Gene Name ldentification /
Mentioning at BioCreative Challenge 2

Presenter: Sai Qian
University of Saarland
saigian@coli.uni-sb.de

2008-5-26 1



Overview

Motivation & Introduction

Rie Kubota Ando’s system

Kou et al.’s system

Huang et al.’s system

Inspiration based on Kou & Huang’s system
General combination of BioCreative 2
Conclusion

2008-5-26



Motivation & Intruction

The largest and most reliable source of biomedical
knowledge: scientific literature

o Protein-protein interactions

o Disease-gene associations

Initial steps

o Tagging gene

o Gene product mentions

The second BioCreative challenge (BioCreative 2)
o Gene mention task (GM)

o Gene normalization task (GN)

o Protein-protein interaction task (PPI)

2008-5-26



Motivation & Intruction

Gene mention task similar to named entity
recognition task for person names and company
names

Significant difference

Quantity: millions of gene names used

Creativity: new gene names are created continuously
Random: authors do not use standardized names
Co-occurrence: co-occur with other types (cell names)
Indefinity: expert readers disagree on the result

Ambiguity: a sequence of DNA referred by a gene name
may vary in nonspecific ways (polymorphism, multiple
alleles)

o 0 o0 o0 0O o
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

A semi-supervised learning method (ASQO)
Automatic induction of high-order features
Gene name lexicon lookup

Classifier combination

Simple post-processing
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Alternating Structure Optimization (ASO)
o A multi-task learning algorithm
o Simultaneously learning multiple tasks that related to each other

Application of ASO

o Automatic generation of thousands of prediction problems
(auxiliary problems)

o Their (problems) labeled data info from unlabeled data

Learning new (and better) feature representation from
unlabeled data

“A framework for learning predictive structures from
multiple tasks and unlabeled data”
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Unlabeled data

o Total number of 500 million words — resource intensive

o A randomly generated subset — performance marginal

o Hope: benefit from the unlabeled data with reasonable
computational time

The setting

o Go through every sentence, count word frequency

o Choose a sentence if — it contains a word occurring at least
k times

o Discard a sentence — otherwise

2008-5-26 7



Rie Kubota Ando’s System

IBM T.J. Watson Research Center

High-order features

o Combing two or more base features

o E.g. “current-word='gene’ & next-word=""

o Generating all combination: training expensive

Bi-gram feature

o Construct bi-gram feature only from misclassified
data with pure base feature

o Retain the positive bi-gram feature, discard the
negative ones

o The best result with the least computational time
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Performance improvement with combination
of several classifiers

o Classifiers with similar performance but make
different mistakes

Left-to-right & right-to-left chunker

o Taking a union of the two sets of annotations
(BioCreative 1)

o Remove any annotation that overlaps with another
by keeping the longer ones (BioCreative 2)

D “AAA”, “AAABB”
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Domain lexicon

o A domain lexicon generated from LocusLink,
Swiss-Prot , Mesh

o A list of names with tags that indicate the
information source (e.g. “MESH")

Simple post-processing

o Remove annotations that include any unmatched
parenthesis

a0 e.g. )’
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Result
Post- Feature | Name | Classther | Unlabeled | P R F
processing | induction | lexicons | combmation |  data
Baselme - - - - - §9.13 7939 8398 -
Post-processing X - - - - 8040 7939 8410 (+0.12)
Feature induction - ] - - - 80.11 7986 8423 (+0.25)
Name lexicon - X - - §8.80 8048 8447 (+0.49)
Classifier combination - - - X - 85.14 8490 85.02 (+1.04)
Unlabeled data - - - - X 91.17 8152 86.07 ((+2.09)
Run#3 X X X - X 91.54 8199 8650 (+2.52)
Run#! X X - X X §8.37 8594 8114 (&
Run#2 X X X X X §8.48 8597 (87.21)((+3.23)
\_J S~
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Rie Kubota Ando’s System

IBM T.J. Watson Research Center

Period conclusion

0 Semi-supervised learning based on ASO
algorithm

o Equipped with classifier combination, automatic
generation of high-order features, domain lexicon,
and simple post-processing

o Useful for a huge amount of unlabeled data
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Kou et al.’s System

Taipei, Taiwan

Conditional Random Fields (CRFs)

o A type of discriminative probabilistic model most often used
for the labeling or parsing of sequential data. — Wikipedia

o Dominant performance of tagging gene and mentioning
protein in BioCreative 1

Rich feature set

o 5,059,368 predicates as the features

o Feature defined based on hundreds of trails

o E.g. exclude prefix and suffix predicates in previous tagger
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Kou et al.’s System

Taipei, Taiwan

Example of features

Feature Example
Word proteins
StemmedWord protein
PartOfSpeech NN
InitCap Kinase

Combination of several taggers

o Forward tagger — right to left

o Backward tagger — left to right

o Backward better than Forward?

o Union (recall 1) vs. Intersection (precision 1)
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Kou et al.’s System

Taipei, Taiwan

Adjacent Ten Union

o A nearly perfect recall (0.9810) with union of the adjacent
10 tagging solutions

Procedure

o Parse sentence in both directions, select the adjacent 10
solutions for each direction

o Compute the intersection of bidirectional parsing, discard
the one which minimizes the sum of the output scores

o For the rest 18, select the labeled terms appearing in a
dictionary with its length > 3
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Kou et al.’s System

Taipel, Taiwan

= Result
System Precision Recall F-Measure
Forward 8660 -0.8077 0.8359
Backward 8733 0.8118 0.8414
Union 0.8349 0.8578 0.8462
Intersection 0.9076 0.7186 0.8021
Adjacent Ten Union + Dictionary 0.8773 0.8263 (0.8510)

\__//“
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Huang et al.’s System

Taipei, Taiwan

Support Vector Machines (SVM)

o Find a decision surface (hyperplane) in the vector space that
separates the document vectors of two categories

The “best”. maximum-margin hyperplane
o Equal distance to both document sets
o Margin between hyperplane and document sets is maximal
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Huang et al.’s System

Taipei, Taiwan

SVM — binary classifier

0 One vs. all: Train a binary classifier for each class
against all other classes

a0 One vs. one: Train a binary classifier for each pair
of classes and select the class appearing in the
most output

CRF also trained

Backward better than Forward
o More important “signal” at the end of the entities

2008-5-26 18



Huang et al.’s System

Taipei, Taiwan

= Result so far

Lable 3: Performance comparison for different models and parsing directions
Model Forward Backward

SVM—i—OIlH vs.All  P:82.81% R:78.27% F:80.48% P:86.99% R:75.79 %F:81.01%
SVM+One vs.One P:82.41% R:78.11% F:80.20% P:85.49% R:79.25 '?/’E(i*SQ.ZS%

s CRF P:86.52% R:79.44% F:82.83% P:86.77% R:80.39% \F:83.46%
PR and I' denote precision, recall, and f-score, respectively.

= Integration

o Union — including more tagging results from different
models

o Intersection — filtering out false positives
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Huang et al.’s System

Taipei, Taiwan

Final scheme and result
2 A mixture of intersection & union

Run  Ensemble Pertormance
l M1UM3 P:83.27(3) R:80.34(1) F:86.20(1)
2 M2UM3 P:82.98(3) R:89.58(1) F:86.15(1)
3 (MINM2)UM3  P:84.93(3) R:88.28(1) P-
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Inspiration based on Kou & Huang’s system

Taipei, Taiwan

Feature Selection
o Difference when implementing in MALLET & CRF++

o Removing a subset of features, observing the result (Prefix &
Suffix features; orthographic features)

o Selection of best features depends on the CRF package

Testing Backward and Forward parsing in CRF++
o No distinct difference in F-Score like in MALLET

o Backward parsing is not always superior

o Bidirectional parsing — wider variety of complementary models
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Inspiration based on Kou & Huang’s system

Taipei, Taiwan

Post processing
o Problems caused by unpaired parenthesis

Example

o ... implicated the NIMA (never in mitosis, gene A)-related kinase-6
(NEKG)......

o “gene A)-related kinase-6"
Procedure
o Find the left parenthesis

o stop word (the) or parenthesis at the left side of the left
parenthesis

o Extend the original tagging

o “the NIMA (never in mitosis, gene A)-related kinase-6"
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Inspiration based on Kou & Huang’s system

Taipei, Taiwan

Prominent feature of Kou et al.’s & Huang et al.’s

system

o Combining divergent but high performance models always
improve the performance

Model Integration

o Intersection of forward & backward parsing by MALLET with L-
BFGS algorithm

o Forward parsing by CRF++ with L-BFGS algorithm
o Forward parsing by CRF++ with CTJPGIS algorithm
o Forward parsing by SVM model
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Inspiration based on Kou & Huang’s system

Taipei, Taiwan

= Result

Model MalletL-BFGSint  CRF4++L-BFGS  CRF44-CTIPGIS  YamCha

MalletL-BFGSint ~ Precision 02.11 88.67 88.65 84.98
Recall 75.69 86.68 86.40 87.03
F-score 83.10 87.67 87.51 85.99

CRF++L-BFGS  Precision 00.15 88.21 84.16
Recall 84.28 8 88.01
F-score 87.12 @M

CREF++CTJPGIS  Precision 90.60 84.39
Recall 82.96 R7.T.
F-score 86.61 m

YamCha Precision 86.96
Recall 80.70
F-score 83.71
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Inspiration based on Kou & Huang’s system

Taipei, Taiwan
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General Combination of BioCreative 2

National Center for Biotechnology Information, Maryland

Review of BioCreative 2
o Total 21 participants
o F-Score (87.2 -48.2)

Materials in BioCreative 2
o MEDLINE: both training and testing

o Sentences likely to contain gene name = sentences not
likely to contain gene name

How would the systems work in other situation?

Artificial sets of sentences from 2 databases
o Random MEDLINE: F-Score lower
o Random Trans. Factors: F-Score higher
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General Combination of BioCreative 2

National Center for Biotechnology Information, Maryland

Improvement on the best score?

With the help of all submitted systems
o Machine learning to predict gene mentions

o Holding out 25 sentences, training on 4975 sentences,
fusion of the 25 results

o Boosted Decision Tree & Conditional Random Field

Highest F-Score — 90.66 (87.2)

o Future systems should be able to achieve improved
performance

o Refining the corpus & Improving systems design through
collaboration
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Conclusion

Semi-supervised system — Rie’s
o 5 components
o Useful for unlabeled data

Kou et al.’s & Huang et al.’s
o CRF & SVM with bidirectional parsing

Inspired by Kou & Huang

o Feature selection; backward vs. forward; post-processing

Combination of all 21 systems
o Machine learning method, highest F-Score
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The End

Thanks for your attention!



