3] for aggregation of (non-)logic-based matching degrees with subsequent ranking
 - Dev: Matthias Klusch, Patrick Kapahnke (DFKI, Germany)

- **SPARQLent**
 - Selection: *Logic-Based; Signature (I/O), Specification (P/E)*
 - Logic-based match: P/E described in SPARQL, I/O concepts represented as additional constraints; I/O concept match via RDF entailment rules for RDF-encoded OWL
 - Dev: Marco Luca Sbodio (Hewlett-Packard EIC, Italy)
Service Selection By Participants in Brief

- **XSSD**
 - Selection: *Hybrid; Signature (I/O), Service description tag*
 - **Logic-based match:** Logical I/O concept subsumption
 - **Non-logic-based match:** Text similarity match of service description tags
 - **Ranking:** Logic-based degree followed by text similarity-based ranking
 - Dev: Jing Li, Dongjie Chu (U Beihang, China)

- **EMMA**
 - Selection: *Logic-based semantic pre-filtering; Signature (I/O)*
 - **Logic-based pre-filtering:** SPARQL query in Jena RDF store using inference rules
 - **Hybrid match:** Based on pre-filtering using OWLS-MX3 (or other OWL-S MM plugins)
 - **Ranking:** Ranking procedure of internal OWLS-MX3 plugin
 - Dev: José María García, David Ruiz, Antonio Ruiz-Cortés (U Seville, Spain)
Participants of S3 Contest 2012

Track 2 SAWSDL Service Matchmakers

1. LOG4SWS.KOM (TU Darmstadt, Germany)
2. COV4SWS.KOM (TU Darmstadt, Germany)
3. iSeM 1.1 (DFKI, Germany)
4. SAWSDL-MX1 (DFKI, Germany)
5. URBE (Politecnico di Milano, Italy)
6. SAWSDL-iMatcher (U Zurich, Switzerland)
7. Nuwa-SAWSDL (URJC Madrid, Spain)
Service Selection By Participants

- **LOG4SWS.KOM**
 - Selection: *Hybrid; Signature (I/O), Element names*
 - **Logic-based match:** Logical I/O concept subsumption relation as numeric score
 - **Non-logic-based match:** Ontology-based structural I/O concept similarity (path length); WordNet distance (fallback strategy for missing modelReference)
 - **Adaptive (offline):** Aggregated results using Ordinary Least Squares (OLS)
 - **Ranking:** Linear weighted average similarity of matched operations

- **COV4SWS.KOM**
 - Selection: *Non-logic-based (see LOG4SWS.KOM); Signature (I/O), Element names*

Dev: Stefan Schulte, Ulrich Lampe (TU Darmstadt, Germany)
Service Selection By Participants

• **URBE**
 - Selection: *Non-logic-based; Signature (I/O)*
 - Non-logic-based match: Bipartite graph-matching of service operations; Ontology-based structural I/O concept similarity (worst-case path length in given reference ontology); Text similarity (WordNet) for property-class and XSD data type matching
 - **Ranking:** Weighted aggregation of structural and text matching scores

Dev: Pierluigi Plebani (Politecnico di Milano, Italy)

• **SAWSDL-MX1**
 - Selection: *Hybrid; Signature (I/O)*
 - Logic-based match: Logical I/O concept subsumption
 - Non-logic-based match: Text similarity of unfolded concept definitions
 - **Ranking:** Logic-based sorted by text similarities

Dev: Patrick Kapahnke, Matthias Klusch (DFKI, Germany)
• **SAWSDL-iMatcher**
 - Selection: *Non-logic-based; Signature (I/O)*
 - *Non-logic-based*: Vector-based text similarities of unfolded service signatures
 - *Ranking*: Text similarity

Dev: Dengping Wei, Avi Bernstein (U Zurich, Switzerland)

• **iSeM 1.1 for SAWSDL**
 - Selection: *Hybrid; Signature (I/O), Service name*
 - *Match*: [cf. iSeM 1.1 for OWL-S, slide 7]
 but no P/E match; uses service name instead of description tag

• **Nuwa-OWLS**
 - Selection: *Hybrid; Signature (I/O), Service description text*
Classification

• Tracks [#participants]
 - OWL-S [11]
 - SAWSDL [7]
 - hREST/WSML-lite [2]
 - Others [3]
Framework Components in Brief

- **Service retrieval test collections**
 - **Track1:** OWLS-TC 4.0
 - 1.083 services, 42 requests w/ binary & graded relevance sets, 38 ontologies
 - Groundings in WSDL 1.1, 7 domains (Communication, Economy, Education, Food, Medical Care, Travel, Military)
 - 160 services and 18 requests w/ preconditions + effects each in SWRL and PDDL2
 - @semwebcentral: 14.339 downloads (in Top-10 as of March 7, 2012)
 - **Track2:** SAWSDL-TC 3.0
 - 1.080 services, 42 requests w/ binary & graded relevance sets, 38 ontologies
 - @semwebcentral: 760 downloads (March 7 2012)
 - **Track3:** hRESTS 1.0
 - Development: DFKI, U Jena, TU Darmstadt, U Beihang, U Thessaloniki, a.o.

- **Evaluation tool:** SME² v2.2
 - Open source publicly available @semwebcentral.org since 2008: 2.816 downloads (March 7 2012)
 - Plugin interface for contested matchmakers; standard retrieval performance measures
Service Relevance

- **Relevance assessment of services**
 - Binary relevance value: Relevant (1), or Irrelevant (0)
 - Standard NTCIR 4-graded relevance scale used @TREC:

<table>
<thead>
<tr>
<th>Relevance Grade</th>
<th>Gain value</th>
<th>Intuitive Meaning of Relevance Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly relevant</td>
<td>3</td>
<td>„Perfectly satisfies request (S \equiv R)“</td>
</tr>
<tr>
<td>Relevant</td>
<td>2</td>
<td>„Relevant to request with some conditions of its conditions not satisfied (S \subset R)“</td>
</tr>
<tr>
<td>Partially relevant</td>
<td>1</td>
<td>„Helpful to satisfy request by providing related information (S \cap R \neq \emptyset, S \not\subset R)“</td>
</tr>
<tr>
<td>Not Relevant</td>
<td>0</td>
<td>„Not relevant at all (S \cap R = \emptyset)“</td>
</tr>
</tbody>
</table>

- Relevance sets defined by **union average pooling** of assessments:
 - >> Service relevant if judged relevant by *at least one* user (TREC).
 - >> Services not yet rated, or not in relevance set are irrelevant.
Evaluation Tool SME\(^2\) v2.2

Performance measures

- Macro-averaged precision@recall MAP
- Average precision AP
- Q, nDCG [Graded relevance]
- Average query response time AQRT (elapsed time per query execution)
- http-request analysis
- Precision@k, R-Precision

Easy handling

→ Load test collections +
 Select matchmaker plugin(s) +
 Configure evaluation run
→ Tailor your (printable) report of evaluation results
Evaluation Tool SME² v2.2

Implementation
- Plug-in architecture
- Implemented in Java
- XML-based matchmaker plugin & TC configuration
- Jetty web server embedded

Developed @ DFKI:
Minko Dudev
Patrick Kapahnke
Josef Misutka
Martin Vasileski
Matthias Klusch
Outline

- Semantic Selection
- Evaluation Framework
- Evaluation Results & Lessons Learned
OWL-S Selection: Average Precision (Bin)

<table>
<thead>
<tr>
<th>Matchmaker</th>
<th>AP</th>
<th>Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. iSeM 1.1</td>
<td>.922</td>
<td>DFKI, Germany</td>
</tr>
<tr>
<td>2. SeMa² v2</td>
<td>.877</td>
<td>TU Berlin, Germany</td>
</tr>
<tr>
<td>3. iSeM-TSM1</td>
<td>.861</td>
<td>Payame Noor U, Iran / DFKI</td>
</tr>
<tr>
<td>4. Nuwa-OWLS</td>
<td>.853</td>
<td>URJC Madrid, Spain</td>
</tr>
<tr>
<td>5. OWLS-MX3</td>
<td>.831</td>
<td>DFKI, Germany</td>
</tr>
<tr>
<td>6. XSSD</td>
<td>.795</td>
<td>U Beijing, PR China</td>
</tr>
<tr>
<td>7. EMMA</td>
<td>.762</td>
<td>U Seville, Spain</td>
</tr>
<tr>
<td>8. OWLS-iMatcher</td>
<td>.672</td>
<td>U Zurich, Switzerland</td>
</tr>
<tr>
<td>9. SPARQLent</td>
<td>.612</td>
<td>HP, Italy</td>
</tr>
<tr>
<td>10. OWLS-SLR (lite)</td>
<td>.609</td>
<td>Aristotle U, Greece</td>
</tr>
</tbody>
</table>

Please note: For matchmakers with more than one variant, the one with best AP is shown.
OWL-S Selection: Macro-Averaged Precision for Binary Relevance

Recall/Precision (macro-averaged)

OWLS-iMatcher (8.)
EMMA (7.)
SPARQLent (9.)
OWLS-SLR (10.)
iSeM (1.)
OWL-S Selection: Average Precision (Grad)

<table>
<thead>
<tr>
<th>Matchmaker</th>
<th>AP: nDCG</th>
<th>Matchmaker</th>
<th>AP: Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SeMa² v2</td>
<td>.927</td>
<td>1. SeMa² v2</td>
<td>.883</td>
</tr>
<tr>
<td>2. iSeM-TSM1</td>
<td>.916</td>
<td>2. iSeM-TSM1</td>
<td>.855</td>
</tr>
<tr>
<td>4. OWLS-MX3</td>
<td>.899</td>
<td>4. OWLS-MX3</td>
<td>.834</td>
</tr>
<tr>
<td>5. XSSD</td>
<td>.881</td>
<td>5. iSeM 1.1</td>
<td>.821</td>
</tr>
<tr>
<td>6. EMMA</td>
<td>.87</td>
<td>6. EMMA</td>
<td>.7884</td>
</tr>
<tr>
<td>7. iSeM 1.1</td>
<td>.841</td>
<td>7. XSSD</td>
<td>.7881</td>
</tr>
<tr>
<td>8. SPARQLent</td>
<td>.728</td>
<td>8. OWLS-iMatcher</td>
<td>.671</td>
</tr>
<tr>
<td>9. OWLS-SLR (lite)</td>
<td>.723</td>
<td>9. SPARQLent</td>
<td>.576</td>
</tr>
<tr>
<td>10. OWLS-iMatcher</td>
<td>.719</td>
<td>10. OWLS-SLR (lite)</td>
<td>.57</td>
</tr>
</tbody>
</table>
Lesson Learned: Specification Matching

Only very few matchmakers perform specification (P/E) matching

- **SeMa² v2** (TU Berlin)

 - Structural + logical plugin (no Abox) + precondition satisfaction (ABox)
- **SPARQLent** (HP Italy)

 - SPARQL ASK [where] query containment (ABox)
- **iSeM 1.1** (DFKI)

 - Logical plugin (no Abox)

Current problems:

- Test collection OWLS-TC has no ABoxes
- P/E in PDDL and SWRL: SWRL syntax in OWL-S spec and SWRL spec differ
Lesson Learned: Specification Matching

Problems

- Only 15% of OWLS-TC4 services have P/Es. Low increase of precision with P/E match.
- „Solution“ of I/O pitfalls by „luck of random choice“ (S1 or S2) w/o PE matching
- Collections require more services with (complex) P/E descriptions

Example:

<table>
<thead>
<tr>
<th>Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP</td>
<td>TP</td>
<td>FP</td>
<td>-</td>
</tr>
<tr>
<td>iSeM 1.0</td>
<td>IOPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OWLS-SLR</td>
<td>TP</td>
<td>FP</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>SeMa2</td>
<td>TP</td>
<td>FP</td>
<td>FP</td>
<td>TP</td>
</tr>
<tr>
<td>XSSD</td>
<td>TP</td>
<td>FP</td>
<td>TP</td>
<td>FP</td>
</tr>
</tbody>
</table>

![Graph showing Recall/Precision (macro-averaged)](image)

- iSeM w/o PE matching
 - $\Delta AP = 0.068$ significant at 5%
 - $\Delta Q = 0.062$ significant at 5%
 - $\Delta nDCG = 0.059$ significant at 5%
OWL-S Selection: Average Response Time

<table>
<thead>
<tr>
<th>Matchmaker</th>
<th>AQRT (s)</th>
<th>w/o http</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. XSSD</td>
<td>0.125</td>
<td>0.124</td>
</tr>
<tr>
<td>2. OWLS-SLR lite</td>
<td>0.46</td>
<td>0.446</td>
</tr>
<tr>
<td>3. SPARQLent</td>
<td>0.576</td>
<td>0.569</td>
</tr>
<tr>
<td>4. OWLS-iMatcher</td>
<td>2.152</td>
<td>2.121</td>
</tr>
<tr>
<td>5. iSeM 1.1</td>
<td>2.34</td>
<td>2.332</td>
</tr>
<tr>
<td>6. iSeM-TSM1</td>
<td>4.447</td>
<td>4.437</td>
</tr>
<tr>
<td>7. OWLS-MX3</td>
<td>5.369</td>
<td>4.997</td>
</tr>
<tr>
<td>8. SeMa² v2</td>
<td>5.084</td>
<td>5.063</td>
</tr>
<tr>
<td>9. EMMA</td>
<td>9.644</td>
<td>9.335</td>
</tr>
</tbody>
</table>

Vs. fastest variant

[|AQRT; diff AP|]: diff rank AQRT

Repeated restart of plugin!
Lessons Learned: Caching Strategies

OWL-S matchmakers deal with required service ontologies quite differently

- **Caching of complete ontologies during service registration**
 - Reduces #http-requests: Only queries but no ontology d/l required for Q/A
 - Used by XSSD, OWLS-iMatcher, SeMa²

- **Caching of self-contained (unfolded) concept definitions**
 - Reduces #http-requests: No additional classification of concepts required for Q/A
 - Used by iSeM 1.1 (and iSeM-TSM1), OWLS-MX3

- **No caching at all**
 - EMMA - restarts internally used pugin for every query
<table>
<thead>
<tr>
<th>Matchmaker</th>
<th>AP (B)</th>
<th>AP (G): nDCG, Q</th>
<th>Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. iSeM 1.1</td>
<td>.842</td>
<td>.803, .762</td>
<td>DFKI, Germany</td>
</tr>
<tr>
<td>2. LOG4SWS.KOM</td>
<td>.837</td>
<td>.896, .851</td>
<td>TU Darmstadt, Germany</td>
</tr>
<tr>
<td>3. COV4SWS.KOM</td>
<td>.823</td>
<td>.884, .825</td>
<td>TU Darmstadt, Germany</td>
</tr>
<tr>
<td>4. Nuwa-SAWSDL</td>
<td>.819</td>
<td>.884, .817</td>
<td>URJC Madrid, Spain</td>
</tr>
<tr>
<td>5. SAWSDL-iMatcher</td>
<td>.764</td>
<td>.855, .784</td>
<td>U Zurich, Switzerland</td>
</tr>
<tr>
<td>6. URBE</td>
<td>.749</td>
<td>.85, .777</td>
<td>Politecnico Milano, Italy</td>
</tr>
<tr>
<td>7. SAWSDL-MX1</td>
<td>.747</td>
<td>.839, .767</td>
<td>DFKI, Germany</td>
</tr>
</tbody>
</table>
SAWSDL Selection: Macro-Averaged Precision for Binary Relevance

Recall/Precision (macro-averaged)

- LOG4SWS (2.)
- URBE (6.)
- SAWSDL-MX1 (7.)
- iSeM (1.)
SAWSDL Selection: Average Response Time

<table>
<thead>
<tr>
<th>Matchmaker</th>
<th>AQRT (s)</th>
<th>w/o http</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LOG4SWS.KOM</td>
<td>0.241</td>
<td>0.241</td>
</tr>
<tr>
<td>2. COV4SWS.KOM</td>
<td>0.301</td>
<td>0.301</td>
</tr>
<tr>
<td>3. SAWSDL-iMatcher</td>
<td>1.787</td>
<td>1.787</td>
</tr>
<tr>
<td>4. SAWSDL-MX1</td>
<td>3.859</td>
<td>3.853</td>
</tr>
<tr>
<td>5. Nuwa-SAWSDL</td>
<td>9.009</td>
<td>8.986</td>
</tr>
<tr>
<td>6. iSeM 1.1</td>
<td>10.662</td>
<td>10.655</td>
</tr>
<tr>
<td>7. URBE</td>
<td>40.01</td>
<td>39.941</td>
</tr>
</tbody>
</table>

Vs. fastest variant

[AQRT; diff AP]: diff rank AQRT

[1.584s; - .018]: +3
Lesson Learned: Caching Strategies

SAWSDL matchmakers deal with required service ontologies quite differently

- Caching of complete ontologies *before* service registration
 - Ontologies are loaded and classified right after matchmaker plug-in initialization
 - Used by LOG4SWS.KOM, COV4SWS.KOM, SAWSDL-iMatcher

- Caching of self-contained (unfolded) concept definitions
 - Used by SAWSDL-MX1, iSeM 1.1

- Unknown strategy: URBE
Lesson Learned: Performance

- **Highest precision (AP):**

 - **Hybrid + Adaptive**
 - OWL-S: 0.92, OWL-S graded: 0.84, iSeM 1.1
 - SAWSDL: 0.84, SAWSDL graded: 0.8, iSeM 1.1

 - **Hybrid**
 - OWL-S: 0.88, OWL-S graded: 0.93, SeMa\(^2\) v2
 - SAWSDL: 0.84, SAWSDL graded: 0.90, LOG4SWS

 - **Logic-based**
 - OWL-S: 0.76, OWL-S graded: 0.87, EMMA
 - SAWSDL: -

 - **Non-logic-based**
 - OWL-S: 0.87, OWL-S graded: 0.92, iSeM-TSM1
 - SAWSDL: 0.82, SAWSDL graded: 0.88, COV4SWS, NUWA-SAWSWDL

- **Fastest response (AQRT):** 0.12s XSSD (OWL-S), 0.24s LOG4SWS (SAWSDL)

- **Best trade-off (AP_B/AQRT; SAW, w\(_{1,2}\) = 0.5):** iSeM (.939, OWL-S), LOG4SWS (.973, SAWSDL)