

Bootstrapping Noun Groups & Technical Terms

Using Closed-Class Elements Only

Kathrin Eichler and Günter Neumann LT-Lab, DFKI, Berlin & Saarbrücken

Goal

Extract and categorize technical terms (TTs), e.g., from scientific texts

The detailed investigation of a methanolic extract of aerial parts of <u>Achillea</u> <u>nobilis</u> resulted in the isolation of 10 flavonoids. A new C-glycosylflavone, luteolin-6-C-apiofuranosyl-(152)-glucoside, was isolated besides orientin, isoorientin, vitexin, isoschaftoside, luteolin-7-O-glucuronide, luteolin-4-O-glucoside and quercetin-3-O-methyl ether and two rare flavonolglycosides, quercetin-3-O- α -arabinosyl-(156)-glucoside and quercetin-3-O-methylether-7-O-glucoside. (Sample from ZfN corpus)

Extraction method should be...

- Multilingual
- Domain-adaptive
- Nearly unsupervised

Related Tasks

	NE / GN Recognition	Keyword Extraction	TT Extraction
WHAT	PER, LOC, ORG / domain-specific expressions	Small set of important concepts	<u>All</u> technical terms
HOW	(weakly) supervised; lexico-syntactic patterns ¹	Term frequencies; Wikipedia ²	NG chunking + web- statistics
CATEGORI ZATION	yes	no	yes
		¹ Etzioni et al 2005	

² Mihalcea and Csomai, 2007

ccChunk – version 1

Evans and Pourcel (2009): "Lexical concepts associated with the *grammatical subsystem* (...) provide a <u>scaffolding</u> (...) across which the rich content associated with lexical concepts of the *lexical subsystem* can be draped."

- Determine left/right boundaries of nominal groups using simple context patterns based on
 - Closed-class element lists (i.e. grammatical subsystem)
 - Supervised word class models for V and ADV

Mary enjoyscompositionsbyMozart.BOS MaryVcompositionsPREPMozartPUNCT

(Dis-)Advantages of the old ccChunk

Advantages

- No POS-tagger, no chunk rules, only finite list of closed-class elements
- Domain-independent: Closed-class elements are the same in all domains
- Can be adapted to other languages with little effort
- Scales well to large amounts of textual data
- Main disadvantage: V / ADV models
 - Trained on annotated data \rightarrow domain-dependent
 - Classify words without using context information
 - cannot deal with word class ambiguities, e.g. V/N ambiguity in "structures", "types", "books", "flies",…

ccChunk version 2 - self domain-adaptive

- Replace V/ADV models by set of context patterns bootstrapped from an unannotated input text using open-class elements
- General idea:
 - Use simple context seed rules to extract validation sets for each open-class type (N, V, ADJ, ADV)
 - Different seeds stand in competition and are later used for disambiguation
 - Apply bootstrapping to iteratively expand set of extraction rules and validation sets

Bootstrapping algorithm

As basis for extracting competing patterns usable for NEGATIVE examples

• INITIALIZATION

- Use one seed context rule for each OCW class (N, V, ADJ, ADV) to extract initial validation sets
- BOOTSTRAPPING LOOP
 - Step 1: Extract and validate rule candidates based on validation sets
 - Step 2: Expand validation sets based on validated rules
- POSTPROCESSING
 - Disambiguate ambiguous tokens using validated rules

Seed context rules for OCW classes

- Nouns:
 - <DET X PREP>, where X is a single non-CCW token
- Verbs:
 - <TO X DET>, where X is a single non-CCW token
 - "to give the"
- Adjectives:
 - Second Second
 - BE is some form of the auxiliary be
 - GRAD_ADV is some grading adverb (e.g. very)
 - "is very proud"
- Adverbs:

Each seed ADJ-ly that appears in the text

to give the

is very proud

proudly

Initial validation sets

- Input text: Wall Street Journal training corpus used for CONLL 2000 shared task on chunking
 - 8,936 sentences
 - 46,874 NP chunks
- Extracted based on seed context rules:

Nouns	1222
Verbs	535
Adjectives	31
Adverbs	9

- Example:
 - Seed context rule <DET X PREP> for nouns extracts "airport" from "Getting to and from *the* airport *in* coming weeks may be the problem".

Bootstrapping loop

Montag, 13. Dezember 2010

Rule candidate extraction

- For each entry X in validation set of OCW type O, match all
 - <LC X RC> in the text, where
 - LC: left context, i.e. some tagged token
 - RC: right context, i.e. some tagged token
- Add <LC, RC> to set of rule candidates for O
- Example:
 - For entry "airport" from the validation set for nouns, we can extract the noun rule candidate <DET, VAUX> from

While the airport was closed, flights were diverted ...

Rule validation

Calculate accuracy of rule r for OCW type O:

$$acc(r) = \frac{pos_r + 1}{r}$$

- Where
 - pos_r: # of occurrences matching <LC_r O RC_r>
 - neg_r : # of occurrences matching $< LC_r \neg O RC_r >$
- If acc(rule_n) > threshold (currently set to 0.5)
 → Add rule_n to set of validated rules
 Example: acc(<DET, VAUX>) = 0.92

Validation set expansion

- Apply all validated rules to text to extract additional entries for validation sets
- Example:
 - Applying the validated rule <DET, VAUX> extracts noun "units" from

These units *were* handling calls both from people in the San Francisco area and from computers themselves.

 "units" is added it to the validation set for nouns and used to validate rules in the next iteration

Preliminary results

Chunk-/ Token*-based evaluation

	Precision	Recall	F1
Baseline	0.51 / 0.67	0.66 / 0.96	0.58 / 0.79
Initial seed tagging	0.55 / 0.70	0.69 / 0.95	0.61 / 0.80
Final tagging	0.60 / 0.75	0.69 / 0.91	0.64 / 0.82

- Baseline: all non-CCWs tagged as noun
- Bootstrapping process (slightly) improves results, in particular precision \rightarrow problem: false positives

*Token-based means: count on level of BIO elements as in CoNLL evaluation.

Summary: ccChunk version 2

Advantages

- Domain-adaptive: No lexical information used as input
- Advantage over version 1: V / ADV models replaced by automatically generated lists
- Disadvantages
 - Rules need to be relearned for each new input text, even though they are non-lexical, i.e. domainindependent
 - Like version 1, words are tagged without using context information
 - cannot deal with word class ambiguities, e.g. V/N
 ambiguity in structures, types, books, flies,...

Additional & Future work

Improve ccChunk

- Use more sophisticated rule validation method, e.g. EM-based confidence estimation
- Testing on more different domains
- Evaluate how the size of the input text affects the results

Ranking of technical terms

 Exploring search engine frequencies (MSN) & SVM^{rank} algorithm (DFKI system KeyWE, SemEval 2010)

Named Entity Extraction

- Learning of specialized context patterns for extracting protein names in biomedical names (Project Dilia)
 - NG: enriched polymerase chain reaction amplification
 - Protein name: polymerase
 - left context: enriched
 right contex: chain reaction amplification

Technical Term (TT) -Selection

- Goal: Classify candidates as TT or non-TT
- Observation: in a large text corpus, TTs often occur mid-frequently

ture work

lation method, e.g. EM-based

ns

it text affects the results

ms

cies (MSN) & SVM^{rank} algorithm 10)

Named Entity Extraction

Ratio between TT and Non-TT with MSN score below threshold

- Learning of specialized context patterns for extracting protein names in biomedical names (Project Dilia)
 - NG: enriched polymerase chain reaction amplification
 - Protein name: polymerase
 - left context: enriched
 - right contex: chain reaction amplification

Technical Term (TT) -Selection

18

- Goal: Classify candidates as TT or non-TT
- Observation: in a large text corpus, TTs often occur mid-frequently

ture work

Evaluation

Comparison of selected TTs to annotated TTs

Results based on optimized values for t_i and t_i

	Precision	Recall	F1
ZfN (biology)	58%	81%	0,68
DBLP (computer science)	48%	65%	0,55
GENIA (biology)	50%	75%	0,60
For comparison (Generalized nam	e extraction):		œ
Yangarber et al. (diseases)	65%	70%	0,67

Ratio between TT and Non-TT with MSN score below threshold

between TTs and non-TTs for different upper MSN frequency thresholds

Named Entity Extraction

- Learning of specialized context patterns for extracting protein 0 names in biomedical names (Project Dilia)
 - NG: enriched polymerase chain reaction amplification
 - Protein name: polymerase
 - left context: enriched
 - right contex:

chain reaction amplification

ccChunk – version 3

Input

- 1. Lists of closed class words
- 2. Non-lexical tagging rules (with probabilities) extracted from some annotated text
 - DET _ PUNCT \rightarrow NN (0.91) ... the program .
 - TO _ DET \rightarrow VB (0.98) ... to avoid the ...

Domain-adaptive, like version 2: Open class words are tagged using a bootstrapping approach

Bootstrapping

Montag, 13. Dezember 2010

Bootstrapping

Montag, 13. Dezember 2010

Bootstrapping

Montag, 13. Dezember 2010

Bootstrapping – Example

Bootstrapping – Example

- Initial tagging: Tagging of all Closed Class (CC) tokens
- Unigram extraction:
 - ... c-Jun N-terminal kinase, which phosphorylates and ...
 - ? ? WD ? CC
 ... kinase that phosphorylates the transactivation domain ... ? DT/WD ? DT ? ?
- Rule-tag probabilities (tagging rules)
 - o <WD_CC> → VB: 0.54, NN: 0.31
 - <DT_DT> → IN: 0.38, NN: 0.29, VB: 0.26
 - $\langle WD_DT \rangle \rightarrow VB: 0.97$
- Token-tag probabilities after the first iteration:
 - phosphorylates VB:0.72, NN:0.23
- Unigram extraction
 - ... Fos kinase phosphorylates c-Fos at a site near ...

Bootstrapping – Example

- Initial tagging: Tagging of all Closed Class (CC) tokens
- Unigram extraction:
 - ... c-Jun N-terminal kinase, which phosphorylates and ...
 - ? ? WD ? CC
 ... kinase that phosphorylates the transactivation domain ... ? DT/WD ? DT ? ?
- Rule-tag probabilities (tagging rules)
 - o <WD_CC> → VB: 0.54, NN: 0.31
 - <DT_DT> → IN: 0.38, NN: 0.29, VB: 0.26
 - $\langle WD_DT \rangle \rightarrow VB: 0.97$
- Token-tag probabilities after the first iteration:
 - phosphorylates VB:0.72, NN:0.23
- Unigram extraction
 - ... Fos kinase phosphorylates c-Fos at a site near ...

VB ? IN

Final tagging

- Tokens are tagged based on
 - token-tag probabilities
 - rule-tag probabilities
- The best tag t_{max}(x) for token x is calculated as follows:

$t_{max}(x) = arg max_{t \in T}(\alpha^* P_{token}(t,x) + \beta^* P_{rule}(t,x))$

- Where:
 - T: set of possible OCW tags
 - P_{token}(t,x): token-tag probability of tag t for token x
 - P_{rule}(t,x): rule-tag probability of tag t in the context of x
 - α , β : weights specifying the contribution of token-tag / rule-tag probabilities to the final score ($\alpha + \beta = 1$)

Evaluation

- Based on the final tagging, adjective noun sequences (JJ*NN+) are extracted as NGs
- (Chunk-based) evaluation on English PennTB dataset used in CONLL 2007 (WSJ, sections 2-11)

	Р	R	F1
Baseline*	0.51	0.66	0.58
version 2*	0.60	0.69	0.64
version 3	0.69	0.72	0.70

*) Baseline (all non-CCWs tagged as noun) and version 2 results are based on WSJ, sections 15-18

Digital Library Assistent

Experiments to identify and extract protein names from text (including preliminary evaluation results)

Goal

Goal: Identification of protein names in biomedical texts

We studied 52 neuroblastic tumors to test whether the cell deathrelated proteases, interleukin-1 beta converting enzyme (ICE), CPP32, and Ich-1, were involved in the regression of the tumors.

- Protein names:
 - proteases
 - interleukin-1 beta converting enzyme
 - <u>ICE</u>
 - <u>CPP32</u>
 - <u>lch-1</u>
- → Identification by using **context information**:

No mutations resulting in truncation of the <u>APC</u> protein were found.

Montag, 13. Dezember 2010

ccChunk – Output

From the final tagged text all adjective-nounsequences (JJ*NN+) are extracted as NGs

> enriched polymerase chain reaction amplification 2,3,7,8-tetrachlorodibenzo-p-dioxin murine human B lymphocyte immunoglobulin unknown mechanism degradation rate nitroso surface viable white blood cells

Extraction of protein names

Findings:

 protein names appear almost always as part of the extracted NGs, but are often nested in longer NGs, e.g.,

NG: enriched polymerase chain reaction amplification protein name: polymerase left context: enriched right context: chain reaction amplification

Development of a method to detect which parts of the tokens of the extracted NG belong to the context

Extraction of context patterns

- Data: PennBioIE oncology-corpus (biomedical)
 - 1414 annotated PubMed-abstracts (u.a. protein names)
- For all protein names all left and right contexts have been extracted from the corpus text

• For example:

In this method, the DNA segments including codon 12 or codon 61 were amplified <u>by polymerase chain reaction</u>, and the reaction products were examined for their susceptibility to <u>the restriction enzyme Nael or BstNI</u>, and by dot blot hybridization assay with oligonucleotide probes.

Protein name	left context	right context
polymerase	NIL	_ chain reaction
Nael	restriction enzyme _	NIL
BstNI	NIL	NIL

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

<u>polymerase</u>

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

<u>polymerase</u>

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

<u>polymerase</u>

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

polymerase

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

- Using the extracted context patterns, the candidate list is processed and the patterns are removed from the candidate until no matching patterns can be found.
- For example: extracted NG "enriched polymerase chain reaction amplification"

enriched polymerase chain reaction amplification

context pattern: * amplification

enriched polymerase chain reaction

context pattern: * chain reaction

enriched polymerase

context pattern: enriched *

polymerase

Validation of candidates (1)

morpho-syntactic patterns are used in combination with the candidate X as query for a search engine to determine the number of hits

patterns used

- hyponym patterns (Hearst 1992 & 1998)
- additional patterns

left patterns	right patterns
proteins (like such as including especially except namely i.e. e.g. for example) X	X (among and or unlike like) other proteins X is (a the) protein X are (the)? proteins

Validation of candidates (2)

- semantic similarity between X and "protein":
 - PMI-IR(X) = Treffer(X, "protein") / Treffer(X)
- Number of **different** left/right patterns for candidate:
 - $p_{ext} = |\{ m | m \in L \ Treffer(x,m) > 0\}|$
 - $p_right(x) = |\{ m | m \in R \ Treffer(x,m) > 0\}|$
- Value of candidate:
 - Wert(x) = PMI-IR(x) * p_left(x) * p_right(x)
- BNC-filtering:
 - words (stemmed) that appear in a frequent words list are removed.

Evaluation

Results from Aimed corpus

225 Medline abstracts (biomedical)

	Prec.	Rec.	F1
Extracted NGs	11,55%	31,01%	16,83
Post-processed NGs	13,53%	36,33%	19,72
+ Validation	18,27%	35,63%	24,51
+ Brackets	19,55%	39,43%	26,14
only NGs with matching context pattern (valid./BNC-filter)	31,18%	17,92%	22,76

Generalisability

- Approach can easily be applied to other domains
- The only domain dependent input: list of instances of the named entity type to extract
- Domain independent steps
 - generation of candidate list (NG-chunker based on close classed word lists)
 - Extraction and use of context patterns
 - Validation of the post-processed candidates (based on frequency data from the Internet)

Relevant references

- Eichler, K., Hemsen, H. and Neumann G. (2009) Unsupervised and domain-independent extraction of technical terms from scientific articles in digital libraries. In proceedings of the Workshop <u>Information Retrieval 2009</u> organized as part of LWA, Darmstadt, 2009.
- Eichler, K. and Neumann, G. (2010) Bootstrapping Noun Groups Using Closed-Class Elements Only. In <u>KDML 2010: Knowledge Discovery, Data Mining, and</u> <u>Machine Learning</u>, Kassel, Germany.