Mining Meaning From Wikipedia

PD Dr. Günter Neumann LT-lab, DFKI, Saarbrücken

Outline

- 1. Seed Elements for Relation Extraction
- 2. Ontology Building from WikiPedia -Introduction

How to exploit Wikipedia for Relation Extraction ?

- Note that each article represents a particular concept that serves as a clearly recognizable principal entity for relation extraction from that article.
- Its description contains links that point to other articles/entities.
- It only remains to identify the possible relations between these pairs of entities.
- Using/learning syntactic and lexical patterns as textual anchors.

How to get seed elements?

- Using WordNet as a source of positive seeds
- Automatically identified in Wikipedia articles
 - Automatically extracted from infoboxes

WordNet for identifying seeds, cf. Ruiz-Casado et al., 2007

- Idee: Given two co-occurring semantically related WordNet nouns in a Wikipedia article, the intervening text is used to find relations that are absent from WordNet.
- Use WordNet synsets as a sense basis:
 - For each entry, retrieve synsets
 - If multiple senses exist, then disambiguate entry by means of entry's definition & each sense's WordNet gloss
 - Select WordNet sense with maximum similarity according to vector space model
- Result:
 - ~83,89% accurcacy on Simple Wikipedia test set
 - 1/3 of Simple Wikipedia are polysemious (1/3 are unique, 1/3 are not covered by WordNet)

Pattern extraction for this approach

- Determine the two arguments in the definition:
 - □ 1st argument is clear: the entry e itself
 - 2nd argument: a linked term f, s.t. f&t have a common relation in WordNet
- Pattern extraction:
 - Substitute e with ENTRY, f with TARGET
 - Follow approach like in Snowball
- Result:
 - 1200 new relations for WordNet with 61-69% precision

Wikipedia articles as seed basis, cf. Ruiz-Calados et al., 2006

- Starting point:
 - a list of interesting relationships, e.g., Person's birth year, Person's death year, Personbirth place, Actor-film, Writer-book, Football player-team, Country-chief of state, Country-capital
- Automatic crawling of Wikipedia articles, that contain these relations:
 - Prime Minister, that contains hyperlinks to Prime Ministers from many countries.
 - Lists of authors, that contain hyperlinks to several lists of writers according to various organising criteria.
 - Lists of actors, that contain hyperlinks to several lists of actors.
 - List of football (soccer) players, containing hyperlinks to many entries about players.
 - List of national capitals, containing the names of national capitals from countries in the world.
- Pattern extraction process like the previous one

Result for this approach

Depending in specific relation

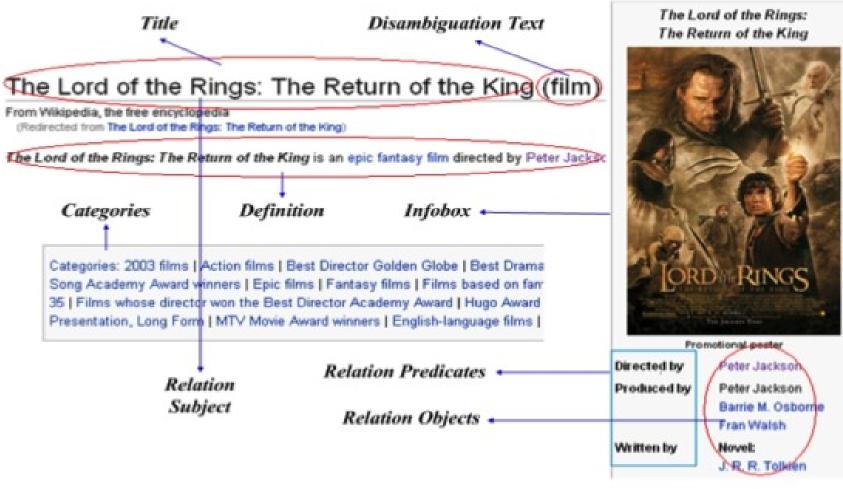

Relation	No. of patterns No.	of results	Precision
Birth-year	16	15746	74.14%
Death-year	8	5660	90.20%
Birth-place	3	154	27.27%
Actor-film	11	4	50.00%
Country-Chief of state	109	272	50.00%
Writer-book	176	179	37.29%
Country-capital	150	825	11.45%
Player-team	173	315	7.75%

Table 2. Number of patterns obtained for each relationship, number of results extracted by each pattern set, and precision.

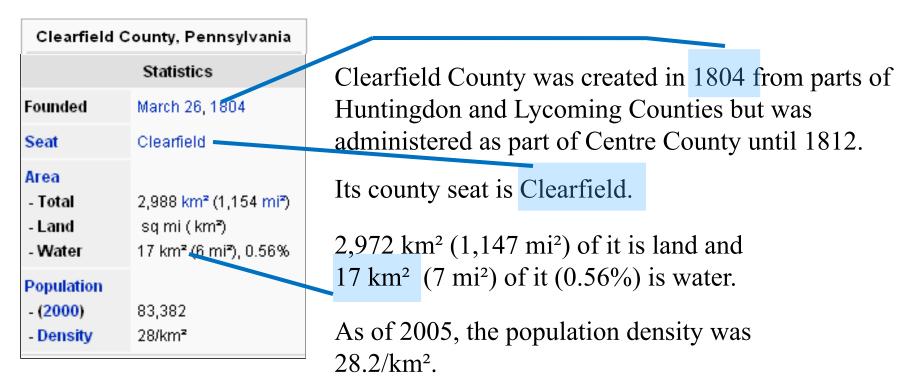
Exploring dependency parsing, cf. Nguyen et al. 2007

- Approach:
 - Select Wikipedia article
 - Perform anaphora resolution for article title (determines 1st argument)
 - Tag all link elements as 2nd argument
 - For all sentences containing 1st & 2nd arguments, do dependency parsing and generalized to match similar sentence (subtrees are substituted by variables)
- Result:
 - F-measuer of 38% on 45 Wikipedia test articles

Seeds from Infoboxes, cf. Wang et al. 2007

Automatically extracted from infoboxes

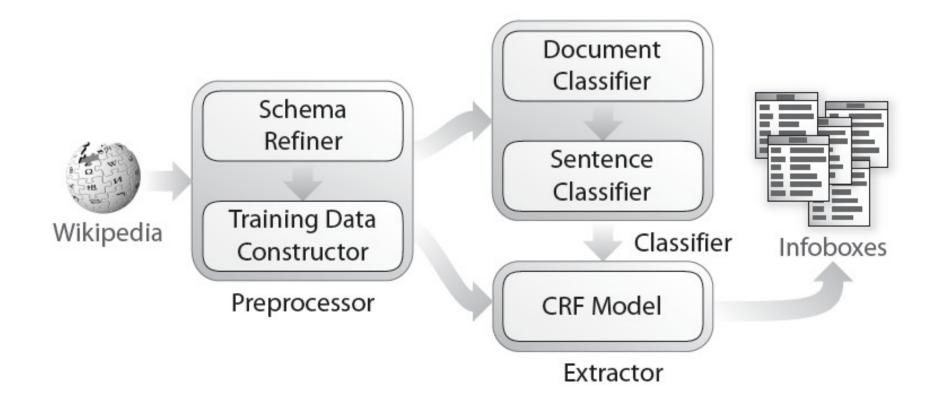
- Select relation seed instances randomly selected from infoboxes of Wikipedia.
 - Example
 - hasDirector(film, director)
 - <Titanic, James_Cameron>
 - King_Kong (2005), Peter_Jackson>
 - The seeds are used to query the wikipedia corpus.
- From returned text snippets, patterns are created
 - From 'Titanic was a romantic film directed by James Cameron' and 'King Kong (2005) is an American movie directed by Peter Jackson'
 - Create pattern: '* (is|was) (a|an) * (film|movie) directed by *'.


Semanticfy extracted pattern

- Determine types for the pattern variables using information from Wikipedia articles
 - Y must be a director or at least a person
 - Type labels are automatically determined from words commonly co-occuring in Wikipedia articles describing these entities
 - Artist \rightarrow singer, musician, guitarist, rapper
 - Advantage is, that much more selectional restriction patterns can be inferred
- Result: for 100 relations nearly 100 % accuracy

System

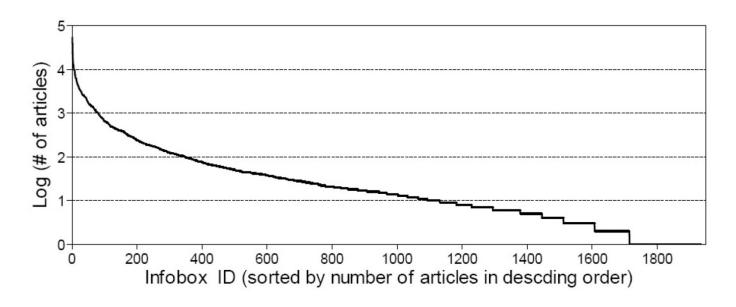
Self-supervised learning -> autonomous Form training dataset based on infoboxes Extract semantic relations from Wikipedia articles


From infoboxes to a training set

Some more details concerning creation of training data

- For each article with an infobox mentioning one or more target attributes, Kylin segments the document using the OpenNLP library.
- Then, for each target attribute, Kylin tries to find a unique, corresponding sentence in the article.
- The resulting labelled sentences form positive training examples for each attribute.
- Other sentences form the negative training examples.

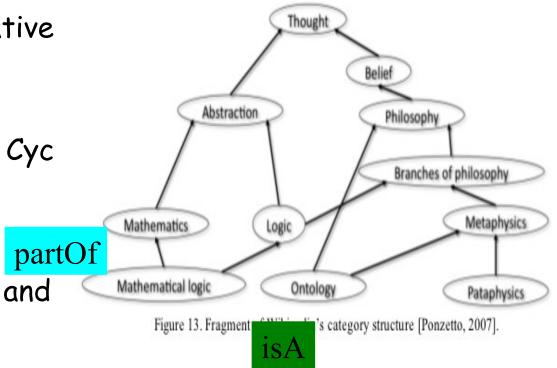
Kylin Architecture


Preliminary Evaluation

• Kylin Performed Well on Popular Classes (e.g., articles belonging to Lists or Categories):

Precision: mid $70\% \sim high 90\%$

Recall: low $50\% \sim mid 90\%$


... Floundered on Sparse Classes – Little Training Data

82% < 100 instances; 40% <10 instances

Semantic Relations in Structured Parts of Wikipedia

- Goal is to build alternative knowledge bases for manually defined KB's such as WordNet and Cyc
- Approaches
 - Label existing links par between categories and articles
 - Extract relations from infoboxes

Three prominent approaches

- Yago (MPI, Saarbrücken)
- DBPedia (Uni. Leipzig, FU Berlin)
- EMLR (EML Research, Heidelberg)

Yago – Yet Another Great Ontology

- Wikipedia's leaf categories are mapped onto the WordNet taxonomy of synsets
 - the articles belonging to those categories are added to the taxonomy as new elements.
- Mapping:
 - Extract lexical head from category name, e.g., Category: American people in Japan
 - Apply WSD in case of polysemous senses
- 143,000 is A relations
 - e.g., isA(American people in Japan, person/human)

Yago – Extracting further relations

- Programmed heuristics
 - NE parser for identifying given and family names
 - 440,000 relations of form familyNameOf(Albert Einstein, "Einstein")
 - "parsing" category names
 - bornInYear, establishedIn, locatedIn
 - e.g., based on suffix analysis of category name
 - Gives 370,000 non-hierarchical, non-synomyous relations (91%-99% accuracy)
- Further relations from other Wikipedia structures
 - 2M synonymy relations from redirect links
 - 40M context relations from cross-links between articles
 - 2M type relations (categories considered as class, articles as entities)

The Truth about Elvis

Elvis is alive!

This slide and the next about Yago are from Suchanel, 2009.

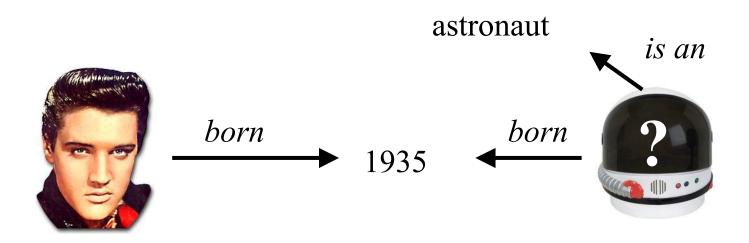
The Truth about Elvis

Elvis is alive!

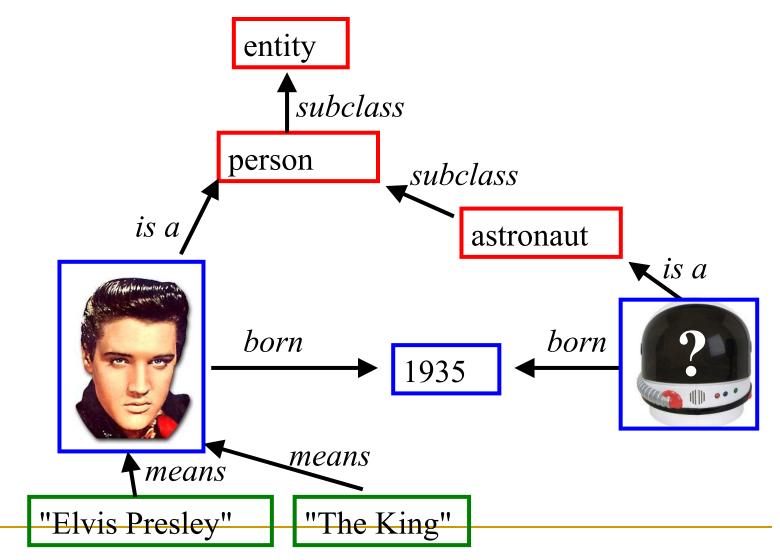
He works as an astronaut in NASA's special security program

Usual solution

P

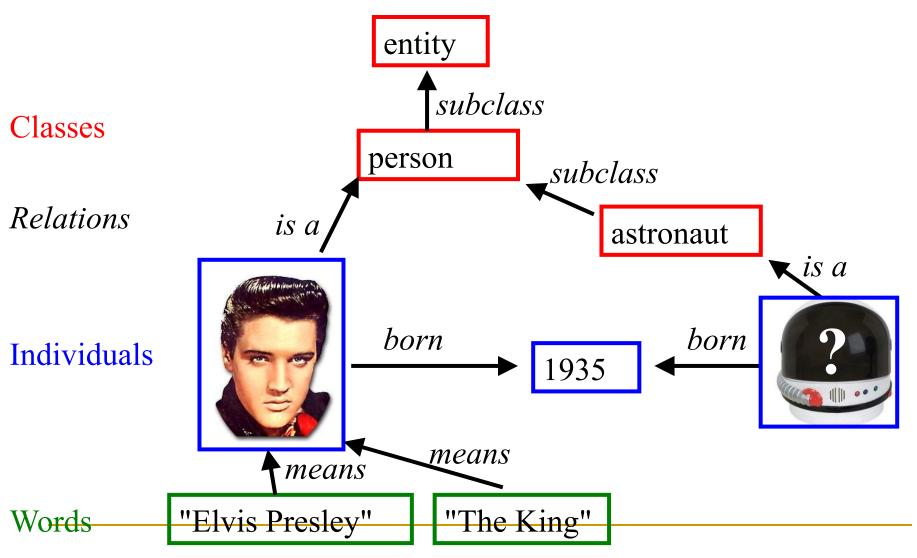

Which NASA astronaut was born when Elvis was born?

Yields only rubbish.


Reasons:

- 1. Google participates in the conspiracy
- 2. Google does not search knowledge, but Web sites

Solution: An ontology



Solution: An ontology

YAGO - A Core of Semantic Knowledge

Solution: An ontology

