Gene Name Identification / Mentioning at BioCreative Challenge 2

Presenter: Sai Qian University of Saarland saiqian@coli.uni-sb.de

Overview

- Motivation & Introduction
- Rie Kubota Ando's system
- Kou et al.'s system
- Huang et al.'s system
- Inspiration based on Kou & Huang's system
- General combination of BioCreative 2
- Conclusion

Motivation & Intruction

- The largest and most reliable source of biomedical knowledge: scientific literature
 - Protein-protein interactions
 - Disease-gene associations
- Initial steps
 - Tagging gene
 - Gene product mentions
- The second BioCreative challenge (BioCreative 2)
 - Gene mention task (GM)
 - Gene normalization task (GN)
 - Protein-protein interaction task (PPI)

Motivation & Intruction

- Gene mention task similar to named entity recognition task for person names and company names
- Significant difference
 - Quantity: millions of gene names used
 - Creativity: new gene names are created continuously
 - Random: authors do not use standardized names
 - Co-occurrence: co-occur with other types (cell names)
 - Indefinity: expert readers disagree on the result
 - Ambiguity: a sequence of DNA referred by a gene name may vary in nonspecific ways (polymorphism, multiple alleles)

IBM T.J. Watson Research Center

- A semi-supervised learning method (ASO)
- Automatic induction of high-order features
- Gene name lexicon lookup
- Classifier combination
- Simple post-processing

IBM T.J. Watson Research Center

- Alternating Structure Optimization (ASO)
 - A multi-task learning algorithm
 - Simultaneously learning multiple tasks that related to each other
- Application of ASO
 - Automatic generation of thousands of prediction problems (auxiliary problems)
 - Their (problems) labeled data info from unlabeled data
- Learning new (and better) feature representation from unlabeled data
- "A framework for learning predictive structures from multiple tasks and unlabeled data"

IBM T.J. Watson Research Center

Unlabeled data

- Total number of 500 million words resource intensive
- A randomly generated subset performance marginal
- Hope: benefit from the unlabeled data with reasonable computational time

The setting

- Go through every sentence, count word frequency
- Choose a sentence if it contains a word occurring at least
 k times
- Discard a sentence otherwise

IBM T.J. Watson Research Center

- High-order features
 - Combing two or more base features
 - E.g. "current-word='gene' & next-word='*"
 - Generating all combination: training expensive
- Bi-gram feature
 - Construct bi-gram feature only from misclassified data with pure base feature
 - Retain the positive bi-gram feature, discard the negative ones
 - The best result with the least computational time

IBM T.J. Watson Research Center

- Performance improvement with combination of several classifiers
 - Classifiers with similar performance but make different mistakes
- Left-to-right & right-to-left chunker
 - Taking a union of the two sets of annotations (BioCreative 1)
 - Remove any annotation that overlaps with another by keeping the longer ones (BioCreative 2)
 - "AAA", "AAABB"

IBM T.J. Watson Research Center

Domain lexicon

- A domain lexicon generated from LocusLink,
 Swiss-Prot, Mesh
- A list of names with tags that indicate the information source (e.g. "MESH")
- Simple post-processing
 - Remove annotations that include any unmatched parenthesis
 - □ e.g. ***)"

IBM T.J. Watson Research Center

Result

	Post-	Feature	Name	Classifier	Unlabeled	P	R		F
	processing	induction	lexicons	combination	data				
Baseline	-	<u>=</u>		40	949	89.13	79.39	83.98	500
Post-processing	X	1 57 5	-	=	2 Am	89.40	79.39	84.10	(+0.12)
Feature induction	7=8	X	2 <u>25</u>	<u> 536</u> 8	(<u>98</u>	89.11	79.86	84.23	(+0.25)
Name lexicon	-	100	X	(20)	1—	88.89	80.48	84.47	(+0.49)
Classifier combination	1=9	-	_	X	-	85.14	84.90	85.02	(+1.04)
Unlabeled data	-	-	-	-	X	91.17	81.52	86.07	(+2.09)
Run#3	X	X	X	=	X	91.54	81.99	86.50	(+2.52)
Run#1	X	X	(2)	X	X	88.37	85.94	87.14	(+3.16)
Run#2	X	X	X	X	X	88.48	85.97	87.21	(+3.23)

IBM T.J. Watson Research Center

- Period conclusion
 - Semi-supervised learning based on ASO algorithm
 - Equipped with classifier combination, automatic generation of high-order features, domain lexicon, and simple post-processing
 - Useful for a huge amount of unlabeled data

Taipei, Taiwan

- Conditional Random Fields (CRFs)
 - A type of discriminative probabilistic model most often used for the labeling or parsing of sequential data. – Wikipedia
 - Dominant performance of tagging gene and mentioning protein in BioCreative 1
- Rich feature set
 - 5,059,368 predicates as the features
 - Feature defined based on hundreds of trails
 - E.g. exclude prefix and suffix predicates in previous tagger

Taipei, Taiwan

Example of features

Feature	Example
Word	proteins
StemmedWord	protein
PartOfSpeech	NN
InitCap	Kinase

Combination of several taggers

- Forward tagger right to left
- Backward tagger left to right
- Backward better than Forward?
- □ Union (recall ↑) vs. Intersection (precision ↑)

Taipei, Taiwan

Adjacent Ten Union

A nearly perfect recall (0.9810) with union of the adjacent
 10 tagging solutions

Procedure

- Parse sentence in both directions, select the adjacent 10 solutions for each direction
- Compute the intersection of bidirectional parsing, discard the one which minimizes the sum of the output scores
- For the rest 18, select the labeled terms appearing in a dictionary with its length > 3

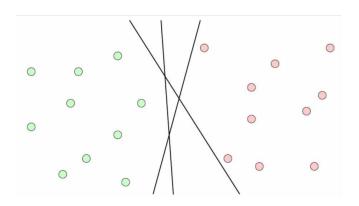
Taipei, Taiwan

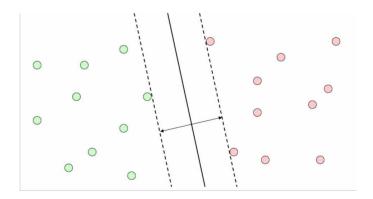
Result

System	Precision	Recall	F-Measure
Forward	0.8660	0.8077	0.8359
Backward	0.8733	0.8118	-0.8414
Union	0.8349	0.8578	0.8462
Intersection	0.9076	0.7186	0.8021
Adjacent Ten Union + Dictionary	0.8773	0.8263	0.8510

Taipei, Taiwan

- Support Vector Machines (SVM)
 - Find a decision surface (hyperplane) in the vector space that separates the document vectors of two categories
- The "best": maximum-margin hyperplane
 - Equal distance to both document sets
 - Margin between hyperplane and document sets is maximal





Taipei, Taiwan

- SVM binary classifier
 - One vs. all: Train a binary classifier for each class against all other classes
 - One vs. one: Train a binary classifier for each pair of classes and select the class appearing in the most output
- CRF also trained
- Backward better than Forward
 - More important "signal" at the end of the entities

Taipei, Taiwan

Result so far

Model	nance comparison for different m Forward	Backward
SVM+One vs.All	P:82.81% R:78.27% F:80.48%	P:86.99% R:75.79 %F:81.01%
SVM+One vs.One	P:82.41% R:78.11% F:80.20%	
CRF	P:86.52% R:79.44% F:82.83%	

Integration

- Union including more tagging results from different models
- Intersection filtering out false positives

Taipei, Taiwan

- Final scheme and result
 - A mixture of intersection & union

Run	Ensemble	Performance
1	$M1 \cup M3$	P:83.27(3) R:89.34(1) F:86.20(1)
2	$M2 \cup M3$	P:82.98(3) R:89.58(1) F:86.15(1)
3	$(M1\cap M2)\cup M3$	P:84.93(3) R:88.28(1) F.86.57(1)

Inspiration based on Kou & Huang's system Taipei, Taiwan

Feature Selection

- Difference when implementing in MALLET & CRF++
- Removing a subset of features, observing the result (Prefix & Suffix features; orthographic features)
- Selection of best features depends on the CRF package
- Testing Backward and Forward parsing in CRF++
 - No distinct difference in F-Score like in MALLET
 - Backward parsing is not always superior
 - Bidirectional parsing wider variety of complementary models

Inspiration based on Kou & Huang's system Taipei, Taiwan

Post processing

Problems caused by unpaired parenthesis

Example

- ... implicated the NIMA (never in mitosis, gene A)-related kinase-6 (NEK6).....
- □ "gene A)-related kinase-6"

Procedure

- Find the left parenthesis
- stop word (the) or parenthesis at the left side of the left parenthesis
- Extend the original tagging
- □ "the NIMA (never in mitosis, gene A)-related kinase-6"

Inspiration based on Kou & Huang's system Taipei, Taiwan

- Prominent feature of Kou et al.'s & Huang et al.'s system
 - Combining divergent but high performance models always improve the performance

Model Integration

- Intersection of forward & backward parsing by MALLET with L-BFGS algorithm
- Forward parsing by CRF++ with L-BFGS algorithm
- Forward parsing by CRF++ with CTJPGIS algorithm
- Forward parsing by SVM model

Inspiration based on Kou & Huang's system

Taipei, Taiwan

Result

Model		MalletL-BFGSint	CRF++L-BFGS	CRF++CTJPGIS	YamCha
MalletL-BFGSint	Precision	92.11	88.67	88.65	84.98
	Recall	75.69	86.68	86.40	87.03
	F-score	83.10	87.67	87.51	85.99
CRF++L-BFGS	Precision		90.15	88.21	84.16
	Recall		84.28	<u>86.</u> 59	88.01
	F-score		87.12	87.39	86.05
CRF++CTJPGIS	Precision			90.60	84.39
	Recall			82.96	87.73
	F-score			86.61	86.03
YamCha	Precision				86.96
	Recall				80.70
	F-score				83.71

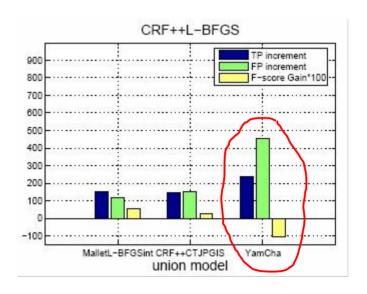
Inspiration based on Kou & Huang's system

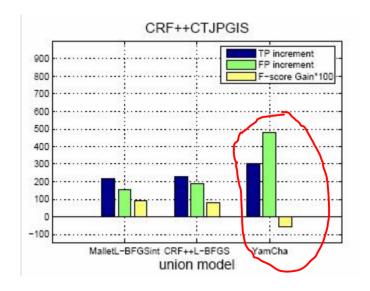
Taipei, Taiwan

What affects F-Score?

	truly YES	truly NO
system YES	true positives	false positives
system NO	false negatives	true negatives
	•	

- □ True Positive ↑ & False Positive ↓
- □ F-Score ↑





General Combination of BioCreative 2

National Center for Biotechnology Information, Maryland

- Review of BioCreative 2
 - Total 21 participants
 - □ F-Score (87.2 48.2)
- Materials in BioCreative 2
 - MEDLINE: both training and testing
 - Sentences likely to contain gene name = sentences not likely to contain gene name
- How would the systems work in other situation?
- Artificial sets of sentences from 2 databases
 - Random MEDLINE: F-Score lower
 - Random Trans. Factors: F-Score higher

General Combination of BioCreative 2

National Center for Biotechnology Information, Maryland

- Improvement on the best score?
- With the help of all submitted systems
 - Machine learning to predict gene mentions
 - Holding out 25 sentences, training on 4975 sentences, fusion of the 25 results
 - Boosted Decision Tree & Conditional Random Field
- Highest F-Score 90.66 (87.2)
 - Future systems should be able to achieve improved performance
 - Refining the corpus & Improving systems design through collaboration

Conclusion

- Semi-supervised system Rie's
 - 5 components
 - Useful for unlabeled data
- Kou et al.'s & Huang et al.'s
 - CRF & SVM with bidirectional parsing
- Inspired by Kou & Huang
 - Feature selection; backward vs. forward; post-processing
- Combination of all 21 systems
 - Machine learning method, highest F-Score

References

- Rie Kubota Ando BioCreative II Gene Mention Tagging System at IBM Watson
- Roman K. Christoph M.F. Juliane F. Martin H.A Named Entity Recognition with Combinations of Conditional Random Fields
- John Wilbur, Larry Smith, Lorrie Tanabe BioCreative 2. Gene Mention task
- Yu-Ming Chang, Cheng-Ju Kou, Han-shen Huang, Yu-Shi Lin, Chun-Nan Hsu Analysis and Enhancement of Conditional Random Fields Gene Mention Taggers in BioCreative II Challenge Evaluation
- Cheng-Ju Kou, Yu-Ming Chang, Han-Shen Huang, Kuan-Ting Lin, Bo-Hou Yang, Yu-Shi Lin, Chun-Nan Hsu, I-Fang Chung Rich Feature Set, Unification of Bidirectional Parsing and Dictionary Filtering for High F-Score Gene Mention Tagging
- Han-Shen Huang, Yu-Shi Lin, Kuan-Ting Lin, Cheng-Ju Kou, Yu-Ming Chang, Bo-Hou Yang, I-Fang Chung, Chun-Nan Hsu High-Recall Gene Mention Recognition by Unification of Multiple Backward Parsing Models

The End

Thanks for your attention!