Relation Extraction: PPI task at BioCreAtIvE

Danielle Ben-Gera

IE in the Biomedical Domain Dr. Günter Neumann & Alejandro Pironti

Outline

BioCreAtIvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task Results

AKANE system

The Architecture Results

Enju Parser

Outline

BioCreAtIvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task Results

AKANE system

The Architecture Results

Enju Parser

Outline

BioCreAtIvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task Results

AKANE system

The Architecture Results

Enju Parser

AKANE system

Motivation

Outline

BioCreAtIvE2: PPI Task

Motivation

The Task

Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task

Results

AKANE system

The Architecture Results

Enju Parser

Motivation

Motivation

- Devlopment of new experimental methods makes it possible to study protein interaction at a much larger scale.
- Databases provide interaction information: IntAct, MINT.
- Manually curating protein interaction information is too slow
 Employ automated information extraction and text mining techniques.

Motivation

Motivation

- Devlopment of new experimental methods makes it possible to study protein interaction at a much larger scale.
- > Databases provide interaction information: IntAct, MINT.
- Manually curating protein interaction information is too slow
 Employ automated information extraction and text mining techniques.

AKANE system

Enju Parser

References

Outline

The Task

BioCreAtIvE2: PPI Task

Motivation

The Task

Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task

Results

AKANE system

The Architecture Results

Enju Parser

PPI Task

- Determine the state of the art in extraction of PPI.
- Produce useful resources for training and testing PPI extraction systems.
- Learn which approaches are successful and practical.
- Provide the biology community with useful tools to extract PPI from text.

The Data

- Training: 740 full text articles.
- Testing: 358 full text articles.
- Formats: PDF and HTML
 - Only full text articles which were available in both PDF and HTML formats were included.
 - Converted to simple text using html2text and pdftotext.
- No redundant articles were allowed.

Enju Parser

References

Interaction Pairs Sub-task (IPS)

Identifying pairs of interacting proteins from full text articles.

- Normalized protein names (UniProt accession number)
 - Not all proteins are covered in UniProt.

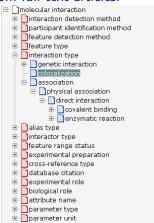
AKANE system

Enju Parser

Interaction Pairs Sub-task (IPS)

Identifying pairs of interacting proteins from full text articles.

- Normalized protein names (UniProt accession number)
 - Not all proteins are covered in UniProt.
- IntAct and MINT curate all interaction that are:
 - interaction types
 - colocalisations
 - physical interactions



Molecular Interaction ontology via http://www.ebi.ac.uk/ontology-lookup/

IPS: The setting

Input: Training Data

- Full text articles.
- List with the interaction pairs that were curated from the articles and their synonyms.
- Test data: full articles.

Output

- A ranked list of normalized protein-protein interaction pairs for each article.
- proteins must be disambiguated with respect to the organism source.

Evaluation

▶ Precision, recall and F-measure.

IPS: The setting

Input: Training Data

- Full text articles.
- List with the interaction pairs that were curated from the articles and their synonyms.
- Test data: full articles.

Output

- A ranked list of normalized protein-protein interaction pairs for each article.
- proteins must be disambiguated with respect to the organism source.

Evaluation

Precision, recall and F-measure.

IPS: The setting

Input: Training Data

- Full text articles.
- List with the interaction pairs that were curated from the articles and their synonyms.
- Test data: full articles.

Output

- A ranked list of normalized protein-protein interaction pairs for each article.
- proteins must be disambiguated with respect to the organism source.

Evaluation

▶ Precision, recall and F-measure.

IPS: The setting

Input: Training Data

- Full text articles.
- List with the interaction pairs that were curated from the articles and their synonyms.
- Test data: full articles.

Output

- A ranked list of normalized protein-protein interaction pairs for each article.
- proteins must be disambiguated with respect to the organism source.

Evaluation

Precision, recall and F-measure.

AKANE system

Enju Parser

The Task

Protein Interaction Method Sub-task (IMS)

From the text, extract the method(s) that were used to detect the interaction.

- Experimental methods are more reliable.
- MI ontology provides additional information: definition, exat synonyms and related synonyms

Molecular Interaction ontology via http://www.ebi.ac.uk/ontology-lookup/

IMS: The setting

Input: Training Data

- Full text articles corpus.
- List with the interaction pairs and their interaction detection methods.
- Test data: full articles, articles that describe large scale experiments were excluded

Output

► A ranked list of normalized protein-protein interaction pairs for each article and their method.

Evaluation

• Low number of submissions \Rightarrow measure only precision

IMS: The setting

Input: Training Data

- Full text articles corpus.
- List with the interaction pairs and their interaction detection methods.
- Test data: full articles, articles that describe large scale experiments were excluded

Output

A ranked list of normalized protein-protein interaction pairs for each article and their method.

Evaluation

 \blacktriangleright Low number of submissions \Rightarrow measure only precision

IMS: The setting

Input: Training Data

- Full text articles corpus.
- List with the interaction pairs and their interaction detection methods.
- Test data: full articles, articles that describe large scale experiments were excluded

Output

A ranked list of normalized protein-protein interaction pairs for each article and their method.

Evaluation

• Low number of submissions \Rightarrow measure only precision

IMS: The setting

Input: Training Data

- Full text articles corpus.
- List with the interaction pairs and their interaction detection methods.
- Test data: full articles, articles that describe large scale experiments were excluded

Output

A ranked list of normalized protein-protein interaction pairs for each article and their method.

Evaluation

• Low number of submissions \Rightarrow measure only precision

Protein Interaction Sentences Sub-task (ISS)

Extract supporting sentences: select the most relevant sentences expressing the interaction.

- A ranked list of maximum *five* evidence passages.
- each passage may contain up to three sentences.

Evaluation

- Percentage of interaction-relevant sentences from the total number of sentences.
- Mean Reciprocal Rank (MRR): manually chosen best sentence.

Protein Interaction Sentences Sub-task (ISS)

Extract supporting sentences: select the most relevant sentences expressing the interaction.

- A ranked list of maximum *five* evidence passages.
- each passage may contain up to three sentences.

Evaluation

- Percentage of interaction-relevant sentences from the total number of sentences.
- Mean Reciprocal Rank (MRR): manually chosen best sentence.

ISS: The Data

Input: Training Data

- Limited amount of evidences were provided.
- Additional resources:
 - Anne-Lise Veuthey corpus: 697 sentecnes containing protein interactions (from PubMed).
 - Prodisen interaction subset: 921 senteces that are manually classified whether they contain an interaction description.
 - Chirstine Brun corpus: Sentences derived from abstracts with interactions and interaction types.
 - GeneRIF interactions: Collection of interaction sentences (51,381 entries)

ISS: Trends

- Often used:
 - Sentence segmentation.
 - POS tagging.
 - Stemming.
 - Shallow parsing.
 - Regular expressions, pattern matching.
- Not used often:
 - Addtional training data.
 - External lexical resources: dictionaries or ontologies.
 - Abbreviations extraction.
- Winning strategy:
 - Sophisticated protein mention and normalization techniques.
 - Species identification.

ISS: Trends

- Often used:
 - Sentence segmentation.
 - POS tagging.
 - Stemming.
 - Shallow parsing.
 - Regular expressions, pattern matching.
- Not used often:
 - Addtional training data.
 - External lexical resources: dictionaries or ontologies.
 - Abbreviations extraction.
- Winning strategy:
 - Sophisticated protein mention and normalization techniques.
 - Species identification.

ISS: Trends

- Often used:
 - Sentence segmentation.
 - POS tagging.
 - Stemming.
 - Shallow parsing.
 - Regular expressions, pattern matching.
- Not used often:
 - Addtional training data.
 - External lexical resources: dictionaries or ontologies.
 - Abbreviations extraction.
- Winning strategy:
 - Sophisticated protein mention and normalization techniques.
 - Species identification.

AKANE system

Results

Outline

BioCreAtlvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task

Results

AKANE system

The Architecture Results

Enju Parser

IPS results

Results

Average performance for an article in the test collection.

Two test collections:

- Whole test article collection.
- SwissProt-only articles set.

IPS results

Results

Average performance for an article in the test collection.

Two test collections:

- ► Whole test article collection.
- SwissProt-only articles set.

Team	Precision	Recall	F-score
4(1)	0.3893	0.3073	0.2885
6(1)	0.2758	0.3011	0.2532
6(2)	0.2218	0.2592	0.2066
6(3)	0.2392	0.3025	0.2272
14(1)	0.1791	0.1421	0.1384
14(2)	0.1944	0.1300	0.1414
14(3)	0.1162	0.1057	0.0985
28(1)	0.1373	0.2905	0.1579
28(2)	0.2177	0.2651	0.2039
28(3)	0.3096	0.2935	0.2623
36(1)	0.0441	0.1121	0.0503
36(2)	0.0229	0.0990	0.0305
36(3)	0.0548	0.1350	0.0680
40(1)	0.0762	0.2489	0.0990
40(2)	0.2632	0.2484	0.2172
58(1)	0.0003	0.0006	0.0004

IPS results

Results

Average performance for an article in the test collection.

Two test collections:

- Whole test article collection.
- SwissProt-only articles set.

Team	Precision	Recall	F-score
4(1)	0.3908	0.2970	0.2849
6(1)	0.3150	0.3356	0.2871
6(2)	0.2519	0.2868	0.2308
6(3)	0.2632	0.3394	0.2532
14(1)	0.1975	0.1543	0.1510
14(2)	0.2133	0.1430	0.1552
14(3)	0.1287	0.1157	0.1079
28(1)	0.1373	0.2905	0.1579
28(2)	0.2177	0.2651	0.2039
28(3)	0.3096	0.2935	0.2623
36(1)	0.0456	0.1243	0.0560
36(2)	0.0202	0.0997	0.0295
36(3)	0.0560	0.1362	0.0686
40(1)	0.0824	0.2672	0.1083
40(2)	0.2751	0.2737	0.2355
58(1)	0.0000	0.0000	0.0000

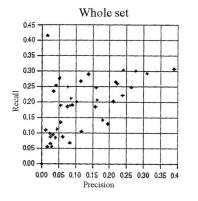
Results

AKANE system

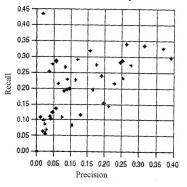
Enju Parser

References

IPS Results: Whole set vs. SwissProt-only



SwissProt-only Set



Results

IPS Results: Normalization evaluation

The normalization of the protein names were also evaluated

- Precision:
 - ► Team 4: 0.56 (whole set)
 - Team 28: 0.57 (SwissProt-only)
- ► Recall:
 - Team 42: 0.68 (whole set)
 - Team 42: 0.69¹ (SwissProt-only)
- F-score:
 - Team 28: 0.52 (whole set)
 - Team 4: 0.48 (SwissProt-only)

¹But very low Recall: 0.08

Danielle Ben-Gera

IMS results

Results

Only 2 teams submitted systems.

Evaluation Method: Using a manually annotated gold standard. (Annotated using the Molecular Interaction controlled vocabulary)

- Exact Matching.
- Parent Matching.

AKANE system

Results

IMS results

Only 2 teams submitted systems.

Exact Match Results:

Team	Precision	Recall	F-score
14(1)	0.3628	0.2172	0.2513
14(2)	0.3186	0.1980	0.2249
14(3)	0.3348	0.1938	0.2265
40(3)	0.6679	0.3383	0.4207
40(1)	0.4028	0.5548	0.4363
40(2)	0.5068	0.5222	0.4836

Parent Matching Results:

Team	Precision	Recall	F-score
14(1)	0.4986	0.3078	0.3495
14(2)	0.4471	0.2847	0.3170
14(3)	0.4881	0.2953	0.3375
40(3)	0.6794	0.3472	0.4302
40(1)	0.5899	0.8548	0.6519
40(2)	0.6541	0.7093	0.6375

Danielle Ben-Gera

Relation Extraction: PPI

Results

ISS Results: Evaluation Method

- Compare passages to manually extracted passages.
- Sliding the shorter one over the other and calculate string similarity for each position.
- Correct if string similarity is high.
- Problems:
 - Passage might be correct but was not chosen by the curators.
 - For some articles curators did not find a suitable evidence sentence.

Results

ISS Results: Evaluation Method

- Compare passages to manually extracted passages.
- Sliding the shorter one over the other and calculate string similarity for each position.
- Correct if string similarity is high.
- Problems:
 - Passage might be correct but was not chosen by the curators.
 - For some articles curators did not find a suitable evidence sentence.

Enju Parser

References

ISS Results

Results

Team	Precision	Precision (unique)	MRR
4(1)	0.1371	0.1413	-
4(2)	0.1909	0.1939	-
6(1)	0.0589	0.0565	0.5525
14(1)	0.0205	0.0207	0.8718
14(2)	0.0218	0.0237	0.8167
14(3)	0.0232	0.0214	0.8718
28(1)	0.0495	0.0493	0.3740
28(2)	0.0565	0.0565	0.3696
28(3)	0.0646	0.0595	0.3392
36(1)	0.0514	0.0496	0.5731
36(2)	0.0483	0.0456	0.5813
36(3)	0.0605	0.0533	0.5476

Danielle Ben-Gera

Results

Discussion and Conclusions

Common difficulties:

- Errors resulting from converting PDF to HTML.
- Processing tables, figures, legends etc.
- Imperfect protein names normalization step.
- Heavy use of domain specific terminology.
- Errors in NLP components (e.g. POS-tagger, shallow parsing) that were trained on an open domain English corpus

Observations:

- ► More sophisticated approaches outperformed simple ones.
- Gene name recognition and normalization is very important.

Outline

BioCreAtlvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task Results

AKANE system

The Architecture

Results

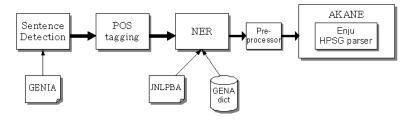
Enju Parser

Overview Stochastic Unification-based grammars Experiment and Evaluation

Enju Parser

The Architecture

The Architecture: Overview



All modules use machine learning.

Danielle Ben-Gera Relation Extraction: PPI 28/52

Sentence Detecting

- Method: Maximum Entropy.
- ► Traning: GENIA corpus.
- Candidates: positions for splitting using selected delimiters.
- Features: delimiters, prev/next words, special characters, numbers, case.
- ► F-score: 99.7, but more errors when tested on BioCreAtlve (due to HTML encoding and figure explanations texts).

Enju Parser

The Architecture

Name Entity Recognition

- Step 1: statistical recognizer
 - ► Traning: JNLPBA 2004 data.
 - Outputs: The probability that a substring of a sentence is a protein name.
- Step 2: Mapping to a Dictionary
 - Candidates: strings from Step 1 that are above a threshold.
 - Outputs: set of strings that could be mapped to enteries in the dictionary with a given edit distance.
- Step 3: Disambiguating
 - Method: Maximum Entropy.
 - Trainig: 266 articles from the data.
 - Features: similarity between article and MEDLINE articles (referred by Uniprot), source dictionary (Uniprot/GENA), edit distance, type (protein name, gene name,..)

The Architecture

Name Entity Recognition

- Step 1: statistical recognizer
 - ► Traning: JNLPBA 2004 data.
 - Outputs: The probability that a substring of a sentence is a protein name.
- Step 2: Mapping to a Dictionary
 - Candidates: strings from Step 1 that are above a threshold.
 - Outputs: set of strings that could be mapped to enteries in the dictionary with a given edit distance.
- Step 3: Disambiguating
 - Method: Maximum Entropy.
 - Trainig: 266 articles from the data.
 - Features: similarity between article and MEDLINE articles (referred by Uniprot), source dictionary (Uniprot/GENA), edit distance, type (protein name, gene name,..)

The Architecture

Name Entity Recognition

- Step 1: statistical recognizer
 - ► Traning: JNLPBA 2004 data.
 - Outputs: The probability that a substring of a sentence is a protein name.
- Step 2: Mapping to a Dictionary
 - Candidates: strings from Step 1 that are above a threshold.
 - Outputs: set of strings that could be mapped to enteries in the dictionary with a given edit distance.
- Step 3: Disambiguating
 - Method: Maximum Entropy.
 - Trainig: 266 articles from the data.
 - Features: similarity between article and MEDLINE articles (referred by Uniprot), source dictionary (Uniprot/GENA), edit distance, type (protein name, gene name,..)

AKANE system

- AKANE system requires Almed corpus style input
 use preprocessor to automatically create this style.
- ▶ Parse input text using *Enju* HPSG *parser*.
 - Trained with Penn Treebank
 - Domain adaption²: using GENIA Treebank
 - Bio-performance: 86.9 F-score
- Creates the smallest possible parse tree that covers both proteins.
- Postprocessor:
 - pick only the most likely interaction pair based on NER probabilities.
 - Filter out results where proteins did not have identical species tags.

²[Hara et al, 2005]

Danielle Ben-Gera

AKANE system

- AKANE system requires Almed corpus style input
 - use preprocessor to automatically create this style.
- ▶ Parse input text using *Enju* HPSG *parser*.
 - Trained with Penn Treebank
 - Domain adaption²: using GENIA Treebank
 - Bio-performance: 86.9 F-score
- Creates the smallest possible parse tree that covers both proteins.

Postprocessor:

- pick only the most likely interaction pair based on NER probabilities.
- Filter out results where proteins did not have identical species tags.

²[Hara et al, 2005]

Danielle Ben-Gera

AKANE system

- AKANE system requires Almed corpus style input
 - we preprocessor to automatically create this style.
- ▶ Parse input text using *Enju* HPSG *parser*.
 - Trained with Penn Treebank
 - Domain adaption²: using GENIA Treebank
 - Bio-performance: 86.9 F-score
- Creates the smallest possible parse tree that covers both proteins.

Postprocessor:

- pick only the most likely interaction pair based on NER probabilities.
- Filter out results where proteins did not have identical species tags.

²[Hara et al, 2005]

Danielle Ben-Gera

AKANE system

- AKANE system requires Almed corpus style input
 - we preprocessor to automatically create this style.
- ▶ Parse input text using *Enju* HPSG *parser*.
 - Trained with Penn Treebank
 - Domain adaption²: using GENIA Treebank
 - Bio-performance: 86.9 F-score
- Creates the smallest possible parse tree that covers both proteins.
- Postprocessor:
 - pick only the most likely interaction pair based on NER probabilities.
 - Filter out results where proteins did not have identical species tags.

²[Hara et al, 2005]

Danielle Ben-Gera

Results

Outline

BioCreAtlvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-task Results

AKANE system

The Architecture

Results

Enju Parser

Overview Stochastic Unification-based grammars Experiment and Evaluation

Results

Run 1

- Not using inter-species interaction filter.
 - ▶ P: 8.2%, R:14.6%, F-score: 10.5.

Run 2

- Best run in terms of F-score on training set.
 - ▶ P: 10.6%, R:19.1%, F-score: 13.7.

Run 3

- Best run in terms of F-score on Almed set.
 - ▶ P: 15.7%, R:15.9%, F-score: 15.8.
- Training on full text did not preform better than training on Almed abstracts.

Results

Run 1

- Not using inter-species interaction filter.
 - ▶ P: 8.2%, R:14.6%, F-score: 10.5.

Run 2

- Best run in terms of F-score on training set.
 - P: 10.6%, R:19.1%, F-score: 13.7.

Run 3

- Best run in terms of F-score on Almed set.
 - ▶ P: 15.7%, R:15.9%, F-score: 15.8.
- Training on full text did not preform better than training on Almed abstracts.

Results

Run 1

- Not using inter-species interaction filter.
 - ▶ P: 8.2%, R:14.6%, F-score: 10.5.

Run 2

- Best run in terms of F-score on training set.
 - P: 10.6%, R:19.1%, F-score: 13.7.

Run 3

- Best run in terms of F-score on Almed set.
 - P: 15.7%, R:15.9%, F-score: 15.8.

Training on full text did not preform better than training on Almed abstracts.

Results

Run 1

- Not using inter-species interaction filter.
 - ▶ P: 8.2%, R:14.6%, F-score: 10.5.

Run 2

- Best run in terms of F-score on training set.
 - P: 10.6%, R:19.1%, F-score: 13.7.

Run 3

- Best run in terms of F-score on Almed set.
 - ▶ P: 15.7%, R:15.9%, F-score: 15.8.

Training on full text did not preform better than training on Almed abstracts.

Results

Discussion

- Underlying assumption: All sentences that include the mentioning of two proteins that were marked as interacting by the BioCreAtlvE training data, were describing the interaction.
- Only 250 out 740 training articles were used since AKANE did not scale well to large amount of text. (originally build for Almed abstracts).
 - Use only articles were all interacting protein names/IDs could be recognized by the NER.
 - Discard articles with too many co-occurence sentences

Overview

Outline

BioCreAtlvE2: PPI Task

Motivation The Task Interaction Pairs Sub-tas Protein Interaction Meth

Protein Interaction Sentences Sub-task

Results

AKANE system

The Architecture Results

Enju Parser

Overview

Stochastic Unification-based grammars Experiment and Evaluation

Overview

Charecharistics and Motivation

- Unification-based grammars give in-depth useful analysis.
 But: computing all possible parses is very expensive.
- Using probabilistic models of Unification-based grammars allows us to employ techniques from PCFG parsing:
 - Viterbi parsing.
 - Local (beam) thresholding.
 - Global (beam) thresholding.
 - Quick check.
 - Large Constituent inhibition.
 - Chunk parsing.

Overview

Charecharistics and Motivation

- Unification-based grammars give in-depth useful analysis.
 But: computing all possible parses is very expensive.
- Using probabilistic models of Unification-based grammars allows us to employ techniques from PCFG parsing:
 - Viterbi parsing.
 - Local (beam) thresholding.
 - Global (beam) thresholding.
 - Quick check.
 - Large Constituent inhibition.
 - Chunk parsing.

Enju Parser

Stochastic Unification-based grammars

Outline

BioCreAtlvE2: PPI Task

Motivation The Task Interaction Pairs Sub-task Protein Interaction Method Sub-task Protein Interaction Sentences Sub-tas Results

AKANE system

The Architecture Results

Enju Parser

Overview

Stochastic Unification-based grammars

Experiment and Evaluation

Enju Parser

Stochastic Unification-based grammars

hpsg and Probabilistic models

Maximum Entropy model (discrete)³

 $p(T|\omega) = \frac{1}{Z_{\omega}} exp\left(\sum_{u} \lambda_{u} f_{u}(T)\right)$

Z: normalizes the probability = $\sum_{T'} exp\left(\sum_{u} \lambda_u f_u(T)\right)$

 λ_u : the model paramater, estimated to maximize likelihood. $f_u(T)$: the feature function - frequency of f_u in T.

In practice, the model is hard to estimate:

- requires computation of $p(T|\omega)$ for every possible T.
- ▶ simplify computation by assuming T = {c₁,..,c_n}and the set of all parse trees is represented as a AND/OR graph.

³[Abney, 1997]

Enju Parser

Stochastic Unification-based grammars

hpsg and Probabilistic models

Maximum Entropy model (discrete)³

 $p(T|\omega) = \frac{1}{Z_{\omega}} exp\left(\sum_{u} \lambda_{u} f_{u}(T)\right)$

Z: normalizes the probability = $\sum_{T'} exp\left(\sum_{u} \lambda_u f_u(T)\right)$

 λ_u : the model paramater, estimated to maximize likelihood. $f_u(T)$: the feature function - frequency of f_u in T.

In practice, the model is hard to estimate:

- requires computation of $p(T|\omega)$ for every possible T.
- ▶ simplify computation by assuming T = {c₁,.., c_n}and the set of all parse trees is represented as a AND/OR graph.

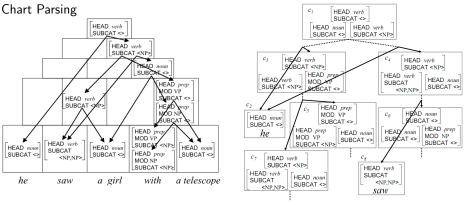
³[Abney, 1997]

Enju Parser

Packed representation

Stochastic Unification-based grammars

HPSG and **Probabilistic** models



Figures are taken from [Hara et al, 2005]

Danielle Ben-Gera

Probabilistic models: Packed Representation

Using packed representation we can rewrite the probability of a parse:

$$p(T|\omega) = \frac{1}{Z_{\omega}} exp\left(\sum_{c \in T} \sum_{u} \lambda_{u} f_{u}(c)\right)$$

We can now use features for a node c

RULE the name of the applied schema

DIST the distance between the head words of the daughters

COMMA whether a comma exists between daughters and/or inside of daughter phrases

SPAN the number of words dominated by the phrase

SYM the symbol of the phrasal category (e.g. NP, VP)

WORD the surface form of the head word

POS the part-of-speech of the head word

LE the lexical entry assigned to the head word

Enju Parser

Stochastic Unification-based grammars

Probabilistic models: Features

Each type of node has a different set of features:

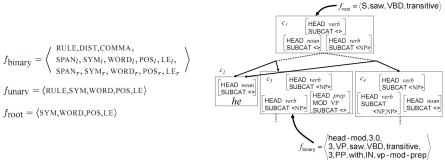


Figure is taken from [Hara et al, 2005]

Improving Parsing Efficiency Techniques

- Quick check:
 - filters out non-unifiable structures by peeping
- Large constituent inhibition:
 - prevents the parser from generating medial edges that span more than k words length.
- CFG chunk parser: parse trees without non-terminal symbols.
 - Use bracket information to prevent the parser form generating cross brackts edges.
 - Chunk parsing is fast and precise.
 - CFG grammer is automatically extracted while generating the HPSG grammer (from Penn treebank)

Improving Parsing Efficiency Techniques

- Quick check:
 - filters out non-unifiable structures by peeping
- Large constituent inhibition:
 - prevents the parser from generating medial edges that span more than k words length.
- CFG chunk parser: parse trees without non-terminal symbols.
 - Use bracket information to prevent the parser form generating cross brackts edges.
 - Chunk parsing is fast and precise.
 - CFG grammer is automatically extracted while generating the HPSG grammer (from Penn treebank)

Improving Parsing Efficiency Techniques

- Quick check:
 - filters out non-unifiable structures by peeping
- Large constituent inhibition:
 - prevents the parser from generating medial edges that span more than k words length.
- CFG chunk parser: parse trees without non-terminal symbols.
 - Use bracket information to prevent the parser form generating cross brackts edges.
 - Chunk parsing is fast and precise.
 - CFG grammer is automatically extracted while generating the HPSG grammer (from Penn treebank)

Enju Parser

Stochastic Unification-based grammars

Chunk parsing

							0,7
						0,6	1,7
					0,5	1,6	2,7
				0,4	1,5	2,6	3,7
			0,3	1,4	2,5	3,6	4,7
		0,2	1,3	2,4	3,5	4,6	5,7
0,	1	1,2	2,3	3,4	4,5	0,6	6,7
0 He	1	Runs 2	[a 3	Big 4	Company] 5	Very 6	Well 7

The HPSG parser never generates edges corresponding to the gray cells.

- Simple and effective technique for efficient parsing.
 - Local thresholding by number of edges
 - ▶ Keep top *k* edges.
 - Calculated at the end of the computation for each cell.
 - Local thresholding by beam width
 - Keep all edges with FOM greater then $\alpha_{max} \delta$. α_{max} : highest FOM among the edges of the cell.
 - Calculated at the end of the computation for each cell.
 - Global thresholding by beam width
 - ► Global FOM is greater then $\alpha_{max} \theta \alpha_{max}$: highest global FOM in the chart.
 - ▶ Global FOM of an edge is its FOM plus the outside FOM
 - Iterative beam thresholding
 - Start with a narrow beam and decrease the threshold if the parser did not yield a result.

- Simple and effective technique for efficient parsing.
 - Local thresholding by number of edges
 - ▶ Keep top *k* edges.
 - Calculated at the end of the computation for each cell.
 - Local thresholding by beam width
 - Keep all edges with FOM greater then α_{max} − δ. α_{max}: highest FOM among the edges of the cell.
 - Calculated at the end of the computation for each cell.
 - Global thresholding by beam width
 - Global FOM is greater then $\alpha_{max} \theta \alpha_{max}$: highest global FOM in the chart.
 - ▶ Global FOM of an edge is its FOM plus the outside FOM
 - Iterative beam thresholding
 - Start with a narrow beam and decrease the threshold if the parser did not yield a result.

- Simple and effective technique for efficient parsing.
 - Local thresholding by number of edges
 - ▶ Keep top *k* edges.
 - Calculated at the end of the computation for each cell.
 - Local thresholding by beam width
 - ► Keep all edges with FOM greater then $\alpha_{max} \delta$. α_{max} : highest FOM among the edges of the cell.
 - Calculated at the end of the computation for each cell.
 - Global thresholding by beam width
 - ► Global FOM is greater then $\alpha_{max} \theta \alpha_{max}$: highest global FOM in the chart.
 - ▶ Global FOM of an edge is its FOM plus the outside FOM
 - Iterative beam thresholding
 - Start with a narrow beam and decrease the threshold if the parser did not yield a result.

- Simple and effective technique for efficient parsing.
 - Local thresholding by number of edges
 - ▶ Keep top *k* edges.
 - Calculated at the end of the computation for each cell.
 - Local thresholding by beam width
 - ► Keep all edges with FOM greater then $\alpha_{max} \delta$. α_{max} : highest FOM among the edges of the cell.
 - Calculated at the end of the computation for each cell.
 - Global thresholding by beam width
 - ► Global FOM is greater then $\alpha_{max} \theta \alpha_{max}$: highest global FOM in the chart.
 - ▶ Global FOM of an edge is its FOM plus the outside FOM
 - Iterative beam thresholding
 - Start with a narrow beam and decrease the threshold if the parser did not yield a result.

Experiment and Evaluation

Outline

BioCreAtlvE2: PPI Task

Motivation

The Task

Interaction Pairs Sub-task

Protein Interaction Method Sub-task

Protein Interaction Sentences Sub-task

Results

AKANE system

The Architecture Results

Enju Parser

Overview Stochastic Unification-based grammars Experiment and Evaluation

The Gramamr and the model

- 2,284 Lexical Entries tamplates (plus lexical entries for POS, which were assigned to unknown words).
- ▶ 529,856 features in the model (trained on section 02-21).
- The thresholding parameters (determined manually from section 22):

•
$$k_0 = 6.0, \ \Delta k = 3.0, \ k last = 15.1$$

•
$$\delta_0 = 12, \ \Delta \delta = 6, \ k\delta = 30$$

• $\theta_0 = 8.0, \ \Delta \theta = 4.0, \ k\theta = 20.1$

Danielle Ben-Gera

Results: Tested on Penn

Experimental results for development set (section 22) and test set (section 23) with manually annotated POS

	Precision	Recall	F-score	Avg.	No. of failed
				Time (ms)	sentences
development set (≤ 40)	88.15%	87.34%	87.74%	352	11
development set (≤ 100)	87.57%	86.31%	86.94%	448	15
test set (≤ 40)	87.70%	86.78%	87.23%	355	14
test set (≤ 100)	87.26%	86.18%	86.71%	448	17

Experimental results for development set (section 22) and test set (section 23) with a POS tagger

	Precision	Recall	F-score	Avg.	No. of failed
				Time (ms)	sentences
development set (≤ 40)	85.92%	85.00%	85.45%	364	8
development set (≤ 100)	85.31%	84.31%	84.81%	493	9
test set (≤ 40)	85.38%	84.65%	85.01%	397	15
test set (≤ 100)	84.99%	83.99%	84.49%	517	19

Results

Viterbi alone vs. beam thresholding vs. iterative thresholding

	Precision	Recall	F-score	Avg.	No. of failed
				Time (ms)	sentences
viterbi (none)	87.80%	87.52%	87.66%	94374	2
beam search (num+width)	88.63%	82.45%	85.43%	90	25
iterative (iterative)	87.40%	87.03%	87.21%	101	2

Danielle Ben-Gera

Results

Performance	for the sen	tences in	Section 2	$4.01 \le 40.0$	voras	
	Precision	Recall	F-score	Avg.	diff(*)	No. of failed
				Time (ms)		sentences
full	85.35%	84.10%	84.72%	419	0	13
full-piter	85.47%	84.70%	85.09%	639	220	8
full-qc	85.35%	84.10%	84.72%	566	147	13
full-chp	85.65%	84.87%	85.26%	527	108	8
full-global	85.35%	84.33%	84.84%	457	38	10
full-lei	85.57%	84.33%	84.95%	439	20	13
full-piter-qc-chp-global-lci	85.49%	84.76%	85.12%	1100	681	7

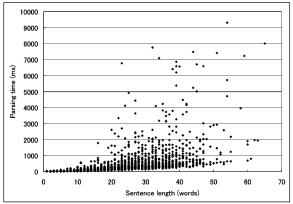
Define the sector of C_{1} and C_{2}

Performance for the sentences in Section 24 of ≤ 100 words

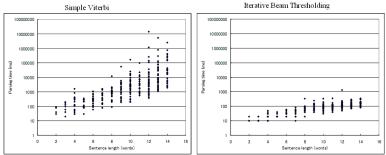
	Precision	Recall	F-score	Avg.	diff(*)	No. of failed
				Time (ms)		sentences
full	85.07%	83.61%	84.34%	525	0	15
full-piter	85.20%	84.16%	84.68%	877	352	10
full-gc	85.07%	83.61%	84.34%	728	203	15
full-chp	85.34%	84.30%	84.81%	690	165	10
full-global	84.88%	84.02%	84.45%	545	20	10
full-lei	85.32%	83.85%	84.58%	576	51	15
full-piter-qc-chp-global-lci	85.17%	84.09%	84.63%	1591	1066	10
full piter qc chp ki diff(*) full-X1,	, X _n	prese quick parsii large (Avg	constituent i	e parsing chunk parser nhibition l) - (Avg. Time)		

Results

Parsing time versus sentence length (≤ 100)



Results



Resources and References

- M. Krallinger, F. Leitner and A. Valencia. Assessment of the Second BioCreative PPI task: Automatic Extraction of Protein-Protein Interactions.
- Ontology Lookup Service: http://www.ebi.ac.uk/ontology-lookup/
- R. Sætre, K. Yoshida, A. Yakushiji, Y. Miyao, Y. Matsubayashi and T. Ohta, AKANE System: Protein-Protein Interaction Pairs in the BioCreAtIve2 Challenge, PPI-IPS subtask. In the Proceedings of the Second BioCreative Challenge Evaluation Workshop. Spain. April, 2007.
- GENIA Treebank: http://www-tsujii.is.s.u-tokyo.ac.jp/ genia/topics/Corpus/GTB.html
- BioNLP: http://www.bionlp.org/
- T. Hara, Y. Miyao and J. Tsujii, Adapting a probablistic disambiguation model of an HPSG parser to a new domain, in IJCNLP 2005, vol. 3651 of LNAI, 199-210. Springer-Verlag. Korea. Oct, 2005.
- T. Ninomiya, Y. Tsuruoka, Y. Miyao, K. Taura, and J. Tsujii, Fast and Scalable HPSG Parsing. Traitement automatique des langues (TAL), 46(2). 2006.
- Y. Miyao and J. Tsuiji, Probabilistic disambiguation models for wide-coverage HPSG parsing. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. 2005.
- S. Geman and M. Johnson, Dynamic Programming for Parsing and Estimation of Stochastic Unification-Based Grammars. In proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002